An overview of basic and
advanced statistic
techniques for calibrating
and comparing algorithms

Rubén Ruiz Garcia

INSTITUTO TECNOLOGICO DE INFORMATICA
APPLIED OPTIMIZATION SYSTEMS GROUP
DEPARTMENT OF APPLIED STATISTICS, OPERATIONS RESEARCH AND QUALITY
POLYTECHNIC UNIVERSTITY OF VALENCIA, SPAIN

EMAA WORKSHOP, ICELAND @

G ru o e
UNIVERSIDAD 2006 nvestigacion

POLITECNICA Operativa
DE VALENCIA http://www.upv.es/gio

0 Motivation
O Preliminaries

Parametric vs. non-parametric

0 Experimental design
Example
Analysis of the results: ANOVA
Checking ANOVA assumptions
Interactions

0 Decision trees
0 Conclusions

o After two decades of publications and efforts
(McGeoch, 1986) we still find the same
shortcomings in algorithm experimentation and
evaluation as ever

o Often is difficult, if not impossible, to ascertain
which algorithm is the best in a given domain
from published results and comparisons

o Just some examples taken from INFORMS Journal
on Computing:

INFORMS Jourmal on Computing
Vol 1o, Moy 3, Summer 2004, pp. 264-250
1mepg DERRL | 499 | pusens L 526-3528 |0 | 1603 | 0284

L orms}

pot L L2ET / joe, L3000
£ 200 INFORMS

Searching tor Good Multiple Recursive Random
Number Generators via a Genetic Algorithm

In designing ideal multiple recursive mndoem number (RN} generators (MRGs), the best set of mulkipliees, in
terms of the lattice structure of the RMNs produced, is scught As the order of the MRG incredses, the number
of possible sets of mulbipliers o be examined grows exponentially. This paper pioposes a genetic algorithm Fo

designing good MRCs.

sat of multipliers associated with the MRS 1= encoded as a binary string. Via the

operations of mproducton, aossover, and mukation, new sets of multplies are generated. The spectral values
of the MRGs are calculated to guide the search piocess. As an illusteation, the proposed algoeithm is employe
to find good sets of multipliers for MRGs of orders thiee and foue The results are betber han these derived from
other studies. To concluda, this paper not only finds batter MREGs of orders three and four, but also de\'el.-:rps

an algoaithm for designing MRGs of higher oeders,

Kfy it Fenetic algomhms; heuristics: spe:ual tast

History: Accepted by Michel Gendieau; received Oceober 2000 revised June 2002; accepted March 2003,

1. Introduction

Fandom munmbers (RMs) are widely used in oper-
ations research, statistics, engineering, and many
other fields (Knuth 1997} In the literabare, varicus
kinds of EM generators have been discussed (Knuth
1997, L'Eeuyer 1995, Miederreiter 1992, Tang 2002).
Amang them the multiple recursive generator (MEG)
is probably the mest popular one due to its long
period, sound statistical properties, high computa-
ticnal efficiency, and easy implementation (Knuth
1997, LEcuyer 19992, A kth order MRG has the fol-
lowing form:

R.=a,R_,+aR, +---+aR modemwy, i)

e
where the a's are the constant multipliers, w is the
prime modulus, and Ry, ... R, ; are constant seeds
in {0,1, ..., m—1} but not all zero. Obwviously, as the
number of terms & increases, the computational bur-
den increases accordingly. To overcome this difficulty,
a two-term MRG has been studied (L'Eouyer et al.
1093

Ry=aR, 4B (modm), (23
where 1= =k~ 1. This two-term formula reduces
considerably the computational effort. However, a
tradectf is the detericration of the lattice structure of
the EMNs generated iKao and Tang 19%97a, LEcuyer
1997, Tang and Kao 2002).

284

In designing good BN generators, sets of (g, ... 2,
multipliers with the ability of generating RMs of long
period and sound statistical properties are sought. For
a moderate value of the prime modulus m = 2% —
1, there are m® combinations of the (@,) multipli-
ers for the tweterm MRG to be investigated. An
exhaustive analysis would take years for computa-
tion. When more terms are included, a typical prob-
lem of exponential explosion oocurs. Several articles
have addressed this issue and two major approaches
are proposed. One is random search (LEcuyer 19903,
LEcuyer et al. 1993, U'Ecuyer and Couture 1907}
and the other is forward /backward systematic search
{Kao and Tang 18687h, 1948). Searching for good sets of
(a, ..., &) multipliers is a combinatarial optimization
problem. Several metaheuristic approaches including
simulated annealing, tabu search, and genetic alge-
rithms (GAs) have been developed to solve this bype
af problem. Unlike simulated annealing and tabu
search, which explore the solution space sequentially,
GA warks with populations of solutions. 1t is intu-
itively more suitable for this RN generation problem
due to its nonsequential nature. The work of Entacher
et al. (2001 is probably the only study investigating
the applications of GA to RN generation. The fpe
af RN generators studied is the prime modulus lin-
ear congruential generator, Their results indicate that
there is still room for further studies.

