
1

The Quest for Optimal Sorting Networks: Efficient
Generation of Two-Layer Prefixes

Michael Codish
Department of Computer Science

Ben-Gurion University of the Negev
PoB 653

Beer-Sheva, Israel 84105

Luı́s Cruz-Filipe and Peter Schneider-Kamp
Department of Mathematics and Computer Science

University of Southern Denmark
Campusvej 55

5230 Odense M, Denmark

Abstract—Previous work identifying depth-optimal n-channel
sorting networks for 9 ≤ n ≤ 16 is based on exploiting symme-
tries of the first two layers. However, the naive generate-and-test
approach typically applied does not scale. This paper revisits the
problem of generating two-layer prefixes modulo symmetries. An
improved notion of symmetry is provided and a novel technique
based on regular languages and graph isomorphism is shown to
generate the set of non-symmetric representations. An empirical
evaluation demonstrates that the new method outperforms the
generate-and-test approach by orders of magnitude and easily
scales until n = 40.

I. INTRODUCTION

Sorting networks are a Computer Science classic. Based on
a very simple model, their underlying theory is surprisingly
deep and complex. The study of sorting networks has intrigued
computer scientists since the middle 1950s. Informally, a
sorting network is a comparator network that sorts all of
its inputs. A comparator network is a network constructed
from n channels that carry n input values from “left to
right” through a sequence of comparators. A comparator is
a component attached to a pair of channels such that the pair
of values coming in from the left come out sorted on the right.
Consecutive comparators can be viewed as a “parallel layer” if
no two touch on the same channel. For an overview on sorting
networks see for example, Knuth [3] or Parberry [7].

Ever since sorting networks were introduced, there has been
a quest to find optimal sorting networks for particular small
numbers of inputs: optimal depth networks (in the number
of parallel layers), as well as optimal size (in the number of
comparators). In this paper we focus on optimal depth sorting
networks.

Even today, very little progress has been seen. Optimal
depth sorting networks for n ≤ 8 are given by Knuth
(1973), Section 5.3.4 of [3], which also details specific sorting
networks for n ≤ 16 with the smallest depths known at the

Supported by the Israel Science Foundation, grant 182/13 and by the Danish
Council for Independent Research, Natural Sciences.

time. In 1991, Parberry [8] showed that the networks given by
Knuth are optimal for n = 9 and n = 10. Parberry’s result was
obtained by implementing an exhaustive search with pruning
based on symmetries in the first two layers of the comparator
networks, and executing the algorithm on a supercomputer
(consuming 200 hours of low priority computation).

In 2011, Morgenstern and Schneider [6] applied SAT solvers
to search for optimal depth sorting networks, and were able
to reproduce the known results for n < 10 with an acceptable
runtime, but still required 21 days of computation for n = 10,
shredding any hope to achieve reasonable runtimes for n ≥ 11.
Optimality for the cases 11 ≤ n ≤ 16 is shown by Bundala
and Závodný (2014) in [1], first by showing that n = 11
requires at least depth 8, and then by showing that n = 13
requires at least depth 9. Their results are obtained using a
SAT solver, and are also based on identifying symmetries in
the first two layers of the sorting networks.

Both Parberry [8] and then Bundala and Závodný [1] con-
sider the following question: what is the smallest set S of two-
layer network prefixes that need be considered in the search for
minimal depth sorting networks? In particular, such that, if no
element of S can be extended to a sorting network of depth d,
then no depth d sorting network exists. The approach in [1]
identified 212 two-layer network prefixes for n = 13; however,
the calculation of this set required 32 minutes of computation,
and this approach does not scale for larger values of n.

In this paper, we show how to generate the same set of
212 two-layer prefixes for n = 13 in “under a second” and,
following ideas presented in [1], improve results such that
only 117 relevant two-layer prefixes need to be considered.
Our approach also scales well, i.e. we can compute the set
of 34,486 relevant prefixes for n = 30 in “under a minute”,
and that of relevant prefixes for n = 40 in around two
hours. Our main contribution here is to illustrate how focusing
on concepts of regular languages, graph isomorphism, and
symmetry breaking facilitates the efficient generation of all
two-layer prefixes modulo isomorphism of the networks.

II. PRELIMINARIES ON SORTING NETWORKS

A comparator network C with n channels and depth d is
a sequence C = L1; . . . ;Ld where each layer Lk is a set of
comparators (i, j) for pairs of channels i < j. At each layer,
every channel may occur in at most one comparator. A layer
is maximal if it contains

⌊
n
2

⌋
comparators. The depth of C is

the number of layers d, and the size of C is the total number
of comparators in its layers. If C1 and C2 are comparator
networks, then C1;C2 denotes the comparator network ob-
tained by concatenating the layers of C1 and C2; if C1 has m
layers, it is an m-layer prefix of C1;C2. An input x̄ ∈ {0, 1}n
propagates through C as follows: x̄0 = x̄, and for 0 < k ≤ d,
x̄k is a permutation of x̄k−1 obtained such that for each
comparator (i, j) ∈ Lk, the values at positions i and j of x̄k−1
are reordered in x̄k so that the value at position i is not larger
than the value at position j. The output of the network for input
x̄ is C(x̄) = x̄d, and outputs(C) =

{
C(x̄)

∣∣ x̄ ∈ {0, 1}n }
.

