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Abstract. It is well known that mathematical proofs often contain (ab-
stract) algorithms, but although these algorithms can be understood by
a human, it still takes a lot of time and effort to implement this algo-
rithm on a computer; moreover, one runs the risk of making mistakes in
the process.
From a fully formalized constructive proof one can automatically obtain
a computer implementation of such an algorithm together with a proof
that the program is correct. As an example we consider the fundamental
theorem of algebra which states that every non-constant polynomial has
a root. This theorem has been fully formalized in the Coq proof assistant.
Unfortunately, when we first tried to extract a program, the computer
ran out of resources. We will discuss how we used logical techniques to
make it possible to extract a feasible program. This example is used
as a motivation for a broader perspective on how the formalization of
mathematics should be done with program extraction in mind.
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1 Introduction

It has long been realized that constructive mathematics has computational con-
tent in the sense that proofs of existential statements actually correspond to
algorithms to compute a witness, see [3,14].

Also intuitionistic logic, which describes the reasoning in constructive math-
ematics, is the natural language for type-theory based proof-assistants. Among
these, Coq currently provides a tool that translates proofs of mathematical state-
ments into functional programs which are guaranteed to be correct. This mech-
anism, described in detail in [13], works by assigning different types to terms
which represent data and terms which represent properties of the data. The lat-
ter are assumed to be computationally irrelevant in the sense that they can not
be used to define data; they can, however, be used to prove properties of func-
tions (termination, correctness, etc.) which operate on this data, and therefore
need never be extracted. Throughout this paper, we will refer to this mechanism
as program extraction. For a short overview of this, see Section 2.



The fta-project in Nijmegen [10] was the first attempt to formalize a large
piece of constructive mathematics, namely the Fundamental Theorem of Alge-
bra, in Coq; therefore it was a natural testing ground for the program extraction
mechanism. However, a problem soon arose regarding what, in the formalization,
should be considered as “properties”. The intuitive approach that all predicates
are properties does not work. As an example, consider the logarithm function;
a possible way to formalize it is as a function taking a real argument x and a
proof that x is positive. According to this approach, this proof is a property of
the data which the algorithm itself never needs to examine; but there is actually
no algorithm which satisfies this criterion.

This is just an instance of the fact that constructively, proof terms are compu-
tationally important and analysis of these can be used to define objects, e.g. func-
tions. Therefore it is necessary to keep the proof-objects, which means that all
predicates should be regarded as data. This implies that all proof terms get ex-
tracted, which increases the program size enough to make extraction unfeasible.

In Section 3 we describe how the Coq type theory was used to explicitly dis-
tinguish between computationally relevant and irrelevant mathematical state-
ments in order to make program extraction possible for this example. Although
this is not a new idea, our approach does differ from others in that we focus
on the development of mathematics (including logic) as opposed to the precise
implementation of the extraction procedure. This is in some sense an orthogonal
approach which, we expect, can be combined with the various existing extraction
mechanisms.

In Section 4 examine the more subtle problems that could be discovered once
a program could be extracted for the first time, and present solutions that allow
to reduce this program to reasonable size; in Section 5 we also show some of the
current limitations of the Coq type theory and refer to the work in progress that
suggests these might be overcome in the near future.

In Section 6, we generalize from our experience and analyze how the for-
malization of constructive mathematics can be done so that program extraction
automatically succeeds. To make the development of both constructive and clas-
sical mathematics go more smoothly, we propose and discuss some changes to
the Coq type theory.

2 An Overview of Extraction

Computer implementations of program extraction have been around for about
two decades now. Among these, Paulin [16] was the first to provide an extraction
mechanism for Coq.

There are several approaches to the issue, and several different ways to for-
malize it; for more detailed information, the reader is advised to check the cited
works and their references. For a more detailed overview, although in a slightly
different setting, see [19].

In all approaches, however, the basic outline is the same: through the Curry-
Howard isomorphism, proofs are identified with programs in a given program-



ming language. However, the resulting programs contain much irrelevant in-
formation (from the computational point of view), therefore some mechanism is
devised to identify this irrelevant parts and remove them from the final program.