INFORMS, Journal on Computing
2004

No word about how parameters

and operators have been selected

No statistical testing whatsoever

Tang and Kao: Se

mir for Cond Multie Recursiov Randam Number Generators zia @ Generic Alge "
DIEORME [ournal on Computing 1631, pp. 234-250, © 2004 DNFORMS

Table 1 Resuliz of the Second-Order MRE

Algarithm NG Dol 13,81 Speotrd Error (%]

A FW 50,200 065,003 12,129, —1 485, 1204 0.73453 386
Az 305 130,100 070,002 1075354, —1,330.8400 077 0
Ei R, MAX 50,200 0.60,0.02 11,471,887, 36,328 0.7445% 398 .
B2 RWAMI 100400 100,000 20778 -7 074 447 B f t b I t h
E3 85, MAX 100400 070,002 (1075354, -1, 3338400 077544] a rra g e O a eS W I a Ve ra g e
E4 308, AVG 100,400 030,002 (107535, —1,3338400 0773 1]
] R, MaX 100,400 1.00,0.04 (18543, —1 83 8261 074253 424
cz FW, AVG 100,100 100,04 (31 473,907, 790,678) 073422 3.
c3 25, MAX 50,200 060,005 1422 (162, —1,546,064) 0.7EM43 o7 I
o4 305, AVE 50,200 090,002 16,230, — 1,830,287 073447 5.3 Va u e S
Exhaustive i1075,354, —1,33384% 0.7 a
Farwardiackwand 1—1,5308,242, —45,991) 0.68237 120
Random (37,520, —1,567,830) 0.73867]
Table 2 Resuliz of the Thind-Order MRG

Algorithm NG Dol (a8, 8! Spectral Error (%)
A i 50,300 00,003 [=0477 280, 12,639, —48 242} 0702 A0
Az 08 00,150 083, 002 (-7 R15,1590, 824 468, B 2608850 074133 A7
El R, MAL S03000 080,004 (85085, -9,586 980, — 2027} 2414
EZ RW &G 50,300 002 (=947 250, 12 639, —48 542} 2480
B3 BUS MAY E(300 035,005 (9084, -4772,185, —8,873 590} %
B4 3U MM 00 150 100,002 (105,720, 2 418,237, 5,580,54) 57
1 RW MAL 00150 085,04 (24,084, —11,007 115, 47,9231 2251
X RW &G 50,300 100,00 (20,185, 14,128,181, 53,2481 243
C3 305 MAY =00300 100,000 (818,400, —61,530, -9 226 335} 2481
4 BU MM 00150 0,002 17,134,457, 14,030, 6,905,092} et
Forward'backwand 145901, —1.274,471, -&,762.259) HEs
Random [— 134,708, 40,222, 13,043,020 2645

Table 3 Resulls of the Faurth-Order MAG

Akgorithm NE [(8, 8,85, 24) Spectral Error (%)

A RW S0 080,008 (2493 1200204 4578 200000400 QTR0 A
AL BUE O 004sD 100,005 (40028 24403 203 400805, 302452400 0022 M1
Bl RW MR 100450 000,001 (364,165, 22255 363, 24,710, &0} O7RE7E 2332
EX FW AVG 100,150 080,002 (118743, 71205, 33,032.200, —7 r24764) Q7sRd 24
B3 SUS MAX 100153 103005 (40028 24 408 203 10895, 30248248 GR0Bd M1
B4 SUE AVG 50300 090002 (-B407,S09.406, 17 d62 320s1Mad) O9sEs 2044
Cf FW MAY 100150 080,008 (-1 235432, 42,136, 17244, -20833,115) 07600z 2291
2 RWAG 500300 005 004 (42042 27580308 33061, —d7issd) OoTRA4l 230
L3 OBUE MAX 100450 100,005 (400028 —24 403 203 40,805, 202452400 07028 2191
G4 5UZ AWG 50,300 085 002 183, 304,033, 185 4d7, 222378510 O7R320 Z3AT
Random (27,889,298, 212308, -44.510 11290660 069864 2014

Table 4 Resulls of the Two-Tarm Third-Order MRG

HAlgorithm NE PerPan ia,,8;,&) Spectral Error (%)
M AW 100,100 0.60, 0.4 (48,287, 0, 1,828 747) 0.43533 1.7
a2 505 50, 200 (0, 75,367, —1 233,088) 045472 1.7
Ei R, MAX 50, 200 (0, 522 A58, —1 £14,64% 043800 045
EZ R, AVE 100, 1 (0, —928,030, 1 6244200 0.13556 123
B3 508, MAX 100, 100 (0, —928,035, 1 A24 4200 0.13556 123
Ed SUE AVG 50, 20 (950,524, 0, 1 05,135} (.43550 128
ol R, MAX 50, 200 (0, 522 458, —1 £14,64%) 0.13800 035
oz R, AVE 100, 100 80, 0, 1,668,596, 251051 043479 1A
[} SUE, MAY 50,200 00,00 0, -ZE0843, 1833808 045584 147
o SUE AVG 50,200 0.60,004 (1,821,444, 0, 523.954) 042473 175
Forwardbackwand 774,779, 0 433900 04451 %

Random {0y 1,518,728, Z3,475) 012808 1289

A New Genetic Algorithm for the
Quadratic Assignment Problem

INFORMS, Journal on Computing
2003

In this paper we propose several variants of a new genetic algorithm for the solution of
the quadratic assignment problem. We designed a special merging rule for creating an
offspring that exploits the special shucture of the problem. We also designed a new type
of a tabu search, which we term a concentric tabw scarch. This tabu search is applied on
the offspring before consideration for inclusion in the population. The algorithm provided
excellent results for a set of 29 test problems h
Hewristics; Genetic Algovithm; Memetic Algorithm;

(Chinidratic Assigmment;

Improper experimentation for

ving between 30 and 100 facilities.
Tabu Senrch)

fixing parameters and operators

1. Introduction

The quadratic assignment problem is considered one of
the most difficult cptimization problems to solve opti-
mally. A rich body of literature exists on heuristic
approaches for its salution. The problem is defined as
follows.

