
A TECHNIQUE FOR EXACT COMPUTATION OF

PRECOLORING EXTENSION ON INTERVAL GRAPHS∗

Martin R. Ehmsen

Department of Mathematics and Computer Science, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark

ehmsen@imada.sdu.dk

Kim S. Larsen†

Department of Mathematics and Computer Science, University of Southern Denmark,

Campusvej 55, DK-5230 Odense M, Denmark
kslarsen@imada.sdu.dk

http://www.imada.sdu.dk/∼kslarsen/

Received (Day Month Year)

Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

Inspired by a real-life application, we investigate the computationally hard problem of
extending a precoloring of an interval graph to a proper coloring under some bound on
the number of available colors. We are interested in quickly determining whether or not
such an extension exists on instances occurring in practice in connection with campsite

bookings on a campground. A naive exhaustive search does not terminate in reasonable
time. We have formulated a new approach which moves the computation time within
the usable range on all the data samples available to us.

Keywords: Graph algorithms; interval graphs; graph coloring.

1. Introduction

A campground typically has different categories of campsites, such as tent sites and

cabins of various sizes. For the campgrounds we have considered, the number of

sites in each category typically ranges from 10 to 150.

Customers book a campsite on a campground for a period of time. This booking

can be made at any time before arrival, of course depending on availability. A cus-

tomer has the choice of booking a specific or an unspecified campsite. The desire to

book a specific site often comes from knowing the campground and wishing to book

the same site as a previous year or a site near some facility on the campground. We

consider the problem of booking a campsite for the different categories separately.

∗This work was supported in part by the Danish Natural Science Research Council.
†Corresponding author.

1

2 Martin R. Ehmsen, Kim S. Larsen

Customers who book an unspecified campsite are told on the day of arrival

which concrete campsite they have been assigned. Clearly, given a booking, we must

determine if the booking will overlap in time and campsite with already accepted

bookings or if there is a way of assigning campsites to all unspecified bookings such

that no bookings overlap in time and campsites assigned.

The above could be viewed as an online problem [2] since bookings arrive over

time and an irrevocable decision of whether or not to accept a booking must be

made immediately, typically via a web site or over the phone. Accepting or reject-

ing a booking clearly influences which future bookings can be accepted. However,

campgrounds typically do not want to turn down any booking requests if it is at

all possible to accept the bookings. Hence, the problem is turned into a sequence

of offline decision problems of deciding whether or not the addition of one con-

crete booking renders the assignment of unspecified bookings to concrete campsites

impossible.

This offline problem can be modeled as the precoloring extension problem

(PrExt) [1] on interval graphs [6]. As indicated by the name, interval graphs can be

defined via intervals. Given a number of open intervals on the real line, we let each

interval represent a vertex and define that two vertices are connected by an edge in

the graph if their intervals overlap. We refer to the graph defined from a collection

of intervals in this manner as the implied graph. Each booking is an interval in time

from a given date to some later date and it represents a vertex in the graph.

If we associate a color with each campsite at the campground, then a vertex

coloring of the implied graph corresponds to an assignment of bookings to campsites,

provided that no more than k colors are used where k is the number of campsites.

Recall that for an assignment of colors to vertices to be a vertex coloring, each

vertex must be given one color, and any two adjacent vertices must have different

colors (for emphasize sometimes referred to as a proper coloring). This expresses

that two bookings that overlap in time must be assigned to different campsites.

The set of bookings of specific campsites now corresponds to a precoloring, i.e.,

an interval is precolored with the color of the specific campsite. The overall problem

can now be formulated as deciding if the precoloring of the implied interval graph

can be extended to a proper k-coloring, where k is the total number of colors

(campsites).

Let n denote the number of bookings. As a function of both k and n, the PrExt

problem is NP-complete [1]. Even when making the restriction that each color is

used at most twice in the precoloring, the problem remains NP-complete. If the

number of colors is fixed and the problem is viewed as a function of n alone, then

the problem becomes polynomial-time solvable [8], with a running time of O(knk+2).

Though this is indeed polynomial, for k = 150 and some thousand bookings, this

approach will not be feasible in practice. An alternative algorithm for graphs of

bounded treewidth in [7] indicates an algorithm running in O(kkn). This is linear

in n, but again not realistic in practice because of the particular dependency of k.