One approach, studied in the context of Coq by Prost [18], is to look at
the proof term and recursively mark its subterms according to whether they
contribute to the final output of the program or not; this marking is done in a
way that is coherent with type checking, so that removing the marked parts will
still return a correct λ-term. This a posteriori approach, also known as pruning,
has the advantage of typically yielding smaller and more efficient programs, as it
is actually an algorithm for dead code removal, but its time cost is exponential,
as it invokes the type checking algorithm.

A different approach, which is taken in the Coq proof assistant [20,13], is to
a priori define a type for data (e.g. propositions) which will never be extracted.
The underlying type system then ensures that terms of this type will never
be allowed to have computational significance, so that simply removing them
yields a correct program. This method itself is of course quite faster than the
previous approach, but it has the disadvantage that the terms which are not to be
extracted have to be specified in advance; therefore the extraction process cannot
recognize and eliminate e.g. dummy arguments. It has actually been shown [18]
that the a posteriori method of Prost can simulate the a priori method of Paulin
of which Letouzey’s is a generalization.

The most significant drawback of this approach is that propositions are al-
ways assumed to be irrelevant for the extraction. This is not true, however,
when we are dealing with constructive formalizations where case analysis on
proof terms can be (and is) used to define functions. Therefore, we sought a
way to combine the time-efficiency advantages of the a priori approach with the
flexibility of the a posteriori approach while maintaining a syntactic distinction
between data and propositions. In the example we will focus on, a posteriori
methods seem to be unusable, as they require too much time and resources.
Moreover, it seems to be difficult to combine a posteriori methods with a mod-
ule system, which we will later on argue to be desirable, since modules behave
as black boxes.

The second issue is where the extracted program will live. Traditionally,
efficiency criteria strongly suggested an external extraction, in the sense that the
proof term is translated from the proof language into a program in a (different)
programming language; this also has some other advantages, as programming
languages are usually less restrictive and allow among others for potentially
non-terminating loops and partial functions. Also, existing technology such as
compilers and interfaces can be reused.

Internal extraction (which is a contradictio in terminis) has the advantage
that the original and final type-systems are the same. This allows a simple im-
plementation as additional reduction rules inside the type theory, such that the
proof terms simply reduce to the appropriate programs [8]. Moreover, realizabil-
ity (extraction) can be used to strengthen results. For instance, the realizabil-
ity interpretation validates both the axiom of choice and the independence of



premise [22,21], so these principles do not have to be assumed as axioms, but
can be derived for each particular instance. Finally, in the specific case of Coq,
the new version will incorporate a Coq compiler [12]; therefore the speed of the
program does not seem to be a real issue anymore.

Our approach

We chose to work with the Coq extraction mechanism to ML, which is an external
a priori extraction. The main reason for this is simply that the formalization
we focused on was already present and had been developed in Coq. It should
be pointed out, however, that we expect our work to be quite straightforwardly
applicable to the other theories of extraction based on type theory. Also, in our
opinion, there is no best method; rather an intelligent combination of a priori
and a posteriori approaches will likely yield the most efficient program.

The reader may wonder why we only focus on the size of the extracted pro-
gram and not on its efficiency. There are three main reasons for this. First, as we
pointed out, size is the main obstacle in the actual extraction. Second, size is an
important issue, as it is reasonable to want the extracted programs to be read-
able; and if two different programs implement the same algorithm in essentially
the same way, it sounds reasonable to argue that the shorter one is better. Fi-
nally, in the fta-project the reals were formalized as arbitrary Cauchy-sequences,
which is computationally very inefficient; therefore analyzing the efficiency of the
extracted program seemed uninteresting.

The algorithm implicitly present in the Kneser proof is actually as efficient as
the well known Newton-Raphson method, as was shown in [11]; unfortunately,
the present inefficient formalization of the real numbers actually prevents the
computation of zeros of a polynomial using the proof of the fta. Fortunately,
two efficient formalizations of the reals [6,15] are almost completed.

3 Positive and negative statements

The Coq type theory, based on the Calculus of Inductive Constructions [20],
contains two kinds of sorts. On the one hand, there are sorts Set and Prop,
representing respectively data types and types of properties; these correspond
both to what is usually represented by ∗ in a Pure Type System (PTS) approach
of [1]. On the other side, there is a family (Typei)i∈IN of sorts (corresponding to
� in the PTS approach) which among other things rules how higher types are
formed.3 Also the typing statements Set : Type0 and Prop : Type0 hold.