A set of » possible sites are given and » facilities
are o be located on these sites, one facility at each
site. Let ¢ be the cost of moving items for one unit
of distance from facility J to facility j and d. be the
distance from site 7 to site j. The cost f to be mini-
mized over all possible permutations, calculated for
an assignment of facility i tosite p(i) fori=1,... n,is

e
F=E Xy (13

1 =1

The first heuristic algorithm proposed for this prob-
lem was CRAFT {(Armour and Buffa 1953), which
is a descent heuristic. More recent algorithms use
metaheuristics such as tabu search (Battiti and Tec-
chiolli 194, Skorin-Kapov 1990, Taillard 1991), sim-
ulated armealing (Burkard and Rendl 1984, Wilhelm
and Ward 1967), genetic algorithms (Ahuja et al. 2000,
Fleurent and Ferland 1994, Tate and Smith 1995), ant-

TMFORMS JourMaL om C.‘IMPL-TINIL. -E.- 2"."‘3 MMEIREMS
Vol 15, Mo. 2, Summer 2003, pp. 3

colonies search (Gambardella et al. 1999, ar specially
designed heuristics (Dhezner 2002, Li et al. 1904),
For a complete discussion and list of references see
{(Burkard 1900, Cela 1093, and Taillard 1995).

In this paper we first describe genetic algorithms
in gereral, present the two merging processes used
n the proposed genetic algenthee, nd p - After many experiments with moderately sized

hwee different procedures to be applied to off:

before consideration for inclusion in the popu
fwhich we term a post-merging procedure,
Such algorithms are somelime;referred in dﬂe
ware s Mot lgriion Radettie 19, 1w 50 100, The number of generations for the concentric

3 we present extensive LE\]‘I‘l}‘LIt:‘lt]C\l‘lﬂl Compa

beteen all proposed varans. We smmaritabtl was set to max{20n, 1000}. The number of gen-
results and propose future research in Section 4 . . .

erations for the descent and the simple tabu was set
to double these values. We noticed an improvement

the results of the algorithms when the population

No statistical testing at all

+problems (30 < n < 64) we selected a population size

2. Genetic Algorithms

Cenetic algorithms have proven to be quite
cessful for the sclution of combinatorial prol.
For reviews see Goldberg (1989) and Salhi (11
Proposed genetic algorithms for the sclution

quadratic asignment problem are Abup et ol S1Z@ 15 increased (and the number of generations is
Fleurent and Ferland (1994, and Tate and .
(1905). increased proportionally). However, in order to stay

wasrenyithin reasonable run times, we opted to experiment

with a fixed population size of 100,

Table 1 Comparison Between Different Merging Procedures

Rest No Genetic TS/FF Gohesive Scrambled

Prablemn Known 1 i . t 1 . t t . t 1 .

Kra30a 88900 20 0 0.45 20 0 0.43 20 0 0.33 20 0 0.32
Kra3ob 91420 20 0 0.44 20 0 0.43 20] 0.33 20 0 0.31
Nug3Q 6124 20 0 0.49 20 0 0.47 20 0 0.37 20 0 0.33
Tho30 149936 20 0 0.49 20 0 0.48 20] 0.35 20 0 0.33
Esc32a 130 20 0 0.52 20 0 0.51 20 0 0.35 20 0 0.37
Esc3zb 168 20 0 0.43 20 0 0.42 20 0 0.30 20 0 0.30
Esc32c 642 20 0 0.29 20 0 0.28 20 0 0.27 20 0 0.27
Esc32d 200 20 0 0.34 20 0 0.33 20 0 0.28 20 0 0.28
Esc32h 438 20 0 0.34 20 0 0.34 20 0 0.29 20 0 0.29
StedBa 9526 B 0.114 0.95 8 0.083 0.9 19 0.005 0.55 16 0.021 0.65
Ste3eh 15852 20 0 0.91 20 0 0.88 20] 0.61 20 0 0.68
Ste36c 8239.11 1 0107 0.95 14 0.024 0.89 14 0.039 0.59 18 0.010 0.66
Thod0 240316 3 0.034 1.34 3 0.025 1.32 5 0.010 0.958 5 0.015 0.91
Skod2 15812 20 0 1.66 20 0 1.60 20 0 115 20 0 1.20
Skod9 23386 10 0.032 2.89 14 0.022 2.81 17 0.009 213 18 0.007 2186
Wila0 48816 3 0.024 3.08 7 0.014 2.94 18 0.002 1.09 18 0.002 1.85
Skoa6 34458] 0.041 5.01 1] 0.046 4.83 19 0.001 3.24 17 0.002 3.29
SkotG4 48498 3 0.043 9.09 1 0.033 8.9 20] 5.85 19 0.000 6.01
Esc6da 116 20 0 3.21 20 0 3.19 20 0 3.05 20 0 3.10
Sko72 86236] 0.120 15.76] 0.115 15.50 10 0.014 8.36 7 0.013 7.74
Sko&1 a0aag 0 0.124 25.52 0 0.112 2543 5 0.014 13.30 4 0.019 12.78
Skoo0 115334] 0.139 41.81 0 0.126 41.683 4 0.011 22.35 2 0.019 19.52

1 MNumber of times out of 20 that best-known solution obtained,
¥ Percentage of average solution over the best-known solution,
+Time In minutes per run,