The comparator network C is a sorting network if all elements
of outputs(C) are sorted (in ascending order). The zero-one
principle (e.g. [3]) implies that a sorting network also sorts
any other totally ordered set, e.g. integers. The optimal sorting
network problem is about finding the smallest depth and the
smallest size of a sorting network for a given number of
channels n.

A generalized comparator network is defined like a com-
parator network, except that it may contain comparators (i, j)
with i > j, which order their outputs in descending order,
instead of ascending. It is well known (Exercise 5.3.4.16 in [3])
that generalized sorting networks are no more powerful than
sorting networks: a generalized sorting network can always be
untangled into a (standard) sorting network with the same size
and depth.

(a)

(b)

(c)

(d)

Images (a) and (b) on the right depict
sorting networks on four channels, each
consisting of four layers. The channels
are indicated as horizontal lines (with
channel 4 at the bottom), comparators
are indicated as vertical lines connecting
a pair of channels, and input values are
assumed to propagate from left to right.
Images (c) and (d) specify patterns. A
pattern P is a partially specified net-
work: it is a set of channels with com-
parators, but it may also include external comparators. These
are singleton nodes representing a comparator connected to
a channel not in P . A comparator network C contains a
pattern P of depth d on m channels if there are a depth
d prefix C1 of C and a subset {c1, . . . , cm} of channels of
C1 such that: (i) ci < cj if i < j; (ii) if P contains a
comparator between channels i and j at layer 1 ≤ k ≤ d,
then C1 contains a comparator between channels ci and cj at
layer k; (iii) if P contains an external comparator touching
channel i at layer 1 ≤ k ≤ d, then C1 contains a comparator
between channel ci and a channel c 6∈ {c1, . . . , cm} at
layer k; (iv) C1 contains no other comparators connecting to
or between channels c1, . . . , cm. The depth 2, three-channel
pattern depicted in (c) occurs in network (a) but not in (b),

while the pattern in (d) does not occur in either network (a)
or (b): its third channel is never used, while all channels of (a)
and (b) are used in the first two layers.

We can use permutations π on channels to manipulate
(layers of) comparator networks. For a layer L, π(L) contains
the comparator (π(i), π(j)) iff L contains (i, j). If it is
always the case that π(i) < π(j), then π(L) is also a layer,
otherwise it is a generalized layer. The extension to networks
is straightforward, and we write C1 ≈ C2 (C1 is equivalent
to C2) iff there is a permutation π such that C1 is obtained
by untangling the (generalized) comparator network π(C2).
The two networks (a) and (b) above are equivalent via the
permutation (1 3)(2 4) and the application of the construction
for untangling described in [3].

Parberry [8] shows that the first layer of a depth-optimal
sorting network on n channels can be taken to consist of the
comparators (2k − 1, 2k) for 1 ≤ k ≤

⌊
n
2

⌋
. We denote this

layer by Fn. The networks (a) and (b) have first layer F4.
In general, when L1;C is an n channel comparator network,
we call a channel of C “min” (“max”) if it is connected to
the minimum (maximum) output of a comparator in L1, and
“free” if it does not occur in a comparator of L1.

We make use of the following two lemmata, which are
proved in [1]. The first lemma originates from [8].

Lemma 1. Let π be a permutation such that π(Fn) = Fn

and let L be a layer on n channels such that π(L) is a layer.
If there is an n-channel sorting network of the form Fn;L;C
with depth d, then there is one of the form Fn;π(L);C ′ with
depth d.

Lemma 2. Let La and Lb be layers on n channels such
that outputs(Fn;Lb) ⊆ π(outputs(Fn;La)) for some permu-
tation π. If there is a sorting network Fn;La;C of depth d,
then there is also a sorting network Fn;Lb;C

′ of depth d.

III. SATURATION

Bundala and Závodný introduce, in [1], the notion of a
saturated layer. We call a comparator network saturated if its
last layer is saturated. The motivation is that, usually, adding
a comparator to a network decreases the set of its possible
outputs, but not always. When the network is saturated, adding
a comparator to its last layer does not decrease the set of its
possible outputs. This means that, when seeking a sufficient set
of two layer networks with which to search for depth-optimal
sorting networks, one can consider only saturated ones. The
definition of saturation in [1] is syntactic. In this section, we
propose a semantic characterization, and prove a syntactic
criterion which is stronger than the one proposed therein. This
means that we need to consider fewer two-layer networks.