The Calculus of Inductive Constructions also provides mechanisms which
allow to define inductive types. We will not go into details on how this is done,
but it is important to point out that the way they deal with inductive types is
actually where Set and Prop mostly differ: Set allows stronger elimination rules

3 Herman Geuvers argued (in private communication) that the datatypes should have
sort Type; we will return to this question in the conclusions.



for inductive types than Prop (for more details, refer to [20]). The reasons for
this have to do precisely with not wanting to allow data to depend on properties
of other data.

In order to take advantage of this distinction, we classify properties in positive
and negative statements, that is, ones with and ones without computational
content. The former need to be extracted, the latter should not be extracted.
This is achieved by typing the first ones in Set and the latter ones in Prop.

In fact, we would like to have some overloading which would allow us to treat
all propositions (whether typed in Set or in Prop) uniformly; unfortunately, this
is not possible in the present version of Coq.

However, the situation is not as bad as it might seem at first glance. Suppose
for a moment that we have decided which types the primitive statements have;
then, the types of compound statements can be automatically derived as we now
explain. We use s, s1 and s2 to denote either Set or Prop.

The computational content of the implication is determined by its second
argument; this can be seen by taking into account that implication is actually
represented (through the Curry-Howard isomorphism) by non-dependent func-
tional abstraction. Therefore, →: s1 → s2 → s2.

The negation of a statement does not have computational content, as it
simply means that a certain case does not occur. So ¬ : s → Prop. This is also
consistent with the fact that ¬A is usually defined as A → ⊥, which according
to the previous rule always has type Prop.

For a disjunction we want to keep track of which option is relevant, in order
to define functions by cases. Therefore, ∨ : s1 → s2 → Set.

The type of the conjunction is determined by the types of the conjuncts. In
case they both have type Prop, neither of them has computational content, and
therefore neither does their conjunction; otherwise, the conjunction must have
type Set.

Notice that all these maps are already present in the Coq standard library,
except for some variants of ∧ and ¬. These are defined as follows:

Definition Not := [P:Set](P->False).

Inductive andl [A:Set][B:Prop] : Set := conjl : A->B->(andl A B).
Inductive andr [A:Prop][B:Set] : Set := conjr : A->B->(andr A B).

(Notice however that these definitions only differ from the standard ones in the
types of their arguments.)

In summary, the types of logical connectives are:

¬ : s → Prop

→ : s1 → s2 → s2

∨ : s1 → s2 → Set

∧ : s1 → s2 →
{

Prop s1 = s2 = Prop
Set s1 = Set or s2 = Set



Unfortunately, Coq does not allow overloading, it is not possible to use the
standard notations for the new connectives. Therefore, we defined some abbre-
viations. Conjunction and disjunction are represented respectively by ** and +,
with arguments from Prop enclosed in braces. (This notation for disjunction is al-
ready defined.) The proposition ¬A is represented by (Not A), while implication
is written as usual: A->B for A → B.

Finally, we use the quantifiers already defined in Coq. Universal quantifica-
tion behaves similarly to implication, so ∀ : Π(A : s1).(A → s2) → s2. In Coq,
(x:A)(P x) stands for ∀x:A(Px).

As regards existential quantification, we always need to keep track of its
witness, so ∃ : Π(A : Set).(A → s) → Set. We represent ∃x:A(Px) in Coq by
either {x:A & (P x)}, if P : A → Set, or {x:A | (P x)}, if P : A → Prop.

There is also a Prop-valued existential quantifier, but we never had occasion
to use it in our example.

3.1 Primitive formulas

The only thing now missing is to describe how to type the primitive formulas.
Our development is based on the notion of a CSetoid, that is a set together with
an apartness relation. An apartness relation is a relation # such that for all x, y
and z:

1. ¬x#x;
2. x#y → y#x;
3. x#y → x#z ∨ y#z.

Usually, for instance in the case of the real numbers, the apartness is com-
putationally meaningful, so apartness has type Set. This can easily be seen from
the third axiom where the conclusion is a disjunction; its computational content
can only be realizable if the apartness is in Set. This is coherent with what was
said above: in the Cauchy model of the real numbers, for example, apartness is
defined by means of an existential statement which must be typed in Set.