Some key parameters set after running a handful of instances and
comparing averages

Table 3 Gomparison Between Genetic Algorithms Using Different PMPs
Descent Simple Tabu Concentric Tabu
Best

Problem Known 1 1 Time* 1 t Time* 1 t Time*
of Runs: 200 100 20
Kra30a 88900 162 0.253 0.06 g3 0.089 0.09 20 0 0.33
Kra30b 1420 124 0.037 0.06 79 0.019 0.09 20 0 0.33
Nug30 6124 160 0.013 0.06 99 0.001 0.10 20 0 0.37
Tho30 149936 192 0.008 0.06 100 0.10 20 0 0.35
Esc32a 130 144 0.569 0.06 100 0 0.07 20 0 0.35
Esc32b 168 200 0 0.05 100 0 0.08 20 0 0.30
Esc32c 642 200 0 0.05 100 0 0.06 20 0 0.27
Esc32d 200 200 0 0.05 100 0 0.06 20 0 0.28
Esc3zh 438 200 0 0.05 100 0 0.06 20 0 0.29
Sted6a 9526 49 0.246 0.08 37 0.149 012 19 0.0035 0.55
Ste36b 15852 185 0.015 0.08 100 0 014 20 0 0.61
Ste36c 8239.11 73 0142 0.08 59 0.066 012 14 0.039 0.59
Thod(240516 4 0.069 013 4 0.042 0.23 5 0.010 0.98
Skod2 15812 173 0.014 0.16 96 0.001 0.30 20 0 1.15
Skod9 23386 2 0107 0.28 12 0.062 0.48 17 0.009 213
Wils0 48816 26 0.038 0.25 42 0.011 047 18 0.002 1.99
Sko56 34458 63 0.054 0.42 59 0.007 0.72 19 0.001 3.24
Skob4 48498 69 0.051 0.73 65 0.019 1.23 20 0 5.85
EscEda 116 200 0 0.40 100 0 0.49 20 0 3.0
Sko72 66256 1 01412 0.93 9 0.056 1.45 10 0.014 8.36
Skog1 Q0998 0 0.087 1.44 0 0.058 218 5 0.014 13.30
Skaod0 115534 3 0139 2 4 0.073 351 4 0.011 22.35
Skot100a 152002 7 0114 342 3 0.070 511 5 0.018 33.55
Sko100b 153890 6 0.096 347 17 0.042 511 10 0.011 34.05
Skot100c 147862 2 0.075 322 11 0.045 4.69 5 0.003 33.80
Skot100d 149576 0 0437 3.45 0 0.084 515 1 0.049 33.90
Sko100e 149150 4 0.071 A 17 0.028 4.70 18 0.002 30.67
Sko100f 149036 1 0.148 3.55 1 0.110 5.25 1 0.032 35.74
Wiloo 273038 0 0.076 3.51 3 0.043 524 5 0.002 33.11

+Mumber of times out of the corresponding number of runs that best-known solutions obtained.
t Percentage of average solution over the best-known solution.

* Time in minutes per run.

Comparison among algorithms done similarly !!!

o Recent examples such as these can be found in
many other OR journals where new algorithms
and/or techniques are shown

o Some areas, like for example routing and
scheduling are even worse as statistical
techniques (even simple paired tests) are
scarcely used

o The same old questions:
Which design options should I use?
Why some options work better than others?
Is the performance similar for all types of instances?
Am I correctly calibrating my algorithm?
Is my algorithm better than competitors?

o ...are still answered incorrectly in most published
work

O ...some of them are not even raised or dealt with
at all

o The result of this is well known (Hooker, 1994,
1995, among many others):
Questionable findings, questionable contribution
Results almost impossible to reproduce
Hardly any possible generalization
Vague reports on results
No insight on why the proposed methods work

No insight on how instance characteristics affect
performance

No quantification of what parts of the proposed method
are actually helping

No indication of interactions...

o Clearly, we already know enough to put
an end to all this

o There is plenty of published papers and
reports where all these problems are
addressed and where tools are given to
avoid them (McGeoch, 1992; Barr et al.,
1995; McGeoch, 1996; Rardin and Uzsoy,
2001, Bartz-Beielstein, 2003...)

In this talk T will try to overview the basics of
correct and sound statistical experimentation

It will not be by any means comprehensive...

..but it will be really applied with hands-on
examples

We will skip some important issues

I will stress the usage of parametric statistics
whenever possible

Towards the end I will briefly introduce some
advanced statistical techniques

o What we usually want:

To know is this or that feature of the algorithm we
are building is worthwhile (design)

To comprehend why something works and why
doesn’t, specially when using different instances
(analysis)

To convince everybody with sound results that our
algorithm is better (comparison)

o This triad of questions can be answered with the
same tools in a sound statistical way

o We will work with samples (instances)

0o But we want sound conclusions: generalization
over a given population (all possible instances)

0 Thus we need STATISTICAL INFERENCE

O Very important:

Descriptive statistics are nice but one should never
infer from a median, average or percentile

Sadly, and as we have seen, this is exactly what
we find in the literature: “the proposed algorithm is
better than algorithm X because it gives better
average results on some instances (out of a

benchmark of 20)"

0o As we know:
Parametric inferential tests do have some
assumptions and requirements on your data

This is necessary so that the theoretical
statistical models we adopt are appropriate for
making inferences

Non-parametric tests are “distribution-free”

o Then, Why dont we just use non-
parametric tests?