Hence, a new approach is needed, which takes advantage of the specific structure

A Technique for Exact Computation of Precoloring Extension on Interval Graphs 3

of the real-life instances. In general such instances have a structure where many

bookings start and end on the same day (bookings that span a weekend, bookings

that span a week, etc.). Without being able to identify precisely which properties

data must have for the problem to become manageable in practice, the approach we

discuss below is designed with the aim of taking advantage of the real-life experience

that many bookings start and end on the same days.

It is clear that even though this problem is a decision problem, there is still

the problem of deciding which campsite a customer gets when the customer turns

up on the first day of the booking. However, as we show below, given our solution

to the decision problem, it is also possible to extract an arrangement of the given

bookings in an efficient manner.

Due to the complexity theoretical nature of the problem, one would not, in

general, expect to terminate with a negative answer in reasonable time, since a

complete exploration of the search space is required in order to conclude that a

proper coloring does not exist. In the section on experimental results, we test a

large collection of known positive instances and demonstrate that our algorithm

quickly determines that a proper coloring exists.

2. Definitions

In the algorithm we develop, we process the intervals by processing their end points

from left to right. We will use start point and finish point to refer to the left and

the right end point of an interval, respectively.

An interval which is not precolored is denoted a movable interval. An interval

for which we have processed its start point, but not processed its finish point, is

called an active interval. A color c is said to be used if an interval precolored with

color c is active; otherwise the color is said to be free.

A color group is a 2-tuple (C, I), where C is a set of colors and I is a set of

intervals (both precolored and movable). Our intention in the algorithm to follow is

that I is a set of intervals that are active at a given point in time. Thus, they form

a (not necessarily maximal) clique. This means that they must be given distinct

colors and all the colors must come from C.

Inserting an interval I into a color group, i.e., extending I with I, should be

interpreted as that interval being colored with one of the colors from C in the final

solution. The capacity of a color group is the number of elements in C, and inserting

an interval into a color group is said to be exceeding the capacity of the color group

if the number of elements in I would then be strictly larger than the capacity of the

color group. If an interval I can be inserted into a color group C without exceeding

the capacity of C, then we say that I fits in C. We refer to a color group as being

empty if I = ∅.

A coloring of the intervals is said to be valid if all intervals are assigned colors

such that if two intervals intersect they are not assigned the same color and all

precolored intervals are assigned their precolored color.

4 Martin R. Ehmsen, Kim S. Larsen

1 2 3 4 5 6
...

A

B

C

Fig. 1. An example of the progression of color groups.

3. The Algorithm

In the following, we process interval end points from left to right, i.e., in non-

decreasing order of time. If some start and finish points coincide, we first process the

finish points. The algorithm for processing one end point can be seen in Algorithms 1

and 2.

Instead of being an exhaustive search over all possible colorings of intervals,

the algorithm now realizes an exhaustive search over all possible assignments of

intervals to color groups. Especially because the merging of color groups when

possible, the number of color groups, and therefore the number of steps in the

search, is in practice kept much smaller than the number of colors. One could view

this as merging equivalent branches in the search tree representing the search space.

In the main algorithm, the set S is used to keep track of this exhaustive search.

An element in S is one concrete assignment of active intervals to color groups, and

the set S represents all such assignments that are possible, i.e., which could lead to

valid solutions if the input ended after the current point (as we show below). This

ensures the complete traversal of the search space.

The main property of a color group which guides the design of the algorithm

and underlies its correctness is that when a movable interval is placed in a color

group, it can receive any of the free colors in the group.

Color groups change in particular when intervals finish. Consider the example

in Figure 1 where only three colors are available and all intervals are movable.

We enumerate the intervals from top to bottom. Up until point 2, everything

is in the same color group. At point 3, the first interval finishes. This means that

future intervals (starting at point 4, for instance) could be given the color of inter-

val A, but not necessarily the color of other intervals in the color group (such as

interval B or C). Thus, we split the color group, by letting the color of interval A

form its own singleton color group.

