Continuous functions on \(\mathbb{R} \)

N.J. Nielsen

November 5, 2008

We tacitly assume that the reader is familiar with the continuity properties of the classical functions defined on the \(\mathbb{R} \) or intervals of \(\mathbb{R} \). However, let us recall that if \(U \subseteq \mathbb{R} \) and \(f : U \to \mathbb{R} \) is a function, then \(f \) is said to be continuous in a point \(x_0 \in U \), if

\[
\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in U : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.
\] (1.1)

Intuitively speaking, this means that when \(x \) gets close to \(x_0 \), then \(f(x) \) gets close to \(f(x_0) \). \(f \) is said to be continuous if it is continuous in all points of \(U \). If we write this with quantifiers, we get:

\[
\forall \varepsilon > 0 \quad \forall x \in U \quad \exists \delta > 0 \quad \forall y \in U : |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.
\] (1.2)

It is always a bit dangerous to interchange quantifiers in a logical statement because the statement changes radically. Let us anyway look on the following statement:

\[
\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in U \quad \forall y \in U : |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.
\] (1.3)

If we do a little text analysis of the two statements we see that in (1.2) the \(\delta \) depends on \(\varepsilon \) and \(x \) while in (1.3) the \(\delta \) only depends on \(\varepsilon \) and thus works for all \(x, y \in X \). The statement (1.3) makes perfectly sense and gives rise to the following definition:

Definition 1.1 Let \(U \subseteq \mathbb{R} \). A function \(f : U \to \mathbb{R} \) is called uniformly continuous if it satisfies

(1.3)

The word “uniformly” is used because given \(\varepsilon > 0 \), one can use the same \(\delta \) for all \(x, y \in X \). The next statement is really an example, but we formulate it as a proposition.

Proposition 1.2 Let \(f : [1, \infty[\to \mathbb{R} \) be defined by \(f(x) = \sqrt{x} \) for all \(1 \leq x < \infty \). Then \(f \) is uniformly continuous.

Proof: Let \(x, y \geq 1 \) be arbitrary. Since \(f \) is differentiable, we can by the mean value theorem find a \(\xi \) between \(x \) and \(y \) so that

\[
f(x) - f(y) = f'(\xi)(x - y).
\]

Since \(\xi \geq 1 \) and \(f'(\xi) = \frac{1}{2\sqrt{\xi}} \), we get that \(|f'(\xi)| \leq \frac{1}{2} \) and hence

\[
|f(x) - f(y)| \leq \frac{1}{2}|x - y|
\]
which holds for all \(x, y \geq 1 \). If now \(\varepsilon > 0 \) is arbitrary, we can choose a \(0 < \delta < 2\varepsilon \) and if \(|x - y| < \delta \), then by the above:

\[
|f(x) - f(y)| \leq \varepsilon.
\]

This shows that \(f \) is uniformly continuous. \(\square \)

We shall later prove that any continuous function defined on a closed and bounded interval of \(\mathbb{R} \) is uniformly continuous. Combining this with Proposition 1.2 we get that the square root function is in fact uniformly continuous on \([0, \infty]\). The next example shows that even very nice continuous functions need not be uniformly continuous.

Example 1.3 let \(g: \mathbb{R} \to \mathbb{R} \) be defined by \(g(x) = x^2 \) for all \(x \in \mathbb{R} \). We claim that \(g \) is not uniformly continuous. It is clearly enough to prove that \(g \) is not uniformly continuous on \([0, \infty]\). To see this we put \(\varepsilon = 1 \) and let \(0 < \delta \leq 1 \) be arbitrary. If \(x \geq 0 \), we get

\[
0 \leq g(x + \delta) - g(x) = (x + \delta)^2 - x^2 = (2x + \delta)\delta.
\]

For all \(x > \frac{1}{2}(\delta^{-1} - \delta) \) we get that

\[
g(x + \delta) - g(x) > 1
\]

which shows that \(g \) is not uniformly continuous.