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Motivation
 After two decades of publications and efforts

(McGeoch, 1986) we still find the same
shortcomings in algorithm experimentation and
evaluation as ever

 Often is difficult, if not impossible, to ascertain
which algorithm is the best in a given domain
from published results and comparisons

 Just some examples taken from INFORMS Journal
on Computing:



INFORMS, Journal on Computing

2004

No word about how parameters

and operators have been selected

No statistical testing whatsoever



Barrage of tables with average

values



INFORMS, Journal on Computing

2003

Improper experimentation for

fixing parameters and operators

No statistical testing at all



Some key parameters set after running a handful of instances and
comparing averages



Comparison among algorithms done similarly !!!



Motivation
 Recent examples such as these can be found in

many other OR journals where new algorithms
and/or techniques are shown

 Some areas, like for example routing and
scheduling are even worse as statistical
techniques (even simple paired tests) are
scarcely used



Motivation
 The same old questions:

 Which design options should I use?

 Why some options work better than others?

 Is the performance similar for all types of instances?

 Am I correctly calibrating my algorithm?

 Is my algorithm better than competitors?

 …are still answered incorrectly in most published
work

 …some of them are not even raised or dealt with
at all



Motivation
 The result of this is well known (Hooker, 1994,

1995, among many others):
 Questionable findings, questionable contribution

 Results almost impossible to reproduce

 Hardly any possible generalization

 Vague reports on results

 No insight on why the proposed methods work

 No insight on how instance characteristics affect
performance

 No quantification of what parts of the proposed method
are actually helping

 No indication of interactions…



Motivation
 Clearly, we already know enough to put

an end to all this

 There is plenty of published papers and
reports where all these problems are
addressed and where tools are given to
avoid them (McGeoch, 1992; Barr et al.,
1995; McGeoch, 1996; Rardin and Uzsoy,
2001, Bartz-Beielstein, 2003…)



Motivation
 In this talk I will try to overview the basics of

correct and sound statistical experimentation

 It will not be by any means comprehensive…

 …but it will be really applied with hands-on
examples

 We will skip some important issues

 I will stress the usage of parametric statistics
whenever possible

 Towards the end I will briefly introduce some
advanced statistical techniques



Preliminaries
 What we usually want:

 To know is this or that feature of the algorithm we
are building is worthwhile (design)

 To comprehend why something works and why
doesn’t, specially when using different instances
(analysis)

 To convince everybody with sound results that our
algorithm is better (comparison)

 This triad of questions can be answered with the
same tools in a sound statistical way



Preliminaries
 We will work with samples (instances)

 But we want sound conclusions: generalization
over a given population (all possible instances)

 Thus we need STATISTICAL INFERENCE

 Very important:
 Descriptive statistics are nice but one should never

infer from a median, average or percentile

 Sadly, and as we have seen, this is exactly what
we find in the literature: “the proposed algorithm is
better than algorithm X because it gives better
average results on some instances (out of a
benchmark of 20)”



Parametric vs. non-parametric

 As we know:
 Parametric inferential tests do have some

assumptions and requirements on your data

 This is necessary so that the theoretical
statistical models we adopt are appropriate for
making inferences

 Non-parametric tests are “distribution-free”

 Then, Why don’t we just use non-
parametric tests?

Preliminaries



Parametric vs. non-parametric
Preliminaries

 There are very, very few “completely
assumption free” statistical tests

 Non-parametric tests can be too over
conservative
 The differences in the means have to be strong

in order to find statistically significant
differences

 This might not sound too bad… but
digging a little bit more…



 We will be contrasting the following
hypothesis:
 H0 = There are no differences in the response

variable

 Truth table: Hypothesis testing over H0

 (POWER)
Error Type II

_
False

Error Type I

_
True

RejectNo rejectNature of H0

Parametric vs. non-parametric
Preliminaries



Parametric vs. non-parametric

 Power of a test: 1- _

 Probability of rejecting H0 when it’s false

 The power increases, among other things with
the sample size

 _ it’s very difficult to estimate a priori

 It is desired to have a low _, a low _ and a
high power

Preliminaries



 With all this in mind:
 If the differences in the means are not strong

enough the non-parametric tests have very little
power

 This means that we will be having high _:

The non-parametric tests tend to not accept H0

when it’s false

You will be wrongly answering negatively to the
triad of questions!!