Next, we discover that interval B finishes. For the same reason, the color of

interval B now gets its own color group. However, as the last step in the treatment

of an end point, we merge color groups with no movable intervals. Thus, the colors

of intervals A and B now form a color group.

The action taken when an interval starts is to examine all possibilities for placing

it in a color group. In addition to the naive density test as to whether we are

A Technique for Exact Computation of Precoloring Extension on Interval Graphs 5

Algorithm 1 The main algorithm for treating one end point.

Require: p is the next end point and S is the current set of divisions of the active

intervals into color groups. Initially, S contains one element containing one color

group of all the available colors and no intervals.

1: if p is a start point for interval I then

2: if I is precolored with color c then

3: for element s in S do

4: Let C be the color group of c in s

5: if I fits in C then

6: Insert I into C in s

7: else

8: Remove s from S

9: else

10: for element s in S do

11: Let M = {C ∈ s : I fits in C}

12: Prune M using Algorithm 2

13: if |M | = 0 then

14: Remove s from S

15: else

16: for each color group C in M do

17: Create a new element s′ from s

18: In s′, insert I into C

19: Insert s′ into S

20: Remove s from S

21: else {p is a finish point for interval I}

22: if I is precolored with color c then

23: for element s in S do

24: Let C be the color group of c in s

25: Remove I from C

26: Remove color c from C

27: Create an empty color group C ′ of color c

28: Insert C ′ into s

29: else

30: for element s in S do

31: Let C be the color group containing I in s

32: Remove I from C

33: if S is empty then

34: Output that there exists no solution

35: for element s in S do

36: Merge all color groups with no movable intervals

6 Martin R. Ehmsen, Kim S. Larsen

Algorithm 2 An algorithm for pruning search directions.

Require: I is a movable interval which is considered for assignment to the color

group C.

Ensure: Return false if assigning I to C would exceed the capacity of C in the

future, given knowledge of future precolored intervals.

1: Let cap be the number of free colors in C

2: Let den be the number of movable intervals assigned to C

3: Let PM be the set of finish points for movable intervals assigned to C

4: Let PP be the set of end points of the first future precolored interval for each

of the free colors in C

5: Sort P = PM ∪ PP

6: for p in P do

7: if p is a start point for interval I then

8: Increase den by one

9: else {p is a finish point for interval I}

10: Decrease den by one

11: if I is precolored then

12: Decrease cap by one

13: if den ≥ cap then

14: return False

15: return True

considering placing an interval in a color group which already contains as many

intervals as it has colors, one can add any number of additional local tests to try to

determine early that the placement of an interval in a color group will not lead to

overall success. A fairly efficient and also effective test of this type can be seen in

Algorithm 2.

Assume that we are currently considering assigning an interval I to a color

group. At that point, we know which colors are in the color group and we know

the currently assigned intervals to the color group. In addition, we know which

precolored intervals come in the future. Given that knowledge, it is possible to

simulate the algorithm by only considering the future precolored intervals with a

color belonging to that color group, and check to see if the capacity of the color

group will be exceeded in the future, in which case we know for certain that assigning

I to the color group will not result in valid solutions. Naturally, we only have to

run the simulation until we have passed the finish point for I. This could be viewed

as a further pruning of the search tree representing the search space.

Specifically, in the algorithm in Algorithm 2, we keep track of the number of

active movable intervals, den (density), and the number of free colors, cap (capac-

ity).If the density becomes at least as large as the capacity, it will not be possible

to assign an additional interval to the color group. At the finish of a precolored in-

terval, the main algorithm would split off a singleton color group for that one color.

A Technique for Exact Computation of Precoloring Extension on Interval Graphs 7

This would reduce the capacity of the current color group by one. We simulate the

main algorithm by looking one precolored interval ahead per color.

For other applications, if one faces searches that are too time consuming, it

would be obvious to experiment further with variations of this approach, and find

a good trade-off point between searching and pruning.

Overall, if the main algorithm does not output that no solution exists, then

there exists at least one solution to the given problem, and all solutions (as shown

below) can be extracted from the sets S created by the algorithm.