Definition 1. A comparator network C is redundant if there
exists a network C ′ obtained from C by removing a com-
parator such that outputs(C ′) = outputs(C). A network
C is saturated if it is non-redundant and every network C ′

obtained by adding a comparator to the last layer of C satisfies
outputs(C ′) 6⊆ outputs(C).

Parberry [8] shows that the first layer of a minimal-depth
sorting network on n channels can always be assumed to

2

contain
⌊
n
2

⌋
comparators. Also, any comparator network that

contains the same comparator at consecutive layers is redun-
dant.

Theorem 1. Let C be a saturated two-layer network. Then C
contains none of the following two-layer patterns.

(1) (2a) (2b)

(2c) (3a) (3b)

Proof. Although this formulation is more general, the proof of
case (1) is the same as the first case of the proof of Lemma 8
of [1], and the proof of cases (2a), (2b) and (2c) is the same
as the second case of the same proof.

For case (3a), assume that C includes the given pattern and
let the channels corresponding to those in the pattern be a, b,
c and d. Add a comparator between channels b and d to obtain
a network C ′ that includes the following pattern.

For a given input i of C ′, let ik, mk and ok denote the
values on channel k respectively at input, after layer 1, and at
output. Exchanging the values of ia with ic and ib with id has
the effect of exchanging ma with mc and mb with md. Then
the output o can be obtained as an output of C:
• if mb ≤ md, then o is the output of C corresponding to

input i;
• if md < mb, then o is the output of C corresponding to

input i′ obtained from i by permuting ia with ic, ib with
id, and maintaining the value on all other channels.

Therefore C is not saturated.
For case (3b) the construction is the same, and the thesis

follows by comparing ma with mc.

As it turns out, these are actually all of the patterns that
make a comparator network with first layer Fn non-saturated.
We formalize this observation in the following theorem.

Theorem 2. If C is a non-redundant two-layer network on n
channels with first layer Fn containing none of the patterns
in Theorem 1, then C is saturated.

Proof. Let C be a non-redundant two-layer comparator net-
work, and assume that the second layer of C has at least
two unused channels (otherwise there is nothing to prove).
If one of these channels were unused at layer 1, then the
network would contain the pattern (2a), (2b) or (2c). Thus,
by Theorem 1 necessarily the two channels are connected at
layer 1. Again from the same theorem, we know that they
must be both min-channels or both max-channels (otherwise
case (1) applies) and the channels they are connected to at
layer 1 cannot be connected at layer 2, otherwise the network
would be redundant.

There are eight different cases to consider. We detail the
cases where the two unused channels are max channels.
Assume that the four relevant channels are adjacent. This does
not lose generality, since a first-layer preserving permutation

(i) (ii) (iii) (iv)

Fig. 1. Possible cases for channels a and c in the proof of Theorem 2. To
obtain C′, add a comparator between channels b and d.

can always be applied to C to make this hold. Label the
channels a, b, c and d from top to bottom (so (a, b) and (c, d)
are comparators at layer 1 and channels b and d are unused
at layer 2). Let k be the number of channels above a and m
be the number of channels below d. Adding a comparator to
C yields C ′ where (b, d) is a comparator at layer 2. The four
possibilities depend on whether channels a and c are min- or
max-channels, and are represented in Figure 1.
• Figure 1 (i): a and c are min-channels at layer 2.

Consider the input string 1k11001m. This is transformed
to 1k10011m by C ′, so 1k10011m ∈ outputs(C ′). We
now show that 1k10011m 6∈ outputs(C). In order to ob-
tain the 0 on channel b, the input string would necessarily
have a 0 on channel a because of the comparator (a, b)
at layer 1. But then the output would also have a 0 on
channel a, hence it could not be 1k10011m.

• Figure 1 (ii): a is a min-channel at layer 2, and c is a
max-channel.
The argument is similar, but using the input string
0k11001m. This is transformed to 0k10011m by C ′, so
0k10011m ∈ outputs(C ′), and the same reasoning as
above shows that 0k10011m 6∈ outputs(C).

• Figure 1 (iii): a is a max-channel at layer 2, and c is a
min-channel.
Consider again the input string 1k11001m. As before,
this is transformed to 1k10011m by C ′, so 1k10011m ∈
outputs(C ′), and we show that 1k10011m 6∈ outputs(C).
As before, to obtain the 0 on channel b the input string
would necessarily have a 0 on channel a because of the
comparator (a, b) at layer 1. Now this 0 is propagated
upwards by the second-layer comparator at a, which
means that the output has a 0 on one of the first k
channels, hence it cannot be 1k10011m.

• Figure 1 (iv): a and c are both max-channels at layer 2.
The reasoning is a bit more involved. Consider once more
the input string 1k11001m. Since channel c is a second-
layer max-channel connected w.l.o.g. to a channel j ≤
k, the output produced by C ′ is 1j−101k−j10111m. In
order to obtain this output with network C, as before it
is necessary to have inputs 0 on channels a and b; but
since there are only two 0s in the output, this means that
channel a must also be connected to channel j on layer 2,
which is impossible.