Parametric vs. non-parametric
Preliminaries



 Parametric testing:
 Robust: you really have to depart from the

assumptions in order to find trouble

 If sample is large enough (>100) CLT takes care of
many things

 If the sample is large, using non-parametric makes
very little sense…

 …but interestingly, many significance tests in non-
parametric statistics are based on asymptotic (large
samples) theory

Parametric vs. non-parametric
Preliminaries



 You really need large data samples…

 If you really find that your algorithm is a mere 3% better
than all other algorithms with very few samples then you
have done something wrong or you cannot really
generalize

 Or if you have an algorithm that is a 300% better than all
others in a small sample probably you do not need
statistics

 … therefore, after all this the question now is
reversed:

  “Why use non-parametric tests?”

Parametric vs. non-parametric
Preliminaries



Experimental design

 Among the basic techniques, experimental
design can help us answer all the triad of
questions

 All other basic questions can also be
adequately answered

 Easy to understand, easy to use:

DESIGN OF EXPERIMENTS (DOE)



Experimental design

 The experimental design is just a few guidelines
to carry out the experiments so to obtain results
as clearly and as efficiently as possible

 There are many types of experiments and many
associated techniques

 In my opinion, one does not really need to go far
in DOE before reaching our goals

 Computer experimentation is a very easy
environment as far as DOE goes (Bartz-
Beielstein, 2003)



Experimental design

 Some special characteristics of computer
experiments as far as DOE goes:

 Reproducibility to the bit (re-using the random
seed)

 Malleable environment in most cases (input
can be controlled)

 A priori knowledge present most times

 “Cheap” and fast data collection

 Systematic errors in experimentation are
unlikely to occur and easy to avoid



Experimental design
 Response variable: The aim of the experiment;

characteristic that we want to study: percentage
deviation from optima, time needed to a given
solution/quality…

 Controlled Factor: variables, options, parameters
that we CAN control and that might affect the
response variable

 Quantitative: Probability of crossover (levels)

 Qualitative: Type of crossover (variants)



Experimental design
 Treatment: a given combination of the

levels/variants of the different controlled
factors

 Experience: the execution of a treatment and
the associated resulting value of the response
variable

 Replicate: when a given treatment is
executed more than once

 Non controlled factor: All other factors
(known or not) that we can NOT control



Experimental design
 The easiest design is called FULL

FACTORIAL
 All the combinations of levels of all factors are

experimented

 Powerful design

 Easy analysis of the results

 Exponential growth on the number of
experiences as the number of factors and/or
levels grows

 The results are usually presented in a table



Experimental design
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Experimental design
 The order in which the treatments (experiences)

are carried out should be RANDOMIZED

 Probably this is not needed in computer
algorithms but memory leaks and in general
degradation of computer resources represent a
very dangerous lurking variable

 Lurking variables: non-controlled factors that
affect controlled factors in a systematic and
consistent way

 This generates a non controlled structure in the
data, which kills the experimentation



Experimental design
Example
 Example of a screening experiment

 Design and calibration of an Iterated Greedy
metaheuristic. Application to the permutation flowshop
problem (Stützle, Pranzo and Ruiz, in preparation):

S0=Construct_Initial_Secuence(); How to construct it?

S1=Local_Search(S0); Do we need local search?

While NOT(TerminationCriterion()) do

  S2=Partially_Destruct(S1); How to destruct? How much to destruct?

  S3=Construct_Secuence(S2); How to reconstruct?

  S4=Local_Search(S3); Do we need local search?

  If Acceptance_Criterion(S4,S1) then S1=S4 How to accept?



Experimental design
Example
 Response variable:

 Minimization of the percentage deviation over
the best solution known for a set of HARD
instances

 Controlled factors:
 Type of initialization (2 variants): heuristic and

random

 Type of destruction (2 variants): random and
blocked



Experimental design
Example
 Controlled factors (cont):

 Type of reconstruction (2 variants): greedy
and random

 Application of local search (2 variants): no, yes

 Acceptance criterion (2 variants): SA, descent

 Iterations for acceptance (2 levels): 1, 5

 Number of jobs to destruct (2 levels): 4, 6

 7 factors at two levels: full factorial of 128
tests



Experimental design
Example
 In this case is better to run a half fraction: 27-

1=64 treatments: Fractional factorial experiment
 Resolution VII: allows us to study interactions of

three factors with ease

 Very important to consider:
 3 groups of instances, 10 instances each= 30 instances

 All instances have 20 machines and differ in the number
of jobs (50, 100 and 200)

 5 replicates per treatment

 64 treatments · 30 instances · 5 replicates =
9600 data

 RANDOMIZE + USE VRT!!