4. Correctness

Let Sm denote the set S after the algorithm has processed m end points, with S0

denoting the initial set S, i.e., S0 contains one element, which contains one color

group of all the available colors and no intervals. Observe that each element s in Sm

is derived from an element in Sm−1 by the algorithm. Hence, the sets S0, S1, . . . , Sm

give rise to a tree-like structure, where each element s in Sm has exactly one parent

element in Sm−1, etc. We denote the path from the root of the tree (the one element

in S0) to a leaf element s in Sm as the history of s. After having processed m end

points, some intervals have been processed completely (both their start and finish

point have been processed), some intervals are active, and some have not yet been

considered. Assume that the input ends just after the m’th end point, in the sense

that all currently active intervals end in the same point. Given an element s in Sm

and its history, we can color the intervals seen so far by considering each color group

in s. In each color group, the precolored intervals are assigned their precolored color,

and the movable intervals are assigned the remaining colors in the color group in any

order. Now consider the parent s′ to s in the history tree discussed above. We now

process s′ in the same manner as we did for s. However, some of the intervals have

already been colored in the previous step, and the color of such intervals cannot be

changed. Continue in this way all the way to the root in the history tree. We show

below that this process creates a valid coloring of the intervals.

In the following, we repeatedly use the observation that for all m and for all s

in Sm, all colors exist in exactly one color group in s. This is clearly true since all

colors are in the one initial color group, and color groups are split in Line 26 and

Line 27, and merged in Line 36.

Lemma 1. For all m and for all s in Sm and all color groups C in s, the free

colors in C can be assigned in any way to the active movable intervals in C.

Proof. We first ignore the extra pruning in Line 12 and include this part again at

the end of the proof.

We show this by induction in m. It is clear that the statement is initially true,

since there exists only one color group which is empty. Now assume that the state-

ment is true for S0, S1, . . . , Sm−1, and consider each of the possible types for the

m’th point.

8 Martin R. Ehmsen, Kim S. Larsen

First, assume that the m’th point is a start point for a precolored interval I

with color c. Consider element s in Sm−1 and let C be the color group of c in s. If I

does not fit in C, the partial solution s is removed from S and hence the statement

is trivially true for all elements in Sm that have s as parent (there are none). Now,

assume that I fits in C. Obviously the number of free colors in C is decreased by

one, but since the possible ways of assigning the free colors to the active movable

intervals after I is placed in C is a subset of the possible ways that existed before

I was placed in C, it follows from the induction hypothesis that the statement is

still true after placing I in C, i.e., the statement is true for all children of s.

Next, assume that them’th point is a start point for a movable interval. Consider

any s in Sm−1 and consider any child s′ of s created by the algorithm where I is

inserted into some color group C (without exceeding the capacity of C). By the

same argument as in the previous case, if we assign (in s′) any of the free colors

to I, by the induction hypothesis, the remaining free colors can be assigned in any

way to the other active movable intervals in C. Hence, the statement is true for s′.

Now, assume that the m’th point is a finish point for a precolored interval I

with color c. Consider any s in Sm−1, and let C be the color group of c in s. When

processing the finish point, the algorithm splits C into two color groups: One empty

color group consisting of just color c, and one of all colors (except c) and all intervals

(except I) from C. It is clear that the statement is true for the first color group

(since it is empty). For the second color group, the active movable intervals and the

free colors are exactly the same as for C. Hence, by the induction hypothesis, the

statement is also true for this color group.

Finally, assume that the m’th point is a finish point for a movable interval

I. Consider any s in Sm−1 and let C be the color group containing I in s. After

processing the point, the free colors in C are the same as before processing the point.

The number of active movable intervals have decreased by one. After processing the

point, consider any assignment of the free colors to the active movable intervals.

There must be at least one free color which is not assigned to any active interval

since I just ended. Pretending that we assign this color to I, we get an assignment

of the free colors to the movable intervals which were active before we processed

the m’th point. By the induction hypothesis, the result follows.

Finally, observe that in Line 36, only color groups (for each s in Sm) which do

not contain any movable intervals are merged. Hence, the lemma still holds after

this merging.

We now return to the extra pruning carried out in Line 12. It is clear that the

algorithm shown in Algorithm 2 simulates the development of the color group under

the assumption that no future movable intervals exist. If the capacity of the color

group is exceeded under that assumption, then it is clear that assigning I to cc

would not result in any valid solutions. Thus, we only prune parts of the search

space that will definitely not lead to a valid solution in the main algorithm.