The cases where a and c are the unused (min) channels are
similar.

We believe the following generalization to hold.

Conjecture 1. If the two-layer networks C1 and C2 on
n channels are both saturated and non-equivalent, then
outputs(C1) 6⊆ outputs(C2).

Particular cases of Conjecture 1 are implied by Theorem 2,

3

Redundant nets:

a) b) c)

Non-saturated nets:

d) e) f)

g) h)

Saturated nets:

i) j)

Fig. 2. The 10 two-layer standard networks on four channels with the Parberry
first layer F4.

but the general case remains open. The conjecture has been
verified experimentally for n ≤ 15.

IV. CASE STUDIES: n = 4 AND n = 5

This section provides a detailed analysis for the cases of
four-channel two-layer networks with first layer F4 and five-
channel two-layer networks with first layer F5. Consider the
following strategy to enumerate all possible second layers:
channel 1 may be connected to channels 2, 3 or 4, or may be
unused; if channel 1 is connected to channel 2, then channel 3
may be connected to channel 4 or may be unused; etc. With
this strategy, the ten networks in Figure 2 are generated in the
order abidjefgch .

The boxes around the networks represent classes of equiv-
alent networks. There are only two non-trivial equivalence
classes. The equivalence between nets b) and c) follows since
the permutation (1 3)(2 4) transforms them into one another.
For nets e) and f), applying the same permutation to e) yields
a net that has a generalized comparator in layer 2; untangling
it results in f).

The nets in the first row are all redundant, as they repeat a
comparator from the first layer; since the redundant compara-
tors can be removed without altering the set of outputs, they
can be simplified to net h). The nets in the second row are not
saturated; by Theorem 1, nets d) and g) are not saturated, and
their extension i) produces a subset of their outputs; a similar
situation arises with net e) vs net j), and net h) produces a
superset of the outputs of both i) and j). We detail the sets
of binary outputs for nets d), g) and i), which correspond to
Case (3a) of Theorem 1, one of the two cases missing from
the corresponding result in [1].

outputs(d) = { 0000, 0001, 0011, 0100,
0101, 0110, 0111, 1111 }

outputs(g) = { 0000, 0001, 0011, 0101,
0111, 1001, 1101, 1111 }

outputs(i) = { 0000, 0001, 0011, 0101,
0111, 1111 }

For n = 5 the situation is similar to n = 4. The generation

Redundant nets:

a) b) c) d) e)

f) g)

Non-saturated nets:

h) i) j) k) l)

m) n) o) p)

Saturated nets:

q) r) s) t) u)

v) w) x) y) z)

Fig. 3. The 26 two-layer standard networks on five channels with the Parberry
first layer F5.

algorithm from Section VI produces the 26 two-layer networks
in Figure 3 in the order abdfqrshvtwixyckujzmenglop.

As before, the boxes identify the equivalence classes, which
again can all be obtained by means of the permutation
(1 3)(2 4) and eventually reversing any generalized compara-
tors at the second-layer. The first set of networks is redundant,
while the second set is not saturated by Theorem 1, and once
again it can easily be verified that each network in this group
contains a set of outputs that is a proper superset of a network
in the third group. Furthermore, only one element from each
box in the third group needs to be considered.

Following the notation in [1], we denote the total number
of two-layer networks on n channels whose first layer is
Fn by |Gn|; the number of non-equivalent such networks
(up to permutation of channels) by |R(Gn)|; and the corre-
sponding values for saturated networks by |Sn| and |R(Sn)|.
From these analyses, we obtain |G4| = 10, |R(G4)| = 8,
|S4| = |R(S4)| = 2; and |G5| = 26, |R(G5)| = 16, |S5| = 10,
and |R(S5)| = 6. The values for |G4|, |R(G4)|, |G5| and |S5|
coincide with those in [1], whereas the values we obtain for
|R(S4)| and |R(S5)| coincide with those authors’ results after
applying Lemma 2 to eliminate representatives. The difference
in values in |R(G5)| and |R(S5)| is probably due to an
incomplete identification of the equivalence classes (note that,
for n = 5, case (3) of Theorem 1 is not necessary, so the
notion of saturated from [1] coincides with our definition in the
previous section). The problem of computing the equivalence
classes efficiently is the topic of the next sections.

4

V. GRAPH REPRESENTATION

The results presented in [1] involve a great deal of compu-
tational effort to identify permutations which render various
two-layer networks equivalent. Motivated by the existence
of sophisticated tools in the context of graph isomorphism,
we adopt a representation for comparator networks similar
to the one defined by Choi and Moon [2]. Let C be a
comparator network on n channels. The graph representation
of C is a directed and labeled graph, G(C) = (V,E) where
each node in V corresponds to a comparator in C and
E ⊆ V × {min,max} × V . Let c(v) denote the comparator
corresponding to a node v. Then, (u, `, v) ∈ E if comparator
c(u) feeds into the comparator c(v) in C and the label
` ∈ {min,max} indicates if the channel from c(u) to c(v) is
the min or the max output of c(u). Note that the number of
channels cannot be inferred from the graph representation, as
unused channels are not represented.

