
Sequential experiment designs for screening and tuning

parameters of stochastic heuristics

Enda Ridge and Daniel Kudenko

Dept. of Computer Science, University of York, York YO10 5DD, UK

Abstract. This paper describes a sequential experimentation approach for e�ciently screen-
ing and tuning the parameters of a stochastic heuristic. Stochastic heuristics such as ant
colony algorithms often use a large number of tuning parameters. Testing all combinations
of these factors is prohibitive and ine�cient. The sequential procedure recommended by this
paper uses resolution IV fractional factorial designs with fold-over and centre points as an
e�cient way to screen the most important tuning parameters. The e�ects of the most im-
portant parameters are then modelled using a central composite design and optimised with
standard numerical methods. All designs, their analyses and interpretation are illustrated
using the Ant Colony System algorithm.
The use of standard designs and methods has the bene�t that the presented procedure can
easily be followed with commercial software rather that relying on custom methodologies
and tools that have only been developed in an academic context. Such a procedure has not
been applied to ant colony algorithms before.

1 Introduction and Motivation

A need for greater scienti�c rigour in the Operations Research (OR) and heuristics community was
called for in the 1970s [1], and again in the 1990s [2], [3]. Ant colony optimisation (ACO) algorithms
[4] are a relatively new class of stochastic heuristic for typical OR problems of combinatorial
optimisation. Reported research has generally been innovative and has yielded important insights
into ACO and its relation to other heuristics. However, few if any papers have described a disciplined
use of either established Design of Experiment (DOE) techniques or statistical tools to explore data
and test hypotheses. These are prerequisites for scienti�c work in other �elds such as psychology and
biology. Encouragingly, heuristics research rarely needs to ask more than three types of question:

� Is there a di�erence in performance between some group of algorithms and if so, how large is
the di�erence between each of these algorithms?

� How does a modi�cation to an algorithm (such as using a local search method) a�ect its
performance?

� What are the most important parameters for tuning an algorithm and what are their values
for optimal algorithm performance?

These questions can be answered with mathematical precision using statistical tools. However,
few researchers have the time to become experts in the associated technical details before they can
even begin to conduct their experiments. Given the small number of common research questions, it
should be possible to create standard experimental designs as well as recommended statistical tests
and rules of thumb for interpreting them. Unfortunately, the large number of tuning parameters
typical of many heuristics, of which ant colony algorithms are a prime example, makes the usual full
factorial design prohibitively expensive. A heuristic with 10 parameters (not uncommon) tested
at the minimum of 2 levels would require 210 = 1024 treatment conditions in a full factorial
design. This would be further increased by the number of replicates required for each condition.
Furthermore, we do not have a su�cient body of knowledge to use our judgement to screen out the
less important parameters in all situations. We may �nd, having conducted a full and expensive
testing programme, that many of our questions did not have interesting answers.



28 E. Ridge, D. Kudenko

This paper describes an established sequential experimental procedure for algorithm parameter

screening and tuning (the third research question above). The appropriate experiment designs at
each stage of the sequential procedure are described. The diagnostic tools and rules-of-thumb for
interpreting them are given. Appropriate statistical tests and their interpretation are explained.
The methods are illustrated using an Ant Colony algorithm.

The use of standard designs and methods has the bene�t that the procedure can easily be
followed with available commercial software rather than the custom academic tools advocated
by some authors. Such a procedure with commercial tools has not been applied to ant colony
algorithms before.

The next Section gives a brief overview of the Ant Colony algorithm used for illustration. Section
3 covers some preliminaries. Section 4 is the recommended sequential experimentation procedure.
The paper concludes with some related work1.

2 Ant Colony algorithms

Ant Colony algorithms are optimisation algorithms inspired by the activities of natural ants. This
paper is illustrated with reference to Ant Colony System for the Travelling Salesperson Problem
(TSP) [5]. Space restrictions prevent a detailed description of ACS. The interested reader can
consult recent review texts [6].

Broadly, the algorithm works by placing a set of arti�cial ants on the nodes of a TSP graph.
The ants build TSP solutions by moving along the graph edges. These movements are probabilistic
and are in�uenced both by a heuristic function and the levels of a real-valued marker called a
pheromone. Their movement decisions also favour nodes that are part of a candidate list. The
probability that ants will explore new solutions is in�uenced by a threshold. Ants remove the
pheromone marker from edges they traverse with a local pheromone decay. When all ants have
produced a solution, the best solution is used to strengthen the amount of the pheromone marker
on the best solution's edges with a global pheromone update. The parameters that control this
algorithm are summarized in Table 1. The last four columns are not relevant at this stage but are
referenced in Section 4.