o There are very, very few “completely
assumption free” statistical tests

0 Non-parametric tests can be too over
conservative

The differences in the means have to be strong
in order to find statistically significant
differences

o This might not sound too bad... but
digging a little bit more...

oWe will be contrasting the following
hypothesis:

H, = There are no differences in the response

variable
o Truth table: Hypothesis testing over H,
Nature of H, No reject Reject
Error Type I
True © YP

Error Type 11
False © (POWER)

o Power of a test: 1-

Probability of rejecting H, when it's false

The power increases, among other things with
the sample size

O it's very difficult to estimate a priori

O lt is desired to have alow ,alow and a
high power

o With all this in mind:

If the differences in the means are not strong
enough the non-parametric tests have very little
power

This means that we will be having high _:

The non-parametric tests tend to not accept H,
when it’s false

You will be wrongly answering negatively to the
triad of questions!!

O Parametric testing:

Robust: you really have to depart from the
assumptions in order to find trouble

If sample is large enough (>100) CLT takes care of
many things

If the sample is large, using non-parametric makes
very little sense...

...but interestingly, many significance tests in non-
parametric statistics are based on asymptotic (large
samples) theory

O You really need large data samples...

If you really find that your algorithm is a mere 3% better
than all other algorithms with very few samples then you
have done something wrong or you cannot really
generalize

Or if you have an algorithm that is a 300% better than all
others in a small sample probably you do not need
statistics

O ... therefore, after all this the question now is
reversed:

O “Why use non-parametric tests?”

o Among the basic techniques, experimental
design can help us answer all the triad of
questions

o All other basic questions can also be
adequately answered

o Easy to understand, easy to use:

DESIGN OF EXPERIMENTS (DOE)

0 The experimental design is just a few guidelines
to carry out the experiments so to obtain results
as clearly and as efficiently as possible

0o There are many types of experiments and many
associated techniques

o In my opinion, one does not really need to go far
in DOE before reaching our goals

o Computer experimentation is a very easy
environment as far as DOE goes (Bartz-
Beielstein, 2003)

o Some special characteristics of computer
experiments as far as DOE goes:

Reproducibility to the bit (re-using the random
seed)

Malleable environment in most cases (input
can be controlled)

A priori knowledge present most times
“"Cheap” and fast data collection

Systematic errors in experimentation are
unlikely to occur and easy to avoid

0 Response variable: The aim of the experiment;
characteristic that we want to study: percentage
deviation from optima, time needed to a given

solution/quality...

o Controlled Factor: variables, options, parameters
that we CAN control and that might affect the
response variable

Quantitative: Probability of crossover (levels)
Qualitative: Type of crossover (variants)

O Treatment: a given combination of the
levels/variants of the different controlled
factors

0 Experience: the execution of a treatment and
the associated resulting value of the response
variable

O Replicate: when a given treatment s
executed more than once

o0 Non controlled factor: All other factors
(known or not) that we can NOT control

0 The easiest design is called FULL
FACTORIAL

All the combinations of levels of all factors are
experimented

Powerful design
Easy analysis of the results

Exponential growth on the number of
experiences as the number of factors and/or
levels grows

The results are usually presented in a table

Factors Replicates
Treatment F1 Fo £3 Y, Y, Y,
1 1 1 1 Y111 Y1112 Yit13
2 2 1 1 Y111 Yo112 Yai13
3 1 2 1 Y1211 Yi212 Y1213
4 2 2 1 Y211 Ya212 Y2213
5 1 1 2 Y1121 Y1122 Y1123
6 2 1 2 Y121 Yo122 Yo123
7 1 2 2 Y1221 Y222 Yi223
8 2 2 2 Y221 Yo202 Y2203

o The order in which the treatments (experiences)
are carried out should be RANDOMIZED

o Probably this is not needed in computer
algorithms but memory leaks and in general
degradation of computer resources represent a
very dangerous lurking variable

o Lurking variables: non-controlled factors that
affect controlled factors in a systematic and
consistent way

0 This generates a non controlled structure in the
data, which kills the experimentation

o Example of a screening experiment

Design and calibration of an Iterated Greedy
metaheuristic. Application to the permutation flowshop
problem (Stutzle, Pranzo and Ruiz, in preparation):

SO0=Construct Initial Secuence(); How to construct it?

S1=Local Search(S0); Do we need local search?

While NOT(TerminationCriterion()) do
S2=Partially Destruct(S1); How to destruct? How much to destruct?
S3=Construct Secuence(S2); How to reconstruct?
S4=Local Search(S3); Do we need local search?

If Acceptance Criterion(S4,S1) then S1=S4 How to accept?

0 Response variable:

Minimization of the percentage deviation over

the best solution known for a set of HARD
Instances

o Controlled factors:

Type of initialization (2 variants): heuristic and
random

Type of destruction (2 variants): random and
blocked

o Controlled factors (cont):

Type of reconstruction (2 variants): greedy
and random

Application of local search (2 variants): no, yes
Acceptance criterion (2 variants): SA, descent
Iterations for acceptance (2 levels): 1, 5
Number of jobs to destruct (2 levels): 4, 6

o 7 factors at two levels: full factorial of 128
tests

0o In this case is better to run a half fraction: 27-
1=64 treatments: Fractional factorial experiment

Resolution VII: allows us to study interactions of
three factors with ease

o Very important to consider:
3 groups of instances, 10 instances each= 30 instances

All instances have 20 machines and differ in the number
of jobs (50, 100 and 200)

5 replicates per treatment

O 64 treatments - 30 instances - 5 replicates =
9600 data

o RANDOMIZE + USE VRT!!