Each node has at most two in-edges and at most two out-
edges. Nodes with less than two in-edges represent compara-
tors that are connected to the input channels of the network.
Similarly, nodes with less than two out-edges represent com-
parators which are connected to the output channels. As such,
if the graph contains k comparators, then the sum of the in-
degrees of the nodes and also the sum of the out-degrees of
the nodes is bounded by 2k − n.

Clearly, graphs representing comparator networks are
acyclic, and the degrees of their vertices are bounded by 4.
There is a strong relationship between equivalence of compara-
tor networks and isomorphism of their corresponding graphs.
Choi and Moon [2] state the following proposition, which
implies that the comparator network equivalence problem is
polynomially reduced to the bounded-valence graph isomor-
phism problem.

Proposition 1. Let C1 and C2 be n-channel comparator
networks. Then

C1 ≈ C2 ⇐⇒ G(C1) ≈ G(C2) .

Example 1. The sorting networks (a) and (b) from Page 2
are represented by the following graphs, which can be seen
to be isomorphic by mapping the vertices as a 7→ v, b 7→ u,
c 7→ w, d 7→ x, e 7→ y and f 7→ z.

a
min //

max

((

c
min //

max

!!

d
max

((
f

b

max

==

min

==

e
min

66

u
min //

max **
x max

**w min

44

max
**

z

v
min

44

max
// y min

44

The graph isomorphism problem is one of a very small
number of problems belonging to NP, for which it is neither
known that they are solvable in polynomial time nor that they
are NP-complete. However, it is known that the isomorphism
of graphs of bounded valence (here: bounded degree) can

be tested in polynomial time [4], so the comparator network
equivalence problem can be efficiently solved.

An obvious approach for finding all two-layer prefixes
modulo symmetry is to generate all two-layer networks as
demonstrated in Section IV, and then apply graph isomorphism
checking to find canonical representatives of the equivalence
classes. We evaluated this approach using the popular graph
isomorphism tool nauty [5], but found that the exponential
growth in the number of two-layer prefixes prevents this
approach from scaling.

Instead of a generate-and-test approach, in the next section
we present a scalable method for directly generating only one
representative two-layer prefix per equivalence class. Further-
more, this approach also enables us to encode saturation as a
syntactic criterion in the generation process, i.e., to generate
directly only representatives of saturated two-layer prefixes.

VI. PATH REPRESENTATION OF TWO-LAYER NETWORKS

In this section, we focus on two-layer networks where the
first layer is maximal (although not necessarily Fn). These
networks can be uniquely represented in terms of the paths in
their graph representations. Furthermore, this representation
can be read directly from the network, and can be used to
construct a canonical representation of the network that com-
pletely characterizes the equivalence classes in the generated
graphs. In the following, recall that channels of a network are
characterized as free, min or max depending on the first layer.

Definition 2. A path in a two-layer network C is a sequence
〈p1p2 . . . pk〉 of distinct channels such that each pair of
consecutive channels is connected by a comparator in C. The
word corresponding to 〈p1p2 . . . pk〉 is 〈w1w2 . . . wk〉, where
wi is 0, 1 or 2 according to whether pi is the free channel, a
min channel or a max channel, respectively.

A path is maximal if it is a simple path (with no repeated
nodes) that cannot be extended (in either direction). A network
is connected if its graph representation is connected.

Definition 3. Let C be a connected two-layer network on n
channels. Then word(C) is defined as follows.

Head If n is odd, then word(C) is the word corresponding
to the maximal path in C starting with the (unique)
free channel.

Stick If n is even and C has two channels not used in
layer 2, then there are exactly two maximal paths in
C starting with a free channel (which are reverse to
one another), and word(C) is the lexicographically
smallest of the words corresponding these two paths.

Cycle If n is even and all channels are used by a com-
parator in layer 2, then word(C) is obtained by
removing the last letter from the lexicographically
smallest word corresponding to a maximal path in C
that begins with two channels connected in layer 1.

Example 2. Below are three connected networks, (a), (b), and
(c), with their maximal paths, pictured as (a′), (b′), and (c′),
marked in bold. For instance, (a′) corresponds to the path
51243.

5

(a) (b) (c)

(a′) (b′) (c′)

Network (a) involves an odd number of channels, and the
word corresponding to the maximal path (a′) starting on the
free channel is 01221. Network (b) on an even number of
channels contains two unused channels at layer 2, with two
maximal paths (b′) starting at a free channel and correspond-
ing to the words 21212112 and 21121212 (its reverse); the
corresponding word is thus the smallest of these two, namely
21121212. Finally, network (c) consists of a cycle, (c′).
The words obtained by reading the possible maximal paths
beginning with a layer 1 comparator are 122121 (starting
on channel 3), 121221 and 122112 (starting on channels 1
and 5, respectively, and proceeding in the reverse direction).
The lexicographically smallest of these is 121221, and thus
the corresponding word is 12122.