It is common practice to hybridise ACS with local search procedures. This study focuses on
ACS as a constructive heuristic and so omits any such procedure.

3 Preliminaries

Space restrictions prevent a comprehensive coverage of the general issues relevant to these exper-
iments. Others have covered these in detail [7] for general heuristics. A familiarity with common
DOE terminology is assumed.

Stopping Criterion. The choice of stopping criterion for an experiment run is di�cult when
algorithms can continue to run and improve inde�nitely. CPU time is certainly not a reproducible
metric and some independent metric such as a combinatorial count of an algorithm operation is
required. The problem then becomes how many of these to use and how to scale them with problem
size/di�culty so that comparisons are fair. We believe that a measure of algorithm stagnation is
appropriate since this re�ects the practical need of algorithms that continue to improve within
reasonable time. In ACS, appropriate stagnation measures would be a �xed number of iterations
or ant cycles without any improvement in solution quality.

Factor Coding. It is often convenient to code the experiment factors such that their values
represent the high, medium, low, etc. levels of the factors. Analysis with coded variables can give

1The paper assumes some background knowledge of Design of Experiments due to space restrictions
and the EMAA workshop's target audience. A signi�cantly expanded version of this paper will appear as
a University of York technical report, available from http://www.cs.york.ac.uk/ftpdir/reports/.



Sequential experiment designs 29

Param. Meaning Measurement
Level

Factor Low High

m Number of ants as fraction of
problem size

Scale A 10 100

q0 Exploration/exploitation
threshold

Scale B 0.1 0.9

α In�uence of pheromone trails Scale J 0.5 8

β In�uence of heuristic Scale F 0.5 8

Cl Ant candidate list length as
fraction of problem size

Scale K 10 75

ρlocal Local pheromone decay Scale D 0.1 0.9

ρglobal Global pheromone deposition Scale E 0.1 0.9

Q Global pheromone update
term

Scale G 1 100

Ant initial location method Categorical H All at single
random city

Randomly
scattered

Table 1. Nine parameters for tuning ACS. Note that we have expressed the parameters m and cl as
fractions of the problem size.

di�erent numerical results to analysis with engineering units. Coded variables are mainly useful
for determining relative size of factor e�ects.

Blocking on Seed. The algorithms in question achieve their stochastic behaviour using a
pseudo-random number generator. For ACS, this impacts the initial location of ants, the explo-
ration/exploitation probabilities and the movement decision. All variability between runs of these
algorithms is directly attributable to the seed used in the generator and so seed should be treated
as a known and controllable nuisance factor. A nuisance factor is a design factor that probably
has an e�ect on the response but we are not interested in that e�ect [8]. The standard approach
to dealing with such nuisance factors is blocking. This means that the same seed is used for all
treatment conditions. Any replication must appear in a separate block de�ned by a new seed. This
reduces the in�uence of variability due to seed.

Blocking on instance. There seems to be a general consensus that we should block on problem
instances with authors who employ DOE also employing blocking on instances [9], [10], [7].

In the ACS scenario, this means that when we choose say a high level of the problem size
factor, we use the same instance with this size in every treatment for which this size appears. This
eliminates the variability between di�erent instances with the same size. However, it weakens the
scope of the conclusions we can draw from our data. Strictly speaking, our conclusions only apply
to the instances on which we conducted the experiments. This can be mitigated by cross-validating
our models and conclusions on new instances within the same levels of problem size as used in the
experiments.

Power. Power is the probability of rejecting the null hypothesis when it is in fact false. Power
should be at least 0.80 by convention. Power of a test depends on the expected e�ect size of interest
and the signi�cance level of the study. Power has generally been ignored in reported work. In brief,
at the beginning of a design, the experimenter should �x the expected e�ect size and signi�cance
level and then increase the sample size with replicates until a minimum expected power of 80% is
achieved. The observed power after analysis should be checked to ensure the predicted 80% has
in fact been reached. Failing this, the design should be augmented with further replicates. Table



30 E. Ridge, D. Kudenko

2 illustrates the increase in power to detect three e�ect sizes that is achieved by adding replicates
to a 25 - 2

III design.