Experimental design
Example

0 Crucial: Termination criteria set at a maximum
elapsed CPU time that depends on the instance
(n-m-30 ms)

Algorithm Parameters

Alg | Initialization Destruction_T 'Reconstruction IS Acceptance_C lterations_Acc Destruct Instance n m replicate Objective Time (micros) BOUNDS RPD
44 1 0 10 1 5 6 Ta103 200 20 5 11980 120000000 11281 6,1962592
53 1 1 0 1 0 1 4 Ta110 200 20 1 11427 = 120000000 11288 1,23139617
24 0 1 0 1 1 5 6 Ta105 200 20 3 11379 = 120000000 11259 = 1,06581402
25 0 1 10 0 1 6 Ta087 100 20 4 6574 60000000 6268 = 4,88194001
13 0 0 11 0 1 6 Ta054 5 20 2 3769 30000000 3723 = 1,23556272
24 0 1 0 1 1 5 6 Ta104 200 20 5 11459 = 120000000 11275 = 1,63192905
5 0 0 0 1 0 1 4 Ta052 5 20 4 3721 30000000 3704 0,45896328
37 1 0 0 1 0 1 6 Ta105 200 20 4 11327 = 120000000 11259 = 0,60396128
64 1 1 11 1 5 6 Ta110 200 20 4 11478 = 120000000 112838 1,6832034
23 0 1 0 1 1 1 4 Ta051 5 20 4 3898 30000000 3850 @ 1,24675325
2 0 1 11 0 1 4 Ta102 200 20 3 11405 120000000 11203 = 1,80308846
23 0 1 0 1 1 1 4 Ta105 200 20 4 11318 = 120000000 11259 = 0,52402522
64 1 1 11 1 5 6 Ta101 200 20 1 11400 120000000 11195 = 1,83117463
3% 1 0 0 0 1 1 6 Ta085 100 20 5 6428 60000000 6314 = 1,80551156
64 1 1 11 1 5 6 Ta060 5 20 1 3823 30000000 3756 = 1,78381257
36 1 0 0 0 1 5 4 Ta060 5 20 2 3831 30000000 3756 = 1,99680511
62 1 1 11 0 5 4 Ta085 100 20 4 6435 60000000 6314 1,91637631
37 1 0 0 1 0 1 6 Ta108 200 20 4 11487 = 120000000 11334 = 1,34992059
64 1 1 11 1 5 6 Ta090 100 20 3 6547 60000000 6434 = 1,75629468
14 0 0 11 0 5 4 Ta086 100 20 4 6487 60000000 6364 1,9327467
43 1 0 10 1 1 4 Ta086 100 20 4 6622 60000000 6364 = 4,05405405
8 0 0 0 1 1 5 4 Ta088 100 20 3 6508 60000000 6401 1,67161381
52 1 1 0 0 1 5 6 Ta086 100 20 4 6526 60000000 6364 = 2,54556882
2 0 1 11 0 1 4 Tan56 A 2N 1 3716 30000000 3681 0 95082858

o Sir Roland Fisher, 1930

o The ANOVA (analysis of variance) is one the
most powerful statistical tools available

0 The term ANOVA is a source of confusion:
detects differences on means by analyzing
the variance!

0 The ANOVA is a statistical model where the
variation in the response variable s
partitioned into components that correspond
to the different sources of variation (factors)

O Let’s study the results
o ANOVA TABLE

Analysis of Variance for RPD - Type lll Sums of Squares

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS

A:Acceptance_C 7,26506 1 7,26506 27,62 0,0000
B:Destruct 389,076 1 389,076 1479,08 0,0000
C:Destruction_T 50,0663 1 50,0663 190,33 0,0000
D:Initialization 60,7802 1 60,7802 231,06 0,0000
E:lterations_Acc 393,743 1 393,743 1496,82 0,0000
F:LS 12444,9 1 124449 47309,62 00,0000
G:n 133,771 2 66,8856 254,27 0,0000
H:Reconstruction_T 4286,73 1 4286,73 16296,09 00,0000

l:replicate 0,402254 4 0,100563 0,38 0,8215

o Before actually starting, we have to check the
three main assumptions of the ANOVA:
normality, homocedasticity and independence of
the residuals

o Checking normality:
Outlier analysis

Distribution fitting of the data to a normal
distribution, Normal Probability plots...

Numerical tests are very strict and normally
they will reject the hypothesis that the data
comes from a normal distribution

Normal Probability Plot

999 w1 o Ooops!
Cos | | Non normality
%80 * Studies support the
Oz | fact that ANOVA is
oo very robust wrt to
5 | | * normality
Tr 4 f Still there is much
01 . 7 that we can do

21 -11-01 09 1.9 29
RESIDUALS

0 Sources of trouble regarding normality:

Presence of severe outliers

Outliers should not be eliminated as the
environment is controlled. Check for bugs or
other potential problems in the code

Factors or levels with excessive effect
There is no need to test what is evident

“Clustering”

Totally different behavior on the results
depending on some levels or factors

Experimental design
Checking ANOVA assumptions

o According to the ANOVA table, the factor LS has a
very large effect

O Means plot: a simple plot, usually along with
confidence intervals suitable for multiple comparisons:

Means and 99,0 Percent Tukey HSD Intervals

3,8 f .

34 |

T 3

o6
22 ¢
1,8 -
1,4 ¢ -

LS

Normal Probability Plot
0 Much better now

)

or° | o Many

So5 .

