Color-critical graphs and hypergraphs with few edges

Michael Stiebitz
Technische Universität Ilmenau, D-98684 Ilmenau, Germany
joint work with
Alexandr V. Kostochka

Abstract

Consider a graph G and assign to every vertex x of G a set $L(x)$ of colors. Such an assignment L of sets to vertices in G is referred to as a color scheme or briefly as a list for G. An L-colouring of G is a mapping c of $V(G)$ into the set of colors such that $c(x) \in L(x)$ for all $x \in V(G)$ and $c(x) \neq c(y)$ whenever $x y \in E(G)$. If G admits an L-coloring, then G is also called L-colorable.

We say that G is L-critical if G is not L-colorable but every proper subgraph of G is L-colorable. In case of $|L(x)|=k-1$ for all $x \in V(G)$ we also use the term k-list-critical and in case of $L(x)=\{1, \ldots, k-1\}$ for all $x \in V(G)$ we also use the term k-critical. Clearly, a graph G is k-critical if and only if $\chi(H)<\chi(G)=k$ for every proper subgraph H of G.

Critical graphs were first defined and studied by Dirac around 1950. As an extension of Brooks' theorem Dirac proved in 1957 that if $G=(V, E)$ is a k-critical graph with $k \geq 4$ and $G \neq K_{k}$, then $$
2|E| \geq(k-1)|V|+(k-3) .
$$

In the talk we present some new lower bounds for the number of edges of k-critical respectively k-list-critical graphs and hypergraphs. These bounds improve earlier bounds established by Dirac, Gallai, Krivelevich, Burstein, Lovász and Woodall.