% power for 25 replicates % power for 95 replicates

E�ect size
(Std. Dev.)

0.15 0.25 0.5 0.15 0.25 0.5

A 6.4 20.5 82.2 30.4 80.6 99.9

B 6.4 20.5 82.2 30.4 80.6 99.9

C 6.4 20.5 82.2 30.4 80.6 99.9

D 6.4 20.5 82.2 30.4 80.6 99.9

E 6.4 20.5 82.2 30.4 80.6 99.9

BC 6.4 20.5 82.2 30.4 80.6 99.9

BE 6.4 20.5 82.2 30.4 80.6 99.9

Table 2. Power of a 25 - 2
III design to detect 3 e�ect sizes at the 1% signi�cance level.

Problem instances. Experiments in Evolutionary Computation (EC) have generally per-
formed separate analyses for individual problems. This may be because the continuous functions
EC optimises can di�er greatly. ACS for the TSP (and related problems) always operates on fully
connected graphs. These can only di�er in their size and edge lengths and so we consider problem
size as a 10th factor (see Table 1) in the experiments to follow. The same instance is used for each
level of problem size to remove this nuisance factor.

4 Recommended sequential procedure

The sequential experiment designs and statistical tests presented here are well established and
in regular use in other �elds. Their availability in commercially available software is a strong
advantage. Their application to heuristics, and in particular Ant Colony algorithms, is new. The
following was developed by analogy with designs and methods from other �elds [8].

4.1 Screening

The �rst challenge is to reduce the number of tuning parameters under consideration. In this case,
a naïve full factorial design for the 10 factors will require a prohibitive 210 = 1024 treatments
multiplied by the necessary replicates for power. We are primarily interested in main e�ects (factor
A, factor B. . . ) and low-order interaction e�ects (AB, AD). Assuming higher order interactions
are negligible, we can run a fraction of the 1024 treatments to yield insights into only the lower
order e�ects. This is a fractional factorial (FF). The most appropriate of these designs for
screening is a so-called Resolution IV FF. The price we pay is that some second-order e�ects are
indistinguishable from one another. They are aliased. These aliased e�ects can be disentangled
by judicious choice of additional treatments to run.

Experiment Design

1. Factors. Choose the factors that are to be studied, identify their measurement and decide on
appropriate high and low levels for each (see Table 1). Resource restrictions limit our choice of
levels for problem size to 1000 and 2000.



Sequential experiment designs 31

2. Signi�cance level. Choose an appropriate signi�cance (alpha) level for the study. A conven-
tional level is 1% or 5%.

3. Factor Coding. Code the high factor levels as +1 and low levels as �1.
4. Blocking of controllable nuisance factors. Identify known and controllable nuisance fac-

tors. Reduce their impact with blocking. For stochastic heuristics, the most important of these
is random seed.

5. Measuring uncontrollable nuisance factors. Identify known and uncontrollable (but mea-
surable) nuisance factors and make sure to measure these during the analysis. For example, an
experiment that aims to closely investigate run times should measure issues such as CPU load
during an experiment run as the experimenter usually has no control of the operating systems
processes.

6. Responses. Identify the response(s) to be measured. These should be measured in as raw a
form as possible rather than summarising into statistics such as averages. If possible, responses
should be con�icting, to test the system under di�erent circumstances. For example, speed and
accuracy are usually con�icting responses.

7. Variability at centre points. A small number of replicates should be run at the design's
centre point to estimate the variability of the process. If the process is extremely variable then
further analysis of this response will be di�cult.