Our Setoids all have a stable equality, that is x = y iff ¬¬x = y. So the
equality does not have computational content, and should be placed in Prop.

Another way to look at it is to see that the equality can be characterized as
the negation of the apartness: x = y ⇐⇒ ¬x#y, and as such should go to Prop.
This is actually a stronger condition than the previous one, as it then follows
that

x = y ⇐⇒ ¬x#y ⇐⇒ ¬¬¬x#y ⇐⇒ ¬¬x = y.

Finally, we have an abstract model of the real numbers, in which < is a
primitive relation. This relation is computationally meaningful; for instance, in
the model of the Cauchy sequences it is defined as an existentially quantified
proposition. In abstract, this meaningfulness can be easily seen from the fact
that x < y should be equivalent to x#y ∧¬(y < x), and the latter has type Set.

The relation ≥ is defined as the negation of <, so ≥ is of type Prop. (Remark
that constructively the relation x ≥ y is not the same as either x = y or x > y



but weaker, as the latter would give us a way to decide which of the two options
is the case.)

All other relations are defined from these primitives, so we can easily derive
their type. The situation here is reminiscent to model theory, where we study
abstract signatures and define more complicated functions and predicates defined
from these primitives, but we will not pursue this line of thought.

Using this approach, we found that much more than 90% (!) of the proof
terms in the formalization were then assigned the type Prop, which meant that
a significant proportion of the formalization would be ignored by the extraction
mechanism. Thus, we managed for the first time to extract a program, although
still quite large: its size was still 15Mb (roughly equally divided between the
construction of the real numbers and the proof of the fta).

Unfortunately, due to known issues [13], the extracted ML program does not
type check. This can be overcome by manually editing the program; in our case,
this meant inserting an explicit type cast in around ten thousand places in the
extracted program. We understand that this problem will be fixed in the next
Coq version, but at the time this work was done it made it impossible to analyze
the improvements described in the next section in terms of actual performance.

4 Optimization

Having successfully extracted a program, we got for the first time an opportunity
to analyze our formalization from a new perspective and the viability of actually
producing usable programs from formal mathematics. In this section we will
analyze the reasons that made our extracted program so big and discuss how
some apparently trivial modifications lead to impressive changes in its size.

When looking at the program code two main problems stand out:

1. much of the program consists of coercions between algebraic structures; for
example, addition is an operation on semigroups, therefore if R is a ring a
coercion is needed to cast it into a semigroup so that we can speak of the
addition on R.

2. there is still much irrelevant information on the propositional level.

The first problem has to do with the fact that the fta project attempted
at generality, therefore building a cumulative algebraic hierarchy where new
structures are built on top of existing ones. Unfortunately, the absence of a
notion of subtyping in Coq implies that there must exist explicit casts between
these structures instead of the inclusions one would expect. The new Coq version
contains a module system; the extraction mechanism is being adapted to work
with this modules. Hopefully, this will solve this problem.

The second problem is more interesting, and it shows an unexpected as-
pect of the formalization. Because of the way primitive predicates are typed,
(mathematically) equivalent definitions can generate quite different extracted



programs according to how they are typed. Consider the usual statement saying
that (xn)n∈IN is a Cauchy sequence:

∀ε>0∃N∈IN∀m,n>N |xm − xn| < ε. (1)

Because < is a Set-valued predicate, the extracted proof that x is indeed a
Cauchy sequence will consist of a function from the positive real numbers to
the natural numbers (which computes the witness N) and a function that takes
two numbers bigger than N and returns a computational proof of the desired
inequality.

However, the following definition is easily seen to be equivalent:

∀ε>0∃N∈IN∀m,n>N |xm − xn| ≤ ε. (2)

(Equation (1) trivially implies (2); for the reciprocal, just take ε > 0 and ap-
ply (2) with ε

2 .)
Now, the computational part of a proof that x satisfies condition (2) consists

simply of an algorithm to extract the witness. This is intuitively more efficient,
as it involves less computation, and is just as informative as we argued above.