Experimental design
Example
 Crucial: Termination criteria set at a maximum

elapsed CPU time that depends on the instance
(n·m·30 ms)

IG TEST
Algorithm Parameters
Alg Initialization Destruction_T Reconstruction_TLS Acceptance_C Iterations_Acc Destruct Instance n m replicate Objective Time (micros) BOUNDS RPD

44 1 0 1 0 1 5 6 Ta103 200 20 5 11980 120000000 11281 6,1962592
53 1 1 0 1 0 1 4 Ta110 200 20 1 11427 120000000 11288 1,23139617

24 0 1 0 1 1 5 6 Ta105 200 20 3 11379 120000000 11259 1,06581402
25 0 1 1 0 0 1 6 Ta087 100 20 4 6574 60000000 6268 4,88194001

13 0 0 1 1 0 1 6 Ta054 50 20 2 3769 30000000 3723 1,23556272
24 0 1 0 1 1 5 6 Ta104 200 20 5 11459 120000000 11275 1,63192905

5 0 0 0 1 0 1 4 Ta052 50 20 4 3721 30000000 3704 0,45896328
37 1 0 0 1 0 1 6 Ta105 200 20 4 11327 120000000 11259 0,60396128

64 1 1 1 1 1 5 6 Ta110 200 20 4 11478 120000000 11288 1,6832034
23 0 1 0 1 1 1 4 Ta051 50 20 4 3898 30000000 3850 1,24675325

29 0 1 1 1 0 1 4 Ta102 200 20 3 11405 120000000 11203 1,80308846
23 0 1 0 1 1 1 4 Ta105 200 20 4 11318 120000000 11259 0,52402522

64 1 1 1 1 1 5 6 Ta101 200 20 1 11400 120000000 11195 1,83117463
35 1 0 0 0 1 1 6 Ta085 100 20 5 6428 60000000 6314 1,80551156

64 1 1 1 1 1 5 6 Ta060 50 20 1 3823 30000000 3756 1,78381257
36 1 0 0 0 1 5 4 Ta060 50 20 2 3831 30000000 3756 1,99680511

62 1 1 1 1 0 5 4 Ta085 100 20 4 6435 60000000 6314 1,91637631
37 1 0 0 1 0 1 6 Ta108 200 20 4 11487 120000000 11334 1,34992059

64 1 1 1 1 1 5 6 Ta090 100 20 3 6547 60000000 6434 1,75629468
14 0 0 1 1 0 5 4 Ta086 100 20 4 6487 60000000 6364 1,9327467

43 1 0 1 0 1 1 4 Ta086 100 20 4 6622 60000000 6364 4,05405405
8 0 0 0 1 1 5 4 Ta088 100 20 3 6508 60000000 6401 1,67161381

52 1 1 0 0 1 5 6 Ta086 100 20 4 6526 60000000 6364 2,54556882
29 0 1 1 1 0 1 4 Ta056 50 20 1 3716 30000000 3681 0,95082858

3 0 0 0 0 1 1 4 Ta057 50 20 4 3773 30000000 3704 1,86285097
2 0 0 0 0 0 5 4 Ta088 100 20 2 6557 60000000 6401 2,4371192

2 0 0 0 0 0 5 4 Ta052 50 20 4 3761 30000000 3704 1,53887689
17 0 1 0 0 0 1 4 Ta051 50 20 2 3922 30000000 3850 1,87012987

12 0 0 1 0 1 5 4 Ta055 50 20 1 3795 30000000 3611 5,0955414
8 0 0 0 1 1 5 4 Ta110 200 20 1 11438 120000000 11288 1,32884479

9 0 0 1 0 0 1 4 Ta105 200 20 1 11572 120000000 11259 2,77999822
50 1 1 0 0 0 5 4 Ta109 200 20 5 11498 120000000 11192 2,73409578

9 0 0 1 0 0 1 4 Ta106 200 20 3 11545 120000000 11176 3,30171797
50 1 1 0 0 0 5 4 Ta101 200 20 3 11413 120000000 11195 1,9472979

62 1 1 1 1 0 5 4 Ta087 100 20 4 6352 60000000 6268 1,3401404
29 0 1 1 1 0 1 4 Ta059 50 20 2 3784 30000000 3743 1,09537804