8. Choose Design. For the given number of factors and blocks, choose an appropriate resolution
IV 2-level fractional factorial design. Where there are several available designs, check whether
the design requiring a smaller number of treatments has a satisfactory aliasing structure. Note
that any resolution IV design will have aliased two-factor interactions. However, knowledge of
the system and its most likely interactions may make some of these aliases negligible. Further-
more, judicious assignment of factors will result in the most important factors having the least
aliasing in the generated design.
For example, in the case of 10 factors, two resolution IV designs are available: 210−5

IV with 32

treatments and 210 - 4
IV with 64 treatments. If we decide to use 2 replicates of each treatment

requiring 2 blocks then we must perform 64 and 128 runs respectively. An examination of
the aliasing structure for these two designs reveals that all 2-factor interactions in the 210 - 5

IV
design are aliased with another 2-factor interaction. The 210 - 4

IV design has only six aliased
2-factor interactions. Since there have been no reported exploratory analyses of this algorithm,
we opt to use the more expensive 210 - 4

IV design. In this design, AB, JK, AJ, BK, AK, BJ,
DE, GH, DG, EH, DH and EG are all aliased with another 2-factor interaction. C and F
are never involved in these aliases and so should be assigned to factors of most importance.
In this example, we choose problem size and in�uence of heuristic for C and F respectively.
Furthermore, we see that A, B, J and K form a chain and D, E, G and H form a chain. We
should attempt to group factors accordingly. For this design, we will assign the ant-related
parameters m, q0, α and cl to factors A, B, J and K respectively and the algorithm parameters
ρlocal, ρglobal, Q and location method to D, E, G and H respectively. A summary of the factors,
their symbols and levels is given in Table 1.

9. Check Power. For the study's chosen signi�cance level (5%), examine the design's power to
detect a given e�ect size. If the power is not greater than 80%, introduce replicates into the
design. Recall that each new replicate requires a new block. Repeat this step until su�cient
power is expected.

10. Run Order. This is now the minimum design. Generate a random run order for the design.
This counteracts unknown and uncontrollable nuisance factors.

11. Gather Data. Collect data according to the treatments and their run order.

Analysis

1. Check blocking. Examine a scatter plot of response values against blocks. These should
exhibit a random scatter to demonstrate that blocks do not interact with the response.



32 E. Ridge, D. Kudenko

2. Correlation. Using a scatter plot of each response against another response, check that the
responses are not highly correlated with one another. If they are highly correlated then one of
the responses need not be analysed. For example, in ACS we might expect the number of ant
tours performed and the accuracy of the �nal solution to be highly correlated.

3. Note Best Responses. Examine a scatter plot of the response variable against each of the
factors. Note any overall di�erence in response between the two levels of a factor. Equally, note
if there seems to be little di�erence between factor levels. This suggests the relevant factors
and their better levels.

4. Find important e�ects. Various plots can be used to identify the most important e�ects
that should be included in a model of the data. A particularly useful one is the Half-Normal
Percentage probability plot2. If none are important, then the experiment does not need to
continue.

5. Rank Important E�ects. A Pareto chart of t-value of e�ect against each possible e�ect
permits ranking the important e�ects.

6. ANOVA test. Perform an ANOVA on the model containing these most important e�ects and
any e�ects needed to maintain model hierarchy3.

7. Diagnosis. The usual diagnosis tools are used to verify that the model is correct and that its
assumptions have not been violated.

� Normality. A Normal Plot of Studentised Residuals should be approximately a straight
line. Deviations from this may indicate that a transformation of the response is appropriate.

� Constant Variance. A plot of Studentised Residuals against predicted response values
should be a random scatter. Patterns such as a `megaphone' may indicate the need for a
transformation of the response.

� Time-dependent e�ects. A plot of Studentised Residuals against run order should be a
random scatter. Any trend indicates the in�uence of some time-dependent nuisance factor
that was not countered with randomisation.

� Model Fit. A plot of predicted values against actual response values will identify particular
treatment combinations that are not well predicted by the model. Points should align along
the 450 axis.

� Leverage and In�uence. Leverage measures the in�uence of an individual design point
on the overall model. A plot of leverage for each treatment indicates any problem data
points.
A plot of Cook's distance against treatment measures how much the regression changes if
a given case is removed from the model.

If the model passes the diagnoses then it is correct and we can proceed to draw conclusions
from it.

8. Model power. Check the observed power of the ANOVA performed on the actual data. If the
power is less than 0.80, add replicates to the design, gather more data and begin the analysis
stage again.

9. Model signi�cance. If the ANOVA has su�cient power, check that the overall model is
signi�cant. If not, add more terms to the model and return to the ANOVA step.

10. Model Reduction. Check the signi�cance of each of the terms in the ANOVA. Those terms
with a p-value less than the study's threshold alpha level are deemed signi�cant. Those terms
with a p-value greater than this threshold are insigni�cant and can be removed from the model.
If insigni�cant terms are detected, remove them from the model and perform the ANOVA again
on the reduced model.