The set of all possible words (not necessarily minimal w.r.t.
lexicographic ordering) can be described by the following
BNF-style grammar.

Word ::= Head | Stick | Cycle
Head ::= 0(12 + 21)∗

Stick ::= (1 + 2)(12 + 21)∗(1 + 2)

Cycle ::= 12(12 + 21)∗(1 + 2)

Definition 4. The word representation of a two-layer compara-
tor network C, word(C), is the multi-set containing word(C ′)
for each connected component C ′ of C; we will denote this
set by the “sentence” w1;w2; . . . ;wk, where the words are in
lexicographic order.

In particular, a connected network will be represented by
a sentence with only one word, so there is no ambiguity in
the notation word(C). The restriction that layer 1 be maximal
corresponds to the requirement that the multi-set word(C) have
at most one Head-word.

Example 3. The first network on
the right consists of two con-
nected components, which are
nets (a) and (b) of Exam-
ple 2. It is therefore represented
by the sentence containing the
words corresponding to those
nets, namely 01221; 21121212.

The second network consists of the first two layers of the 10-
channel sorting network from Figure 49 of [3]. There are three
connected components in this network, consisting of channels
{1, 4, 6, 9}, {2, 5, 7, 10} and {3, 8}. The first two components
contain similar cycles represented by the word 122, while the
third component yields the Stick-word 12. The whole network

is thus represented by the sentence 12; 122; 122.

Conversely, given a word w = a1 . . . a` generated by the
above grammar, we can generate a corresponding two-layer
network net(w) as follows.

1) The number of channels n is: |w|, if a1 = 0 or |w| is
even; and |w|+ 1, if |w| is odd and a1 = 1.

2) The first layer of net(w) is Fn.
3) If w is a Stick-word or a Cycle-word, ignore the first

character; then, for k = 0, . . . ,
⌊
n
2

⌋
−1, take the next two

characters xy of w and add a second-layer comparator
between channels 2k + x and 2(k + 1) + y. If w is a
Stick-word, ignore the last character; if w is a Cycle-
word, connect the two remaining channels at the end.

4) If w is a Head-word, proceed as above but start by
connecting the free channel to the channel indicated by
the second character.

This construction can be adapted straightforwardly to obtain
a net with any given first layer L1: assuming the comparators
in L1 are numbered 1 to

⌊
n
2

⌋
, read 2k + x and 2(k + 1) + y

in step 3, as “the min/max channels from comparators k and
k + 1”, where min or max is chosen according to x and y.

To generate a network from a sentence,
simply generate the nets for each word in
the sentence and compose them in the same
order.

Example 4. The two-layer networks on
the right are generated from the sentences
12; 122; 122 and 01221; 21121212, respec-
tively. It can readily be seen that these
networks are equivalent to the ones in the
previous example.

Lemma 3. Let C and C ′ be comparator networks on n
channels. Then C ≈ C ′ iff word(C) = word(C ′).

Proof. The forward implication follows from the observation
that, for two-layer networks, C ≈ C ′ means that there is
a permutation π such that C ′ is π(C) possibly with some
generalized comparators in layer 2. Then, any path obtained in
C beginning at channel j can be obtained in C ′ by beginning
at channel π(j), and reciprocally. The converse implication is
straightforward.

In algebraic terms, the function word can be seen as a
“forgetful” functor that forgets the specific order of channels
in a net, whereas net generates the “free” net from a given
word. Furthermore, word always returns the minimum element
in the “fiber” net−1(w), whence lexicographically minimal
words can be used to characterize equivalent nets. This means
that word and net form an adjunction between suitably defined
pre-orders.

As a consequence, the sets of all distinct two-layer net-
works on n channels, Gn, and their equivalence classes
modulo permutations, R(Gn), can be generated simply by
generating all multi-sets of words with at most one Head-
word yielding exactly n channels. This procedure has been
implemented straightforwardly in Prolog, yielding the values
in the table of Figure 4. Besides the values given in the table,

6

|R(G20)| = 15,906 was computed in a few seconds, and
|R(G30)| = 1,248,696 in under a minute.

The sequence |Gn| is actually known in Mathematics: it is
sequence A000085 in The On-Line Encyclopedia of Integer
Sequences,1 and corresponds (among others) to the number of
self-inverse permutations on n letters. The first two elements
of the sequences coincide. Thus, to prove the above claim, it
suffices to show that |Gn| satisfies the characteristic recurrence
for that sequence.

Theorem 3. |Gn| = |Gn−1|+ (n− 1) |Gn−2| for n ≥ 3.