=N transformations

m B .

Ory | possible

S0 o I would not worry
5+ unless aberrant
T lot

01 P

21 -11-01 09 19 29
RESIDUALS

0 Checking homocedasticity:

Study the dispersion of the residuals with
respect to the levels of all factors
Some levels or factors might result in higher or lower
variance
Study the dispersion of the residuals with
respect to the values of the response variable

Probably higher or lower values of the response
variable might result in higher or lower variance

Experimental design
Checking ANOVA assumptions

Residual Plot for RPD

1.5 | o No problem
c_§1 o It has to be
00,5 repeated for every
O 0 factor
0,5 - o Also for the
a4 é response variable
1,5 ¢

0 1
Acceptance C

o Sources of trouble regarding
homocedasticity:

A level of a factor resulting in more variance
Disregard the level in the experiment
More variance in the “hard” instances

Separated ANOVAS, one for each group of
Instances

Increased variance as response Vvariable
increases (decreases)

Properly select the response variable!

o ANOVA is very sensitive to lack of
independence

o Checking independence of the residual:

Plot of the dispersion of residuals over run
number or time

We should expect the residual to be
independent from time

Analyze the residual looking for self
correlation patterns

The residual should be “white noise”

Experimental design
Checking ANOVA assumptions

Residual Plot for RPD

o No problem

1,5 [o]
= 1 o Controlled
- environment: no
0,5 . .
w lurking variables
0 0

-0,5

(X 1000)

row number

o Sources of trouble regarding
independence of the residual:

Residual bigger over time

Experiences run in batch mode, computer
resources degrading over time

Structure in the residual

Randomization or “shuffling” of the
experiences

ANOVA model NOT complete

Experimental design
Checking ANOVA assumptions

Means and 99,0 Percent Tukey HSD Intervals
15 |

A48

o
a6

144

1,42 ¢

1 2 3 4 5
replicate

o Checking assumptions:
If the experiment is carried out with care...
if there are sufficient samples...
and if the technique is applied correctly...
... there should not be any problem

o If everything else fails

Then use a non-parametric test and hope to
obtain something!

o With large samples the p-value tends to be
close to zero

If the sample size is large enough (infinity) any
difference in the means of the factors, no matter
how small, will be significant

0 Real vs. Statistical significance (Montgomery
and Runger, 2002)

Study factors wuntil the improvement in the
response variable is deemed small

Analysis of Variance for RPD - Type lll Sums of Squares

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS

A:Acceptance_C 1,14754 1 1,14754 10,23 0,0014
B:Destruct 33,0077 1 33,0077 294,17 0,0000
C:Destruction_T 0,264526 1 0,264526 2,36 0,1247
D:Initialization 0,0288163 1 0,0288163 0,26 0,6123
E:lterations_Acc 155,4 1 155,4 1384,96 0,0000

F:n 120,115 2 60,0573 535,25 0,0000
G:Reconstruction_T 137,248 1 137,248 1223,20 0,0000

0 Examine the factors by F-Ratio value:

Iterations_Acc, Reconstruction_T, n, Destruct,
Acceptance_C

Experimental design
Analysis of the results: ANOVA

Means and 99,0 Percent Tukey HSD Intervals

117 L] 1,7 i
I T I
16 [: 16 | +
T s | Ts |
o | ‘ vl
14 [: 14 |
1,3 -] 1,3 +
12 & - 12 |
1 5 0 1

lterations_Acc Reconstruction T

o A very interesting feature of the ANOVA is that
one can study interactions

o For algorithm design, the most interesting
interactions are those between the design options
and the characteristics of the instances

o “Short experiments”, “"One factor at a time” or
even modern racing algorithms (Birattari et al.,

2002) do not allow the study of interactions

Let us work with another example (Ruiz et al., in
press at C&OR, Thijs and Ruiz, in preparation)

Heuristics and genetic algorithms for realistic
scheduling problems

10 controlled factors depicting different
characteristics of the instances

Very large datasets and comprehensive
experiments: we want to know why algorithms
work

Experimental design

Interactions

Factor Small Large
(9,216) (3,072)
Number of jobs n 57,9,11,13,15 50,100
Number of stages m 2,3 4,8
Number of unrelated parallel machines per stage mi 1,3 2,4
Distribution of the release dates for the machines rm 0, U[1,200] 0, U[1,200]
Probability for a job to skip a stage 0%, 50% 0%, 50%
Probability for a machine to be eligible 50%, 100% 50%, 100%
Distribution of tr_]e se_tup times as a percentage of S U[25,74], U[75,125] U[25,74], U[75,125]
the processing times
Probability for the setup time to be anticipatory % A uU[0,50], U[50,100] uU[0,50], U[50,100]
Distribution of the lag times lag U[1,99], U[_99,99] U[1,99], U[99,99]
Number of preceding jobs P 0, U[1,3] 0, U[1,5]

Experimental design
Interactions

o Example of a very strong 2-factor interaction:

Interactions and 99.9 Percent LSD Intervals

(X 0.001)
24

21 - 7o 1-3
18 .