Even if one is not interested in program extraction, there are good math-
ematical reasons for preferring to use ≤ instead of < whenever possible. This
is simply because ≤, being a negative predicate, allows constructive proofs by
contradiction. It should also be noted that Bishop [2] very carefully uses the
latter in all ε-δ-definitions and -proofs for this reason.4

In summary, there are two good reasons to work with negative statements:
not only do the programs become shorter, but also proving is made easier.

As our construction of the real numbers was based on the model of Cauchy
sequences of rationals, changing this definition (which by the way did not require
changing too much of the formalization) reduced the size of the extracted reals
by 80% and the whole ML program to around 8Mb.

4.1 Proof Optimization

Examining the extracted program, we realized that in fact there was still too
much unnecessary or redundant information. Specifically, the proof of the Kneser
lemma [11], which basically consists of several long chains of inequalities, seemed
a good candidate for size reduction, and so we decided to focus on it.

The formalization of the fta contains several results dealing with order.
Among those, there are several transitivity rules for < and ≤ and results dealing
with preservation through algebraic operations.

4 We actually realized that this was happening when we compared the size of the
fta program with the sizes of extracted programs for Rolle’s theorem or Taylor’s
theorem; these were around 100 times smaller, and one of the main reasons for this
was in fact that all ε-δ concepts such as continuity and derivative were defined with
≤, following Bishop.



The previous experience with the Cauchy sequences suggested that a clever
use of the ≤ relation could significantly improve the size of the extracted pro-
gram. To understand this in more detail, we will look at two examples, both of
which deal with the use of transitivity.

There are four main transitivity rules with the following types (all depending
on an ordered field F and variables x, y, z : F ):

less_transitive : (x[<]y)->(y[<]z)->(x[<]z)
less_leEq_trans : (x[<]y)->(y[<=]z)->(x[<]z)
leEq_less_trans : (x[<=]y)->(y[<]z)->(x[<]z)
leEq_transitive : (x[<=]y)->(y[<=]z)->(x[<=]z)

The first three are extracted to ML as functions with following types:

less_transitive : (x[<]y)->(y[<]z)->(x[<]z)
less_leEq_trans : (x[<]y)->(x[<]z)
leEq_less_trans : (y[<]z)->(x[<]z)

(The fact that some conditions disappear does not compromise the correctness
of the program, as the extraction mechanism guarantees that they will hold
whenever these functions are applied in the extracted program.)

It then becomes clear that the two last lemmas will generate smaller pro-
grams, significantly smaller when you take into account that each proof of a < b
is typically long. By trying to cut out the bigger branches, significant improve-
ment in the size of the program (and, one would hope, indirectly on its efficiency)
can be made.

But we can even do better. Suppose that a statement of the form a < b is
proved through the chain of inequalities

a < x1 < x2 < x3 < b.

A naive proof-term of type a[<]b would then be

(less_transitive a x1 b
H_a_x1
(less_transitive x1 x2 b
H_x1_x2
(less_transitive x2 x3 b
H_x2_x3
H_x3_b
)))

where H_a_x1:a[<]x1 and analogously for the other terms (which will in general
be quite large).

Now, because every subterm of this proof has type Set, the extracted program
will have exactly the same structure. However, we could also justify the same
inequality by stating first that a ≤ x3 and then that x3 < b. The corresponding
proof term could then be



(leEq_less_trans a x3 b H_a_x3 H_x3_b)

Furthermore, H_a_x3 (which will include most of the terms in the previous proof)
has type Prop; therefore, the extracted program is simply

(leEq_less_trans a x3 b H_x3_b)

Notice that we gain not only by omitting H_a_x1, H_x1_x2 and H_x2_x3, but
also in not having to mention x1 and x2; analysis of the extracted program shows
that (e. g. in the Kneser proof) this is also very relevant, as these can also be
quite long expressions.

This optimization of the proof of the Kneser lemma reduced the size of the
extracted program by 1, 5Mb, corresponding to roughly 30% of the size of the
proof of the Kneser lemma.

In the next step, we decided to experiment with the known distinction be-
tween subsets as propositional functions or as subsetoids [4,5]. We found that
when using propositional functions, not only do proofs become easier to write,
but also the extracted program greatly reduces in size. It also increases the inter-
nal coherence of the formalization, as using this approach we can treat division
simply as a partial function and apply to it the general (formalized) theory of
partial functions.