It follows directly from the above lemma that the process of creating colorings

A Technique for Exact Computation of Precoloring Extension on Interval Graphs 9

from the sets S0, S1, . . . , Sm described above does indeed create valid colorings, and

hence, the colorings created in this way form a subset of all the possible solutions to

the problem (under the assumption that the input ends just after the firstm points).

We now show that the algorithm actually creates all the solutions, establishing the

correctness of our algorithm: if there is a solution, the final set Sm after processing

all m end points will be non-empty, and otherwise the algorithm will have output

that there exists no solution.

Lemma 2. All possible solutions to the problem can be found as a coloring that can

be created from Sm.

Proof. Let Pm denote the set of all possible solutions to the problem after the first

m points. Consider any solution p in Pm, i.e., p is a coloring of all the intervals

under the assumption that the input ends just after the first m points (as described

above). We show by induction that the algorithm creates the same coloring. The

base case is trivial. Assume that the statement is true for the first m− 1 points. If

the m’th point is the finish point of an interval, then the statement follows directly

from the induction hypothesis, since the intervals remain the same going from the

first m− 1 points to the first m points. Now, assume that the m’th point is a start

point for some interval I (precolored or not). Assume that in p, the interval I is

assigned some color c. Hence, there exists a solution p′ in Pm−1 where all intervals

(except I) are assigned the same colors as in p and the color c is not used for the

intervals that are active after the first m − 1 points. By the induction hypothesis,

there exists an s′ in Sm−1 where the coloring process can result in the same coloring

as p′ (if, when there is a choice in a color group, we color the interval according to

the color assigned to it in p′). Since color c is not used in the coloring, inserting

another interval into the color group in s′ containing color c would not exceed the

capacity of the color group. It now follows directly from the algorithm that it creates

an element s in Sm which can be colored identically to p.

Theorem 3. Algorithm Correctness: the set of all colorings that can be created

from Sm by the above process is exactly all the possible solutions to the problem.

Proof. Follows from Lemmas 1 and 2.

5. Implementation

The algorithm is implemented in the programming language Python. Due to the

large recursion depth, we have implemented the recursive depth-first search in the

form of a backtracking algorithm. (The reason was that Python simply would not

accept the recursion depth.)

The conversion of a recursive algorithm, such as the one presented here, into a

backtracking algorithm is trivial. The only difference is that the call stack has to

10 Martin R. Ehmsen, Kim S. Larsen

be maintained explicitly in the program rather than implicitly by the programming

language and compiler/interpreter.

In addition, we have implemented the algorithm for extracting an assignment of

the bookings to campsites in the case where a valid solution is found. When a valid

solution is found, we assign all movable intervals a color from the color group in

which they were placed for this particular path in the history tree. All precolored

intervals are of course given their precolored color. By Lemma 1, this will result in

a valid solution.

We have focused on the algorithmic improvements rather than fine-tuning of the

code. Thus, optimizing the code or porting to C could likely improve the running

times with roughly an order of magnitude.

Our implementation simply outputs either “True”, indicating that the given

instance has a solution, or “False”, indicating that the given instance does not have

a solution.

For the source code, as well as data and test runs, see [4].

6. Complexity

In the worst case, the algorithm can have a very long running time. If there are

k colors, then it is clear that at any point in time during the execution of the

algorithm at most k color groups can exist. Since each of the n start points can

make the algorithm branch each of the current solutions into k new possible solutions

(Line 17), we get a bound on the total running time of O(kn), which is much worse

than both O(knk+2) and O(kkn) from [8] and [7], respectively, since n is in general

much larger than k. However, with a slight modification of our algorithm, we can

get the running time down to O(kkn).

Observe that at any point in time during the execution of the algorithm at most

k intervals are active. Hence, these at most k intervals can be placed into the at

most k color groups in O(kk) different ways. It is clear that the placement of the set

of active intervals into the current color groups uniquely determines if the intervals

yet to be processed can be colored by the algorithm and a solution found, i.e., the

actions prior to the set of active intervals do not add any additional constraints.