Proof. The correspondence is at the level of layers, not of
networks. Consider the following two operations on layers.

1) Given a layer L, L• is L with an extra unused channel
at the end.

2) Given a layer L, Lk• is L with two extra channels
connected by a comparator: one between channels k and
k + 1 of L, the other at the end.

Given a layer L′ on n channels, there is a unique way to write
L′ as L• or Lk• (according to whether the last channel of L′

is used), establishing the desired relationship. There seems to
be no obvious relationship between the two layer networks
containing L′ and L as their second layers.

Alternatively to considering the recurrence, one could argue
that |Gn| corresponds to the number of matchings in a
complete graph with n nodes, since every comparator joins
two channels.2

The sequence |R(Gn)| does not appear to be known already,
and it does not have such a simple description. The following
properties are however interesting.

Theorem 4.
1) The number of non-equivalent redundant two-layer net-

works using n channels is |R(Gn−2)|.
2) For odd n, |R(Gn)| = |R(Gn−1)|+ 2 |R(Gn−2)|.

Proof. The proof is based on the word representation of the
nets.

1) If C is a redundant net, then the sentence word(C) con-
tains 12. Removing one occurrence of this word yields a
sentence corresponding to a network with n−2 channels.
This construction is reversible, so there are |R(Gn−2)|
sentences corresponding to redundant networks on n
channels.

2) If n is odd, then word(C) contains exactly one word
beginning with 0. If this word is 0, then removing it
yields a network with n−1 channels, and this construction
is reversible. Otherwise, removing the two last letters in
this word yields a network with n − 2 channels; since
the removed letters can be 12 or 21, this matches each
network on n−2 channels to two networks on n channels.

The construction we described does not take into account
the notion of saturation. However, the characterization of

1https://oeis.org/A000085
2Thanks to Daniel Bundala for pointing out this observation.

saturation given by Theorem 2 is straightforward to translate
in terms of the word associated with a network.

Corollary 1. Let C be a two-layer network. Then C is
saturated if w = word(C) satisfies the following properties.

1) If w contains 0 or 12, then all other words in sentence
w are cycles.

2) No stick in w has length 4.
3) Every stick in w begins and ends with the same symbol.
4) If w contains a head or stick ending with c, then every

head or stick in w ends with c, for c ∈ {1, 2}.

Thus, the set of saturated two-layer networks can be gener-
ated by using the following restricted grammar.

Word ::= Head | Stick | Cycle
Stick ::= 12 | eStick | oStick
Head ::= 0 | eHead | oHead
eStick ::= 12(12 + 21)+21

eHead ::= 0(12 + 21)∗12

oStick ::= 21(12 + 21)+12

oHead ::= 0(12 + 21)∗21

Cycle ::= 12(12 + 21)∗(1 + 2)

Furthermore, sentences are multi-sets M such that: (i) if
M contains the words 0 or 12, then all other elements
of M are cycles; (ii) if M contains an eHead or eStick,
then it contains no oHead or oStick. With these restrictions,
generating all saturated networks for n ≤ 20 can be done
almost instantaneously. The numbers Sn of saturated two-
layer networks and R(Sn) of equivalence classes modulo
permutation are given in the first four lines in the table of
Figure 4.

Bundala and Závodný mention that the number of two-
layer networks could further be restricted by considering
reflections [1] (with acknowledgement to D.E. Knuth). The
reflection of a comparator network on n channels is the
network obtained by replacing each comparator (i, j) by the
comparator (n−j+1, n−i+1); when the first layer is the set
F ′n of comparators of the form (i, n−i+1), reflection leaves it
unchanged. Furthermore, they show that a two-layer network
with first layer F ′n can be extended to a sorting network if,
and only if, its reflection can be extended to a sorting network,
hence reflections can be removed from R(Sn) when searching
for optimal depth sorting networks.

Since the word representation is defined for any first layer,
this symmetry break can be encoded by a similar technique
as the one applied for saturation. By removing eStick and
eHead from the above grammar, we directly generate only
the 118 representatives for 13-channel networks described
in [1]. Furthermore, it is possible to have distinct cycles
whose reflections are equivalent (but not equal); this brings
the number of relevant two-layer networks on 13 channels
to 117. The last line in the table of Figure 4 above details
the number |Rn| of representatives modulo equivalence and
reflection for each value of n ≤ 40. We can compute the set
R30 in less than one minute and R40 in approximately two
hours.