This turned out to be a significant improvement; although the extracted
reals do not change much (which is actually to be expected, as division plays
no important role in their formalization), the fta part is reduced by 60%. More
significantly, there is essencially no change in the actual program due to the fact,
explained in [5], that we are basically performing explicit βδ-reduction on the
proof terms (and corresponding extracted programs).

The program size was finally brought down to 3Mb by some minor changes
in the proofs, which are too specific to be interesting to describe here.

We summarize these results in a table:

Change Reals (Mb) fta (Mb) Total (Mb) ∆(%)
Original 7.5 7.5 15
New Cauchy seq. 1.5 6.5 8 47
New Kneser proof 1.5 5.0 6.5 19
New Division 1.4 2.0 3.4 48
Various 1.4 1.6 3.0 12

It should be pointed out that the ratios between the sizes of the different
versions are actually more relevant than the actual sizes: we can safely assume
that if the changes had been done in a different order, these ratios would be
similar whereas the differences in size would not.

5 Future Optimization

Throughout this section we will only consider the fta-part of the extracted
program.



Although reduced to 20% of its original size, the extracted program is still
considered quite large (1, 6Mb) when one considers that the algorithm which it
implements is not so complex. Therefore, we decided that we should carefully
look at the program to understand precisely what was taking up so much space.

One of the first things we noticed was that even though the formalization
included a constant CC, representing the type of complex numbers, this constant
was nowhere to be found in the extracted program. This is a bit surprising, as
we are after all extracting a function that operates on complex numbers.

As it turned out, in fact, the definition had been fully expanded every time
it occurred in the proof term! Considering that the type of complex numbers is
explicitly mentioned around 130 times, and that the definition is around 5000
characters long, this fact alone accounts for nearly half of the program code.

The ring of polynomials is another construction which was fully spelled out
each time. Although a bit smaller than the previous one, it is still mentioned more
than sixty times. Manually replacing these occurrences by a defined constant
therefore reduced the program to a mere 300kb, and allowed us also to see that
in fact not much more simplification was likely to be possible, as most of the
functions now became quite short.5

At this point, the need to explicitly insert coercions is the main reason for
the size of the program. A good module or subtyping system for Coq would at
this stage be very useful. Our experiments suggest that this would allow the
extracted program to be as small as 100kb—a factor of 75 when compared with
the size of the original extracted program.

A module system also seems to be useful for the following idea: for certain
datatypes we will want to have several implementations, each one tailored for a
certain goal, be it a specific kind of computation or a convenient way of proving
theorems. If we have an adequate module system, these different implementations
can be used in harmony. Work in this area is being done [7] and will probably
be included in the next Coq version.

In summary, the extracted program consists of:

Description Size (kb) % of total
“Relevant” code 110 6.5
Unfolding of C 1050 62.5
Unfolding of polynomials (R[x]) 330 19.5
Coercions 190 11.5
Total 1680 100

As before, the relative sizes are more important than the absolute values;
that is, in the earlier versions of the extracted program the relative amount of
wrongly unfolded definitions and the relative amount of coercions were roughly
the same as in the final version.
5 This turned out to be a bug in the extraction mechanism. After mentioning it to

Pierre Letouzey, he was able to identify and fix the problem, thereby reducing the
size of all extracted programs by around 80%.



6 A more abstract view

Above we explained how to use the sorts Set and Prop for the propositions. To
do this we only need to decide where to place the primitive relations, the proper
place for composed relations can then be derived.

However, the use of Set is a bit unsatisfactory. For example, it is not possible
just by looking at the type of an object to know whether it represents data or a
proposition; this is felt as a limitation, as it makes the task harder for automatic
tools to interpret the contents of the library.6 We have tried to hide this am-
biguity by defining a new constant CProp (Contentful Propositions) as an alias
for Set, and then explicitly typing all propositional statements in CProp. How-
ever, this approach is only partially successful for two reasons: on the one hand,
in some instances Coq actually requires a sort to be used, and CProp, though
δ-convertible to a sort, is not one; this is a secondary issue that expected to be
solved in the next version of Coq. The second problem, which is more basic, is
that the distinction between data types and propositions strongly depends on
the user’s discipline: because Set and CProp are δ-equivalent, they can be inter-
changed from the type theory point of view, therefore reinstating the ambiguity
which we aimed at removing.