Hence, if we have concluded at some point that a particular node in the history

tree cannot lead to a valid solution and we arrive at the same division of the set of

active intervals into color groups during the backtracking, then we can immediately

conclude that the current state cannot lead to a valid solution and the algorithm

can start to backtrack without exploring the current subtree of the history tree

further.

If we extended the algorithm with this functionality, we would arrive at an

algorithm with a running time of O(kkn). We would of course need to implement

some sort of look-up table where the algorithm could check if the current division

of the set of active intervals into color groups has already been tried.

The space consumption of the algorithm as presented in this paper, i.e., without

A Technique for Exact Computation of Precoloring Extension on Interval Graphs 11

the additional functionality discussed above, is the optimal O(n+k). The algorithm

only considers one path down the history tree at a time, the path length of which

is bounded by O(n), and at any point in time the number of active intervals and

color groups is O(k).

7. Experimental Results

We performed several experiments on real-life data from two different campgrounds,

each having several categories of campsites.

The experiments were performed on an Intel Core2Duo 2.33 GHz CPU running

Ubuntu Linux 2.6.24-27-generic. Only one of the cores were used.

The results from the full algorithm with and without the extra pruning and the

list-coloring algorithm in [10] are displayed in Table 1. Since it does not matter

what type of booking it is, we have just enumerated them. There is no connection

between bookings of different types. Thus, in everything that follows, we assume

that we are discussing one selected type at one selected campground.

In Table 1, “Sites” is the number of campsites (number of colors) available.

“Size” is the number of bookings. This is over approximately three years.

We have made two significantly different type of test runs.

For the first test run, we have considered the instance with these three years of

bookings. “Total” shows the running time of this. However, this was just in order to

try our algorithm on large instances. Since bookings come in over time, this instance

has never occurred in practice at the campground.

Secondly, we have run the algorithm once for every booking. The data we have

available lists (for all types) the date of booking, the date of arrival, the date of

departure, which campsite (color) any given booking was historically given, and if

the booking was for a specific site (precolored) or not.

When processing a given booking, we consider the situation at the time of book-

ing. Thus, the instance consists of all bookings made before that time for a later

stay. All bookings for stays before the time of the booking under consideration are

ignored, except for all current bookings, i.e., bookings with arrival time before and

departure time after the time of the booking under consideration. These bookings

are precolored to be given the site that they were historically given. Because of this,

these instances are not necessarily subinstances of the large instance consisting of

all the bookings, and though they are smaller, some of them could in principle be

harder to solve than the large instance. Under “Max”, we list the maximal time it

took to process such an instance. This is the maximum time a customer would have

experienced when booking via a home page, via a phone call to the campground,

etc.

Due to the nature of how the data was collected at the campground, all instances

are positive instances. The campground solely collected data concerning who was

staying at the campground, date of arrival, date of departure, and at which specific

campsites they stayed. No data was collected concerning potential customers they

12 Martin R. Ehmsen, Kim S. Larsen

Pruning No pruning [10]

Type Sites Size Total Max Total Max Total Max

1.1 8 604 0.02 0.00 0.01 0.00 17.41 0.01

1.2 15 827 0.05 0.01 0.04 0.01 – –

C
a
m
pg
ro
u
n
d
1

1.3 10 811 0.04 0.01 0.02 0.01 266.91 0.20

1.4 10 1016 0.06 0.01 0.03 0.01 9.75 0.09

1.5 10 1586 0.09 0.01 0.03 0.01 5.18 5.88

1.6 50 1416 0.44 0.01 0.08 0.01 0.23 0.02

1.7 70 2659 0.95 0.11 0.23 – 6.85 0.21

1.8 145 7474 8.08 0.27 – 0.28 88.94 0.66

1.9 26 711 0.07 0.01 – – – 0.03

2.1 2 72 0.00 0.00 0.00 0.00 0.00 0.00

C
a
m
pg
ro
u
n
d
2

2.2 12 1140 0.05 0.01 0.03 0.01 – 0.39

2.3 5 455 0.01 0.00 0.01 0.00 0.01 0.00

2.4 4 193 0.00 0.00 0.00 0.00 0.00 0.00

2.5 17 3119 0.26 0.02 0.09 – – 0.07

2.6 3 62 0.00 0.00 0.00 0.00 0.00 0.00

2.7 191 7912 5.58 0.21 1.12 0.26 11.47 0.34

Table 1. Results in seconds on the described data.

had to turn down. Hence, we have no real-life negative instances.