43 1 0 1 0 1 1 4 Ta110 200 20 4 11863 120000000 11288 5,09390503
57 1 1 1 0 0 1 4 Ta105 200 20 4 11658 120000000 11259 3,5438316

61 1 1 1 1 0 1 6 Ta088 100 20 3 6488 60000000 6401 1,35916263
22 0 1 0 1 0 5 4 Ta109 200 20 1 11372 120000000 11192 1,60829164

16 0 0 1 1 1 5 6 Ta088 100 20 1 6540 60000000 6401 2,1715357
60 1 1 1 0 1 5 4 Ta101 200 20 5 11742 120000000 11195 4,88610987

60 1 1 1 0 1 5 4 Ta051 50 20 3 4038 30000000 3850 4,88311688
16 0 0 1 1 1 5 6 Ta103 200 20 3 11540 120000000 11281 2,29589575

18 0 1 0 0 0 5 6 Ta082 100 20 2 6378 60000000 6183 3,15380883
29 0 1 1 1 0 1 4 Ta052 50 20 2 3715 30000000 3704 0,29697624

61 1 1 1 1 0 1 6 Ta052 50 20 4 3740 30000000 3704 0,97192225
39 1 0 0 1 1 1 4 Ta108 200 20 4 11426 120000000 11334 0,81171696

15 0 0 1 1 1 1 4 Ta089 100 20 4 6401 60000000 6275 2,00796813
22 0 1 0 1 0 5 4 Ta083 100 20 1 6355 60000000 6217 2,21972012

38 1 0 0 1 0 5 4 Ta051 50 20 5 3893 30000000 3850 1,11688312
55 1 1 0 1 1 1 6 Ta052 50 20 2 3726 30000000 3704 0,59395248

54 1 1 0 1 0 5 6 Ta059 50 20 5 3788 30000000 3743 1,20224419
43 1 0 1 0 1 1 4 Ta053 50 20 1 3804 30000000 3640 4,50549451

22 0 1 0 1 0 5 4 Ta083 100 20 2 6357 60000000 6217 2,25188998
42 1 0 1 0 0 5 4 Ta084 100 20 4 6586 60000000 6269 5,05662785

15 0 0 1 1 1 1 4 Ta110 200 20 5 11408 120000000 11288 1,06307583
45 1 0 1 1 0 1 4 Ta081 100 20 1 6313 60000000 6202 1,78974524

48 1 0 1 1 1 5 4 Ta051 50 20 1 3897 30000000 3850 1,22077922
22 0 1 0 1 0 5 4 Ta101 200 20 4 11361 120000000 11195 1,48280482

25 0 1 1 0 0 1 6 Ta084 100 20 1 6577 60000000 6269 4,91306428
36 1 0 0 0 1 5 4 Ta087 100 20 3 6383 60000000 6268 1,83471602

34 1 0 0 0 0 5 6 Ta051 50 20 4 3956 30000000 3850 2,75324675



Experimental design
Analysis of the results: ANOVA

 Sir Roland Fisher, 1930

 The ANOVA (analysis of variance) is one the
most powerful statistical tools available

 The term ANOVA is a source of confusion:
detects differences on means by analyzing
the variance!

 The ANOVA is a statistical model where the
variation in the response variable is
partitioned into components that correspond
to the different sources of variation (factors)



Experimental design
Analysis of the results: ANOVA

 Let’s study the results
 ANOVA TABLE

Analysis of Variance for RPD - Type III Sums of Squares
--------------------------------------------------------------------------------
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value
--------------------------------------------------------------------------------
MAIN EFFECTS
 A:Acceptance_C              7,26506      1        7,26506      27,62     0,0000
 B:Destruct                  389,076      1        389,076    1479,08     0,0000
 C:Destruction_T             50,0663      1        50,0663     190,33     0,0000
 D:Initialization            60,7802      1        60,7802     231,06     0,0000
 E:Iterations_Acc            393,743      1        393,743    1496,82     0,0000
 F:LS                        12444,9      1        12444,9   47309,62     0,0000
 G:n                         133,771      2        66,8856     254,27     0,0000
 H:Reconstruction_T          4286,73      1        4286,73   16296,09     0,0000
 I:replicate                0,402254      4       0,100563       0,38     0,8215



Experimental design
Checking ANOVA assumptions
 Before actually starting, we have to check the

three main assumptions of the ANOVA:
normality, homocedasticity and independence of
the residuals