The use of Set also has serious limitations from the logical point of view. We
would like to allow the addition of e.g. the axiom of the excluded middle to our
formalization and build classical mathematics on that, but this is not possible
for several reasons. First, it is not clear how the principle of excluded middle
should (or even could) be written: because of the fact that propositions do not
all have the same type there are at least four different (and not equivalent) ways
to write it. Moreover, the axiom ΠA:SetA ∨ ¬A leads to an inconsistent theory,
as noted in [9,17].

With these issues in mind, we now propose a slightly modified version of the
Coq type system where these problems do not arise.

Our previous discussion of the difference between positive and negative state-
ments suggests that there should be two basic sorts for propositions. We will de-
note these by Prop+ and Prop−, with the obvious meaning. Prop is then defined
to be the disjoint union of these two sorts: Prop := Prop+ ⊕ Prop−. In figure 1
we represent the current and the proposed version of the Coq type hierarchy.

In order to do classical mathematics, Prop+ also needs to be predicative.
On the other hand, Prop− should enjoy proof irrelevance, which is a natural
consequence of the non-informativeness of the proofs—this is actually in line
with the plans of the Coq team [7].

Intuitively, Prop+ and Prop− behave respectively as Set and Prop in the Coq
type theory, the main differences residing in the predicativeness of Prop+ and
the proof irrelevance in Prop−. With this in mind, it is then natural to define
connectives in Prop following what was said in section 3:

¬ : Prop → Prop−

6 This was quite actively discussed on the MoWGLI mailing list.
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Fig. 1. Type hierarchy in Coq: present (left) and proposed (right)

→ : Prop → s → s

∨ : Prop → Prop → Prop+

∨ : Prop → Prop → Prop−

∧ : s1 → s2 →
{

Prop− s1 = s2 = Prop−

Prop+ s1 = Prop+ or s2 = Prop+

∀ : Π(A : t∀).(A → s) → s

∃ : Π(A : t∃).(A → Prop) → Prop+

∃ : Π(A : t∃).(A → Prop) → Prop−

where {s, s1, s2} denote either Prop+ or Prop−. As regards quantifiers, t∀ can be
a type of propositions or a datatype, and t∃ is a generic datatype.

Notice the existence of two disjunctions and two existential quantifiers. The
connectives ∨ and ∃ are the informative connectives previously described, whereas
their underlined versions are non-informative. These connectives are all present
in the current Coq implementation, and we will soon discuss how ∨ and ∃ can
be used.

Also observe that from the user point of view all these connectives return
objects of type Prop; that is, we achieve uniformity in the types of propositions
as desired.

As regards classical reasoning, there are two versions of the Principle of
Excluded Middle (PEM) which can safely be added—corresponding to the two
available disjunctions.

The weaker version is the axiom

ΠA:PropA ∨ (¬A) : Prop.

This is a non-informative version of the PEM, which allows classical reasoning
over the domain but not e.g. defining functions according to whether a given
predicate holds. With this axiom it is possible to prove classically valid prop-
erties of constructive formalizations, while keeping the possibility of program



extraction. At this stage the connective ∃ might come in handy, as it allows us
to construct non-informative existential proofs by reasoning classically.

An alternative way to achieve the same effect is to define the weak disjunction
and existential as follows: A∨B := ¬(¬A ∧ ¬B) and ∃x : A.Px := ¬(∀x :
A.¬(Px)). Then the above axiom is constructively provable.

To obtain full classical mathematics, in which we can define functions by case
distinction, the stronger axiom

ΠA:PropA ∨ (¬A)

is needed. However, this poses a more subtle typing issue. Because of the pred-
icativity of Prop+, it cannot have type Prop+; however, it can safely be typed in
a higher type (like the Coq Type type). Although this may at first look somewhat
strange, it can be regarded as a natural consequence of the fact that it represents
a scheme of axioms rather than a single axiom. Given any A : Prop, we can then
prove A ∨ (¬A) : Prop. However, adding this axiom obviously destroys program
extraction.

6.1 Properties of Prop+ and Prop−

The approach just described has many similarities with the marked types of [18].
However, there is one very important distinction, namely that propositions are
assigned types a priori and these propagate outwards through the formalization,
whereas in [18] the markings propagate inwards from the type of the final term.
This means that our approach requires no extra analysis of the proof term at
extraction time.