All times are in seconds. “–” indicates timeout which means that some call to

the main algorithm ran for 10 minutes without reporting an answer. During the

testing, we ran our algorithm and the algorithm from [10] for hours on a number

of instances, but we found that it did not make any difference: either we found

a positive answer fairly quickly or no answer would be returned, even if we let it

run for hours. Thus, the 10 minute deadline was set just to be way above the time

required to get a positive answer for the instances that were at all solvable for one

of the two algorithms.

Obviously, the extra work in applying the pruning increases the total running

time for some instances, but for others, this additional work is essential to achieve

a result within reasonable time.

In addition, we have observed that the exact algorithm from [10] is not capable

of handling all instances without timeout. However, it should be noted that their

algorithm is solving the more general, and hence harder, list-coloring problem, and

A Technique for Exact Computation of Precoloring Extension on Interval Graphs 13

with a deeper understanding of their algorithm, it might be possible to improve it

when the input is restricted to instances of precoloring extension.

8. Concluding Remarks

Due to the nature of the problem and the exhaustive search techniques which are

employed, it is, in general, impossible to conclude that an interval can not be

accepted, since, in order to do so, one would have to traverse the entire search space

without finding a solution. Reporting a negative answer is of course possible in very

simple situations, for instance if at some point the number of active intervals exceeds

the total number of colors. However, in general, to give a negative answer with

certainty requires an exhaustive search which cannot terminate within a reasonable

time frame. So, neither our algorithm nor the algorithm in [10] is capable of “saying

no”. Instead, one has to decide on a time limit, and if no positive answer is obtained

within that time limit, a negative answer is returned which should be interpreted as

the algorithm “cannot say yes”. Based on the numbers in Table 1 and the discussions

of that table, this approach works on these real-life datasets for our algorithm.

Our focus has been on instances where the answer is positive, and on all such

instances, we have been able to report that answer quickly. As explained in the

paper, instances where the answer is negative are less interesting, since we cannot

expect to be able to compute such results within a reasonable time frame.

Due to the complexity theoretical nature of the problem, it is clear that our

algorithm exploits some naturally occurring properties of the data. We leave as an

interesting open problem to determine if this can be theoretically substantiated,

using, for instance, techniques from parameterized complexity [3, 5, 9]. Initial con-

siderations indicate that the most obvious parameters do not capture the essence

of the algorithm, but intuitively some parameter related to the clique sizes must

come in to play.

Acknowledgments

We would like to thank Dancamps for providing real-life experimental data and their

representative, Chief Developer Nicolai Dvinge, for valuable initial discussions.

References

[1] M. Biró, M. Hujter, and Zs. Tuza. Precoloring extension. I. interval graphs. Discrete

Mathematics, 100(1-3):267–279, 1992.
[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-

bridge University Press, 1998.
[3] Rodney G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in

Computer Science. Springer, 1999.
[4] Martin R. Ehmsen and Kim S. Larsen. Testing a heuristic for exact computation

of precoloring extension on interval graphs on real-life campsite reservation data.
http://www.imada.sdu.dk/∼kslarsen/Archive/, 2010.

14 Martin R. Ehmsen, Kim S. Larsen

[5] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. Springer, 2006.

[6] Tommy R. Jensen and Bjarne Toft. Graph Coloring Problems. John Wiley & Sons,
1995.

[7] J. Kratochv́ıl. Precoloring extension with fixed color bound. Acta Mathematica Uni-

versitatis Comenianae, 62(2):139–153, 1993.
[8] Dániel Marx. Parameterized coloring problems on chordal graphs. Theoretical Com-

puter Science, 351(3):407–424, 2006.
[9] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford

Lecture Series in Mathematics and Its Applications. Oxford University Press, 2006.
[10] Thomas Zeitlhofer and Bernhard Wess. List-coloring of interval graphs with applica-

tion to register assignment for heterogeneous register-set architectures. Signal Pro-
cessing, 83:1411–1425, 2003.