 Checking normality:

 Outlier analysis

 Distribution fitting of the data to a normal
distribution, Normal Probability plots…

 Numerical tests are very strict and normally
they will reject the hypothesis that the data
comes from a normal distribution



Experimental design
Checking ANOVA assumptions

Normal Probability Plot

-2,1 -1,1 -0,1 0,9 1,9 2,9

RESIDUALS

0,1

1

5
20

50

80

95

99

99,9

p
e
rc

e
n
ta

g
e

 Ooops!
 Non normality
 Studies support the

fact that ANOVA is
very robust wrt to
normality

 Still there is much
that we can do



Experimental design
Checking ANOVA assumptions

 Sources of trouble regarding normality:

 Presence of severe outliers
Outliers should not be eliminated as the

environment is controlled. Check for bugs or
other potential problems in the code

 Factors or levels with excessive effect
There is no need to test what is evident

 “Clustering”
Totally different behavior on the results

depending on some  levels or factors



Experimental design
Checking ANOVA assumptions
 According to the ANOVA table, the factor LS has a

very large effect

 Means plot: a simple plot, usually along with
confidence intervals suitable for multiple comparisons:

Means and 99,0 Percent Tukey HSD Intervals
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Experimental design
Checking ANOVA assumptions

 Much better now
 Many

transformations
possible

 I would not worry
unless aberrant
plot

Normal Probability Plot
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Experimental design
Checking ANOVA assumptions
 Checking homocedasticity:

 Study the dispersion of the residuals with
respect to the levels of all factors

 Some levels or factors might result in higher or lower
variance

 Study the dispersion of the residuals with
respect to the values of the response variable

 Probably higher or lower values of the response
variable might result in higher or lower variance



Experimental design
Checking ANOVA assumptions

 No problem
 It has to be

repeated for every
factor

 Also for the
response variable

Residual Plot for RPD
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Experimental design
Checking ANOVA assumptions

 Sources of trouble regarding
homocedasticity:
 A level of a factor resulting in more variance

Disregard the level in the experiment

 More variance in the “hard” instances

Separated ANOVAS, one for each group of
instances

 Increased variance as response variable
increases (decreases)

Properly select the response variable!



Experimental design
Checking ANOVA assumptions

 ANOVA is very sensitive to lack of
independence

 Checking independence of the residual:
 Plot of the dispersion of residuals over run

number or time
We should expect the residual to be

independent from time

 Analyze the residual looking for self
correlation patterns
The residual should be “white noise”



Experimental design
Checking ANOVA assumptions

 No problem
 Controlled

environment: no
lurking variables

Residual Plot for RPD
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Experimental design
Checking ANOVA assumptions

 Sources of trouble regarding
independence of the residual:
 Residual bigger over time

Experiences run in batch mode, computer
resources degrading over time

 Structure in the residual
Randomization or “shuffling” of the

experiences

ANOVA model NOT complete



Experimental design
Checking ANOVA assumptions

Means and 99,0 Percent Tukey HSD Intervals
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Experimental design
Checking ANOVA assumptions
 Checking assumptions:

 If the experiment is carried out with care…
 if there are sufficient samples…
 and if the technique is applied correctly…
 … there should not be any problem

 If everything else fails
 Then use a non-parametric test and hope to

obtain something!



Experimental design
Analysis of the results: ANOVA

 With large samples the p-value tends to be
close to zero
 If the sample size is large enough (infinity) any

difference in the means of the factors, no matter
how small, will be significant

 Real vs. Statistical significance (Montgomery
and Runger, 2002)
 Study factors until the improvement in the

response variable is deemed small



Experimental design
Analysis of the results: ANOVA

 Examine the factors by F-Ratio value:
 Iterations_Acc, Reconstruction_T, n, Destruct,

Acceptance_C

Analysis of Variance for RPD - Type III Sums of Squares
--------------------------------------------------------------------------------
Source                Sum of Squares     Df    Mean Square    F-Ratio    P-Value
--------------------------------------------------------------------------------
MAIN EFFECTS
 A:Acceptance_C              1,14754      1        1,14754      10,23     0,0014
 B:Destruct                  33,0077      1        33,0077     294,17     0,0000
 C:Destruction_T            0,264526      1       0,264526       2,36     0,1247
 D:Initialization          0,0288163      1      0,0288163       0,26     0,6123
 E:Iterations_Acc              155,4      1          155,4    1384,96     0,0000
 F:n                         120,115      2        60,0573     535,25     0,0000
 G:Reconstruction_T          137,248      1        137,248    1223,20     0,0000