Another issue is the relation between Prop+ and Prop−. It is natural to define
maps between these types in both directions, with the following motivations:

– (·)+ : Prop− → Prop+ represents the intuitive notion that any non-informative
proposition can be viewed as informative with empty content (e.g., as a con-
stant);

– (·)− : Prop+ → Prop− is a forgetful map that forgets all information associ-
ated with the proof.

These maps can be (and have been) implemented as inductive types, meaning
that the only way to get a proof of P+ (respectively P−) is as the image of a
proof of P .

These functions are important to allow uniform treatment of propositional
concepts. Consider for example the formalization of partial function on a datatype
A as a pair 〈P, f〉, where P : A → Prop+ and f : Πx:A(Px) → A; that is, P is a
computationally relevant predicate on A and f is defined on elements of A that
satisfy P (and its output can eventually depend on the proof term). We would
also like the situation where P is non-informative to fit into this definition; this
can be achieved by using P+ instead of P (and hopefully the system can be
induced to insert (·)+ automatically by means e.g. of a coercion mechanism).



On the other hand, (·)− can be used to mark informative terms as irrelevant in
specific situations. Suppose that one wants to define a function (to be extracted)
whose specification is a positive predicate P , but the function will actually never
be used in subsequent work. Then it is natural to specify it using P− instead of
P , as the extracted result will be smaller.

This map also has the important property of being preserved through con-
nectives; that is, it can be proved uniformly on A and B that e.g. (A ∧ B)− →
(A− ∧ B−) and similarly for the other connectives (replacing ∨ and ∃ by their
weaker counterparts ∨ and ∃). This is trivially not true of (·)+, because of the
lack of information in Prop−.7

The map (·)− has already been proposed by [18], although in a slightly dif-
ferent setting, and its main properties analyzed and discussed.

7 Conclusions

We have pointed out how to greatly reduce the size of extracted programs and
presented a general guideline for developing constructive proofs in order to make
extraction possible. We have also proposed some modifications to the Coq type
theory that we feel will make constructive formalizations somewhat easier; at
the same time, we show how these modifications make it possible to safely add
the principle of the excluded middle to constructive formalizations.

Some of these ideas have been discussed with the Coq team, and have helped
to improve the Coq extraction mechanism, which is still under development.
As a side remark, we would like to mention that after the correction of the
bug described in Section 5, it became possible to extract a program from the
original formalization of the fta; this program turned out to be around 20
times larger than the one originally obtained using the Set/Prop distinction we
described, thus confirming our claim that this distinction allowed around 90%
of the code to be removed. We would also like to note that the huge resources
needed to extract this program (around 2Gb RAM memory) make the use of a
method such as ours not only convenient, but indeed necessary for large program
developments.

We also hope that it will be possible to change the Coq type theory in the
near future in a way similar to what we have described.

A related question is where to place the datatypes. Herman Geuvers argued
(on the MoWGLI mailing list) that the datatypes should have sort Type. This
has the advantage that the logic one obtains is very similar to higher order
logic, which has been thoroughly studied and is by now well-understood. In this
picture, the sort Set is no longer needed.

The final version of the formalization we discussed, together with the ex-
tracted program, can be found on CCORN repository8 together with a short

7 This difference comes from the unavailability of some elimination rules for inductive
types.

8 http://www.cs.kun.nl/fnds/ccorn.html



file which only contains the basic material needed for the development of other
formalizations along the lines we described.

References

1. H. P. Barendregt. Lambda calculi with types. In Handbook of logic in computer
science, Vol. 2, pages 117–309. Oxford Univ. Press, New York, 1992.

2. Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill Book Com-
pany, 1967.

3. Errett Bishop. Mathematics as a numerical language. In Intuitionism and Proof
Theory (Proceedings of the summer Conference at Buffalo, N.Y., 1968), pages 53–
71. North-Holland, Amsterdam, 1970.

4. Venanzio Capretta. Abstraction and Computation. PhD thesis, University of Ni-
jmegen, 2002.

5. Jesper Carlström. Subsets, quotients and partial functions in martin-löf’s type
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