11. Model Fit. Check that the predicted R-Squared value is in reasonable agreement with the
Adjusted R-Squared value and that both of these are close to 1. Check that the model has a
signal to noise ratio greater than about 4.

2See http://www.itl.nist.gov/div898/handbook/pri/section5/pri598.htm.
3Model hierarchy refers to the principle that a model with a higher-order e�ect (e.g. AB) should also

contain those lower order e�ects (e.g. A and B).



Sequential experiment designs 33

12. Examine Aliasing. The model will have revealed that some main and interaction e�ects are
signi�cant. Recall that the resolution IV design will have some e�ects aliased with one another.
If a signi�cant e�ect is aliased, we can �rst attempt to use engineering judgement to justify
ignoring the alias. For example, an interaction of ant candidate list length with ant location
method might safely be assumed negligible. Failing this, we must augment the design to de-alias
the signi�cant e�ects.

4.2 Augment the design to de-alias e�ects

A foldover procedure is a methodical and e�cient way to introduce more treatments into a
fractional design so that a particular e�ect can be de-aliased. The foldover procedure produces
double the number of new treatments for which data must be gathered (once for each replicate).

1. A foldover is performed on selected model terms. The fewer terms selected, the better the
de-aliasing that will be created by the new treatments. The augmented design should foldover
on those most signi�cant model terms that we wish to de-alias

2. One of each replicate from the new treatments is assigned to one of each of the existing blocks.

The screening analysis procedure can now repeat. Further augmentation may be required.

4.3 Check for curvature

At this stage, the relative importance of each term in the model has been assessed. A linear
relationship between the factors and the response has been assumed. Adding centre points to a
design allows us to determine whether the response surface is not planar but actually contains
some type of curvature. The average response value from the actual centre points is compared to
the estimated value of the centre point that comes from averaging all the factorial points. If there
is curvature of the response surface in the region of the design, the actual centre point value will
be either higher or lower than predicted by the factorial design points. Generally, �ve centre points
should be su�cient to assess the existence of curvature. If the analysis with centre points reveals
the possibility of curvature in the actual data then further experiments are required.

4.4 Response Surface Modelling

Response surface modelling is useful for �nding the relationship between several factors and a
response and then optimising this response.

Experiment Design

1. Choose design space. If a screening experiment has been performed to choose the relevant
factors then there already exists a planar model of the response. The design space should be
re�ned to cover the most interesting part of the design space from the screening experiment.
The important factors from the screening experiment are accordingly given new levels.

2. De�ne Central Composite Design (CCD). A central composite design with face-centred
axial points and 5 centre runs is an appropriate and e�cient design for response surface mod-
elling. If we have decided to use blocks then these centre points must be repeated for each
block.

3. Run Order. De�ne a random run order for the treatments and replicates.



34 E. Ridge, D. Kudenko

Analysis

1. Blocks. Examine scatter plots of each response against the blocks. Check that the responses
are not highly correlated with the blocks.

2. Examine and choose appropriate model. The highest order model that can be generated
from the CCD is quadratic. All lower order models (linear, 2-factor interaction and quadratic)
are generated and then assessed on three aspects: their signi�cance, their lack of �t and their
R-squared values.
Begin with the linear model. If the model is not signi�cant, it is removed from consideration.
Next, tests of lack of �t are performed on each model. Any model that yields a signi�cant
result should be rejected from consideration. Finally, the Adjusted R-squared and predicted
R-squared are examined. These should be within 0.2 of one another and as close to 1 as possible.

3. Calculate model coe�cients. A linear regression is performed on the chosen model to esti-
mate its coe�cients. The usual tests (see above) of the linear regression model are performed.
If the model passes these tests then its proposed coe�cients can be accepted. These coe�cients
can be expressed in coded terms or the original natural units.

4. Validation. The ability of the model to predict new responses within the design space can
be assessed by choosing new combinations of factors that were not treatments in the original
design. The di�erence between the model's predicted values and the actual values from the val-
idation are compared. The model is interpolative and it is not advisable to use it to extrapolate
outside the design space.

5. Response surface. The regression equation can now be used to produce a response surface
in terms of any two factors while the other factors are held constant.