Experimental design
Analysis of the results: ANOVA
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Experimental design
Interactions

 A very interesting feature of the ANOVA is that
one can study interactions

 For algorithm design, the most interesting
interactions are those between the design options
and the characteristics of the instances

 “Short experiments”, “One factor at a time” or
even modern racing algorithms (Birattari et al.,
2002) do not allow the study of interactions



Experimental design
Interactions

 Let us work with another example (Ruiz et al., in
press at C&OR, Thijs and Ruiz, in preparation)

 Heuristics and genetic algorithms for realistic
scheduling problems

 10 controlled factors depicting different
characteristics of the instances

 Very large datasets and comprehensive
experiments: we want to know why algorithms
work



Experimental design
Interactions

0, U[1,5]0, U[1,3]PNumber of preceding jobs
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U[25,74], U[75,125]U[25,74], U[75,125]S
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2, 41, 3miNumber of unrelated parallel machines per stage
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50,1005,7,9,11,13,15nNumber of jobs
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Small
(9,216)

Factor



Experimental design
Interactions

 Example of a very strong 2-factor interaction:

Interactions and 99.9 Percent LSD Intervals
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Experimental design
Interactions

 Example of a very strong 3-factor interaction:
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Experimental design
Interactions

 Another example of 2-factor interaction

Interactions and 99.9 Percent LSD Intervals
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Decision trees

 In some cases, the nature of the data that we
obtain does not allow for a parametric analysis no
matter the number of samples

 A clear example comes from categorized
response variables

 Non-parametric tests (Wilcoxon, Kruskal-Wallis)
are very limited as regards the study of
interactions

 Decision trees and Automatic Interaction
Detection (AID) tools are non-parametric and at
the same time perfect for interaction study



Decision trees

 AID (Morgan and Sonquist, 1963) recursively
bisects experimental data according to one factor
into mutually exclusive and exhaustive sets that
describe the response variable in the best way.
AID works on an interval scaled response variable
and maximizes the sum of squares between
groups by means of an F statistic

 We use an improved version called Exhaustive
CHAID from Biggs et al. (1991) that allows multi-
way splits and significance testing. The result is a
decision tree



Decision trees

 Decision trees are very common in social and
health sciences

 I have not seen them applied to algorithm design
and calibration

 An example of categorical variable
 Analysis of the performance of a MIP model on the

previous dataset of 9,216 instances. Three different
possible results:

 0: Optimum solution found within the time limit

 1: Time limit reached, solution found

 2: Time limit reached, no solution found



Decision trees

 First clumsy attempt: a table with averages



 Decision trees
are much more
informative



Decision trees

 CHAID needs large data samples and many
replicates in order to be usable

 It looses power when there are many categories
and results are difficult to analyze

 Not a common option in software. SPSS Decision
Tree

 Interesting alternative for rank valued results in
algorithm comparison



Decision trees

 After analyzing the tree many conclusions
on the performance of the model can be
obtained
 This allowed us to detect weak spots that

required further modeling

 We gained a deep understanding of the model
and how it could be improved

 All the conclusions drawn are supported by a
sound statistical procedure



Conclusions
 Even today we find inadequate analysis and

testing of algorithms

 Parametric statistics pose an interesting and
powerful alternative to non-parametric methods

 The DOE procedure and the posterior analysis
by means of ANOVA techniques represent a
very powerful approach that can be used for
comparing performance of different algorithms
and to calibrate methods



Conclusions
 Of particular interest is the study of

interactions

 Insight on why algorithms work and how
different features are affected by the input

 CHAID and decision trees: powerful non-
parametric alternative for categorical
response variables

 Sound statistical experimentation is a
MUST



An overview of basic and
advanced statistic

techniques for calibrating
and comparing algorithms

Rubén Ruiz García

INSTITUTO TECNOLÓGICO DE INFORMÁTICA
APPLIED OPTIMIZATION SYSTEMS GROUP

DEPARTMENT OF APPLIED STATISTICS, OPERATIONS RESEARCH AND QUALITY
POLYTECHNIC UNIVERSTITY OF VALENCIA, SPAIN

EMAA WORKSHOP, ICELAND
2006

http://www.upv.es/gio