7

n 3 4 5 6 7 8 9 10 11 12 13 14
|Gn| 4 10 26 76 232 764 2,620 9,496 35,696 140,152 568,504 2,390,480
|Sn| 2 4 10 28 70 230 676 2,456 7,916 31,374 109,856 467,716
|R(Gn)| 4 8 16 20 52 61 165 152 482 414 1,378 1,024
|R(Sn)| 2 2 6 6 14 15 37 27 88 70 212 136
|Rn| 1 2 4 5 8 12 22 21 48 50 117 94

n 15 16 17 18 19
|Gn| 10,349,536 46,206,736 211,799,312 997,313,824 4,809,701,440
|Sn| 1,759,422 7,968,204 31,922,840 152,664,200 646,888,154
|R(Gn)| 3,780 2,627 10,187 6,422 26,796
|R(Sn)| 494 323 1,149 651 2,632
|Rn| 262 211 609 411 1,367

n 20 21 22 23 24 25 26 27 28 29 30 31
|R(Sn)| 1,478 5,988 3,040 13,514 6,744 30,312 14,036 67,638 30,552 150,128 64,168 331,970
|Rn| 894 3,098 1,787 6,920 3,848 15,469 7,830 34,318 16,690 75,979 34,486 167,472

n 32 33 34 35 36 37 38 39 40
|R(Sn)| 138,122 731,000 291,090 1,604,790 622,136 3,511,250 1,313,262 7,663,112 2,792,966
|Rn| 73,191 368,143 152,503 806,710 322,891 1,763,133 676,431 3,843,848 1,429,836

Fig. 4. Table detailing the number of all distinct two-layer networks on n channels, Gn, the number of saturated such networks, Sn, the number of equivalence
classes modulo permutations, R(Gn), the number of saturated equivalence classes modulo permutations, R(Sn), and the number of saturated equivalence
classes modulo permutations and reflections, Rn. When searching for optimal-depth sorting networks, only networks extending Rn need to be considered.

Having computed R16, we can directly verify the known
value 9 for the optimal depth of a 16-channel sorting network,
obtained only indirectly in [1]. This direct proof involves
showing that none of the 211 two-layer comparator networks
in R16 extends to a sorting network of depth 8. For this, we use
an encoding to Boolean satisfiablity (SAT) as described in [1],
where for each network C in R16, we generate a formula
ϕC that is satisfiable if and only if there exists a sorting
network of depth 8 extending C. Showing the unsatisfiability
of these 211 SAT instances can be performed in parallel, with
the hardest instance (a CNF with approx. 450,000 clauses)
requiring approx. 1800 seconds running on a single thread of
a cluster of Intel Xeon E5-2620 nodes clocked at 2 GHz.

However, this approach does not directly work for n = 17,
where the best known upper bound is 11. Attempting to show
that there is no sorting network of depth 10 requires analyzing
the networks in R17. The resulting 609 formulas have more
than five million clauses each, and none could be solved within
a couple of weeks. It appears that finding the optimal depth
of sorting networks with more than 16 channels is a hard
challenge that will require prefixes with more than 2 layers.

VII. CONCLUSION

We presented an efficient technique to generate, modulo
symmetry, the set R(Sn) of all saturated two-layer comparator
networks on n channels, as well as its restriction Rn to exclude
networks that are equivalent modulo reflection.

As noted by Parberry in 1991 and again by Bundala and
Závodný in 2014, computing R(Sn) and Rn is a crucial step
in the search for optimal depth sorting networks on n channels.
Using our approach we can compute R(S13) in under a second
vs 30 minutes using the brute force approach applied in [1],

and improve the number of relevant two-layer prefixes to be
considered from 212 to 117 by eliminating reflections.

In personal communication, Bundala and Závodny state that
their brute-force approach does not scale beyond n = 13.
This is not suprising, as there is an exponential growth of
the number of candidate networks, a quadratic number of
subsumption tests between the candidate networks, and, for
each subsumption test, a factorial number of permutations and
an exponential number of inputs to consider.

The smallest open instance of the optimal depth sorting
network problem is for n = 17. We can easily compute R(S17)
(in 2 seconds) as well as its restriction to networks modulo
reflection. This later set consists of only 609 networks and is
a key ingredient to solving this problem, effectively reducing
the search space more than 300,000-fold.

REFERENCES

[1] D. Bundala and J. Závodný. Optimal sorting networks. In LATA 2014,
LNCS 8370, pages 236–247. Springer, 2014.

[2] S.-S. Choi and B. R. Moon. Isomorphism, normalization, and a genetic
algorithm for sorting network optimization. In GECCO 2002, pages 327–
334. Morgan Kaufmann, 2002.

[3] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973.

[4] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. J. Computer and System Sciences, 25(1):42–65, 1982.

[5] B. D. McKay and A. Piperno. Practical graph isomorphism, II. Journal
of Symbolic Computation, 60:94–112, 2014.

[6] A. Morgenstern and K. Schneider. Synthesis of parallel sorting networks
using SAT solvers. In MBMV 2011, pages 71–80. OFFIS-Institut für
Informatik, 2011.

[7] I. Parberry. Parallel complexity theory. Research notes in theoretical
computer science. Pitman, 1987.

[8] I. Parberry. A computer-assisted optimal depth lower bound for nine-
input sorting networks. Mathematical Systems Theory, 24(2):101–116,
1991.

8