15 [~]

AVRPD

12 -

9 _

6 I —
BGA SGAM SGAR SGA
Algorithm

Experimental design
Interactions

o Example of a very strong 3-factor interaction:

Interactions and99.9 Percent LSD Intervals Interactions and99.9 Percent LSD Intervals
NO PRECEDENCE CONSTRAINTS PRECEDENCE CONSTRAINTS

0.03; —0.04
0.025-~ = r
F 10.03~
n0.02 B i
o :] -
%.0155 —0.02
< r] i
0.01 = C
E < G a— = 50.01f
0.005— = -
oF i 01

5 7 9 11 13 15 5 7 9 11 13 15

n Algorithm n
= BGA

—— SGAM
—— SGAR

—— SGA

Experimental design
Interactions

o Another example of 2-factor interaction

Interactions and 99.9 Percent LSD Intervals

0.16 m n
B : —e— 50
- - 100
0.12 - _
D L |
o
e
20.08 - .
0.04 - n
0 L |

BGA SGAM SGAR SGA
Algorithm

In some cases, the nature of the data that we
obtain does not allow for a parametric analysis no
matter the number of samples

oA clear example comes from categorized

response variables

Non-parametric tests (Wilcoxon, Kruskal-Wallis)
are very limited as regards the study of
interactions

Decision trees and Automatic Interaction
Detection (AID) tools are non-parametric and at
the same time perfect for interaction study

o AID (Morgan and Sonquist, 1963) recursively
bisects experimental data according to one factor
into mutually exclusive and exhaustive sets that
describe the response variable in the best way.
AID works on an interval scaled response variable
and maximizes the sum of squares between
groups by means of an F statistic

o We use an improved version called Exhaustive
CHAID from Biggs et al. (1991) that allows multi-
way splits and significance testing. The result is a
decision tree

o Decision trees are very common in social and
health sciences

o I have not seen them applied to algorithm design
and calibration

o An example of categorical variable

Analysis of the performance of a MIP model on the

previous dataset of 9,216 instances. Three different
possible results:

0: Optimum solution found within the time limit
1: Time limit reached, solution found
2: Time limit reached, no solution found

Decision trees

o First clumsy attempt: a table with averages

m 2 3
n m; 1 3 1 3

51 %O0pt 100.00 100.00 100.00 90.36
Av Time 0.32 2.06 10.47 73.14
Y Limit 0.00 0.00 0.00 9.64

7 % Opt 83.85 8516 TH.26 69.27
Av Time 6058 99.33 1831 7h.8l
Y Limit 16.15 1484 2474 30.73

9 %O0pt 60.16 65.36 4844 41.41
Av Time 12430 89.95 51.38 65.79
Y%Limit 3984 3464 3854 58.33

11 %Opt 3568 3411 2891 26.56
Av Time 106.81 12549 140.87 124.99
%Limit 5156 6580 4531 6198

13 %O0pt 14.06 20.31 8.85 16.93
Av Time 25417 146.95 230.03 209.46
%Limit 6198 73.44 63.54 61.46

15 %0pt 1.82 12.24 1.56 5.21
Av Time 492,76 176.77 246.60 261.60
%Limit 71.61 7240 6745 69.79

0 Decision trees
are much more
informative

Mode 0O

Category % n
L] 4344 4003
1 4525 4170
m 2 11,32 10435
Total (100,00 9216
(=]

M

Adi. P-walue=00000, Chi-square=4363 6007, df=10

5'
|

Mode 1
Category % n
L] a5 77 14T
1 423 EBS
m 0,00 1]
Total (16,671 1536
=

M

Adj. P-value=00000, Chi-square=67 5722, df=1

l
|

Mode 7
Category % n
L] 100,00 765
1 0,00 0
m 0,00 1]
Total (8,33) 7ES

3'
|

Mode 5

Category % n
L] 1,54 703
1 G4 EBS
m 0,00 1]
Total (8,33) 7ES
=

hl

Adi. P-value=00000, Chi-zguare=71 0100, df=1

1

Mode 19
Category % n
L] 100,00 354

1 0,00 0
m 0,00]
Total (4,171 384

l
|

Mode 20
Category % n
L] g307 319

1 16493 B3
m 0,00]
Total (4,171 384

o CHAID needs large data samples and many
replicates in order to be usable

o It looses power when there are many categories
and results are difficult to analyze

o Not a common option in software. SPSS Decision
Tree

o Interesting alternative for rank valued results in
algorithm comparison

o After analyzing the tree many conclusions
on the performance of the model can be
obtained

This allowed us to detect weak spots that
required further modeling

We gained a deep understanding of the model
and how it could be improved

All the conclusions drawn are supported by a
sound statistical procedure

o Even today we find inadequate analysis and
testing of algorithms

0 Parametric statistics pose an interesting and
powerful alternative to non-parametric methods

o The DOE procedure and the posterior analysis
by means of ANOVA techniques represent a
very powerful approach that can be used for
comparing performance of different algorithms
and to calibrate methods

o Of particular interest is the study of
interactions

o Insight on why algorithms work and how
different features are affected by the input

o CHAID and decision trees: powerful non-
parametric alternative for categorical
response variables

0 Sound statistical experimentation is a
MUST

An overview of basic and
advanced statistic
techniques for calibrating
and comparing algorithms

Rubén Ruiz Garcia

INSTITUTO TECNOLOGICO DE INFORMATICA
APPLIED OPTIMIZATION SYSTEMS GROUP
DEPARTMENT OF APPLIED STATISTICS, OPERATIONS RESEARCH AND QUALITY
POLYTECHNIC UNIVERSTITY OF VALENCIA, SPAIN

EMAA WORKSHOP, ICELAND @

G ru o e
UNIVERSIDAD 2006 nvestigacion

POLITECNICA Operativa
DE VALENCIA http://www.upv.es/gio