6. Perturbation plot. A perturbation plot shows how the response perturbs as a chosen factor
is varied, while all other factors are held at a constant value. It is usually convenient to set this
constant value at the centre of the design space. Factors that result in smaller perturbations can
be held constant in a contour or surface plot while other more interesting factors are actually
plotted.

If other responses were measured and were not found to be highly correlated, these responses
should now be analysed in the same way.

5 Related Work

Adenso-Díaz and Laguna [11] give a brief list of OR papers that have used statistical experiment
design over the past 30 years. Some discussions are quite general and o�er guidelines on the subject
[12], [13], [14]. Experimental design techniques have been used to compare solution methods [15]
and to �nd e�ective parameter values [16], [17]. Adenso-Díaz and Laguna [11] also report a custom
methodology and tool, CALIBRA, for parameter tuning. However, this is limited to tuning a
maximum of 5 parameters and cannot detect parameter interactions. Other related methodologies
for evolutionary algorithms have also been proposed [18].

It seems there is a growing awareness of the need for experimental design in the broad �eld
of evolutionary computation also, as re�ected by some publications appearing in the �eld's main
peer-reviewed fora [19], [20], [21].

Acknowledgements

The authors gratefully acknowledge the reviewers' helpful comments.

References

1. Lin, B.W., Rardin, R.L.: Controlled experimental design for statistical comparison of integer program-
ming algorithms. Management Science 25(12) (1979) 1258�1271



Sequential experiment designs 35

2. Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1 (1996) 33�42
3. McGeoch, C.C.: Toward an experimental method for algorithm simulation. INFORMS Journal on

Computing 8(1) (1996) 1�15
4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. Oxford University Press (1999)
5. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling

salesman problem. IEEE Transactions on Evolutionary Computation 1(1) (1997) 53�66
6. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press (2004)
7. Johnson, D.S.: A theoretician's guide to the experimental analysis of algorithms. In Goldwasser,

Johnson, McGeoch, eds.: Proceedings of the Fifth and Sixth DIMACS Implementation Challenges.
American Mathematical Society (2002) 215�250

8. Montgomery, D.C.: Design and Analysis of Experiments. 6 edn. John Wiley and Sons Inc (2005)
9. Co�n, M., Saltzman, M.J.: Statistical analysis of computational tests of algorithms and heuristics.

INFORMS Journal on Computing 12(1) (2000) 24�44
10. Crowder, H.P., Dembo, R.S., Mulvey, J.M.: On reporting computational experiments with mathemat-

ical software. ACM Transactions on Mathematical Software 5(2) (1979) 193�203
11. Adenso-D�az, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and

local search. Operations Research 54(1) (2006) 99�114
12. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.: Designing and reporting on

computational experiments with heuristic methods. Journal of Heuristics 1 (1995) 9�32
13. Crowder, H.P., Dembo, R.S., Mulvey, J.M.: Reporting computational experiments in mathematical

programming. Mathematical Programming 15 (1978) 316�329
14. Greenberg, H.: Computational testing: Why, how and how much? ORSA Journal on Computing 2(1)

(1990) 94�97
15. Amini, M.M., Racer, M.: A rigorous computational comparison of alternative solution methods for

the generalized assignment problem. Management Science 40(7) (1994) 868�890
16. Coy, S., Golden, B., Runger, G., Wasil, E.: Using experimental design to �nd e�ective parameter

settings for heuristics. Journal of Heuristics 7(1) (2001) 77�97
17. Xu, J., Chiu, S., Glover, F.: Fine-tuning a tabu search algorithm with statistical tests. International

Transactions on Operations Research 5(3) (1998) 233�244
18. Bartz-Beielstein, T.: Tuning evolutionary algorithms - overview and comprehensive introduction.

Technical Report CI-148/03, Universität Dortmund (2003)
19. Hancock, E.R., Myers, R.: Empirical modelling of genetic algorithms. Evolutionary Computation 9(4)

(2001) 461�493
20. François, O., Lavergne, C.: Design of evolutionary algorithms-a statistical perspective. IEEE Trans-

actions on Evolutionary Computation 5(2) (2001) 129�148
21. Czarn, A., MacNish, C., Vijayan, K., Turlach, B., Gupta, R.: Statistical exploratory analysis of genetic

algorithms. IEEE Transactions on Evolutionary Computation 8(4) (2004) 405�421


