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The finitistic consistency of Heck’s predicative
Fregean system

Lúıs Cruz-Filipe and Fernando Ferreira

Abstract Frege’s theory is inconsistent (Russell’s paradox). However,
the predicative version of Frege’s system is consistent. This was proved
by Richard Heck in 1996 using a model theoretic argument. In this
paper, we give a finitistic proof of this consistency result. As a con-
sequence, Heck’s predicative theory is rather weak (as was suspected).
We also prove the finitistic consistency of the extension of Heck’s theory
to ∆1

1-comprehension and of Heck’s ramified predicative second-order
system.

1 Introduction

Russell’s paradox was a serious blow to Frege’s logicist project. In modern and
adapted terminology, we may describe the system of Frege in Grundgesetze
der Arithmetik [7] as a second-order system with full comprehension and a
variable-binding term-forming operator as regulated by the infamous Law V:

x̂.ϕ(x) = x̂.ρ(x) ↔ ∀x(ϕ(x)↔ ρ(x)),

where ϕ(x) and ρ(x) are arbitrary formulas of the language. In the above,
the value-range operator ˆ yields a first-order term x̂.ϕ(x) when applied to
a formula ϕ(x). Full comprehension was left implicit by Frege but it can
be brought into the open by the scheme ∃F∀x(Fx ↔ ϕ(x)), where ϕ is any
formula of the language.

Terence Parsons initiated the investigation into consistent subsystems
of Frege’s system. He showed in [10] that the “first-order portion of the
Grundgesetze” is consistent. Of course, in a language in which second-order
variables are dropped, comprehension is dropped as well, since it cannot
be expressed. Furthermore, the relation of membership – a defined rela-
tion in Frege’s Grundgesetze – is also not expressible: x ∈ y is defined by
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∃F (y = x̂.Fx∧Fx). Parsons work was pioneering but his system suffers from
severe restrictions on expressibility. A few years later, Richard Heck proved in
[9] that the predicative fragment of the Grundgesetze is consistent. We take
the language of Heck’s theory H as the language of monadic second-order logic
with equality (following [2], we do not admit non-logical constants) together
with the value-range operator, but the theory restricts the comprehension
scheme (described above) to predicative formulas ϕ. A predicative formula
is a formula with no second-order quantifiers (it may have second-order free
variables). Note, in particular, that the occurrences of value-range terms
x̂.ϕ(x) in a predicative formula are restricted to formulas ϕ which do not
have second-order quantifiers (the so-called predicative value-ranges). Us-
ing a model-theoretic argument, Heck showed that his theory is consistent
(Heck admits non-logical constants, but nothing is lost by restricting to our
case). Heck’s result was extended by Kai Wehmeier and the second author
of this paper. It is shown in [6] that the extension of Heck’s theory to
∆1

1-comprehension is consistent. The proof is also model-theoretic, using the
machinery of recursively saturated models.

It is important for the logicist project to investigate how much mathematics
can be developed in consistent fragments of Frege’s Grundgesetze. Heck’s
theory is able to interpret Robinson arithmetic theory Q. This theory seems
too weak to merit serious consideration – it has no induction (e.g., it does not
even prove the commutativity of addition) – but, in fact, it is not as plain as
one might at first be led to judge. Firstly, it is a classical result that Q is an
essentially undecidable theory (cf. [14]). Moreover, Q interprets the theory
I∆0, viz. Peano arithmetic with the induction scheme restricted to bounded
formulas. This beautiful result is the work of many people and the reader can
consult the monograph [8] for references. It is even known that a modicum
of analysis is interpretable in Q (cf. [5]). Can we draw a limit on how much
can be interpreted in consistent fragments of Frege’s Grundgesetze? Part of
the importance of the existence of finitistic consistency proofs lies precisely
in the fact that they provide good upper bounds for interpretability. By a
finitistic proof we mean a proof formalizable in the so-called theory PRA of
primitive recursive arithmetic (see [12]), and the reader can study the paper
with this aim in mind. However, the claim that the proofs are finitistic can
be refined and one can point out to subsystems of PRA where the proofs go
through. For instance, John Burgess proved finitistically in [1] (cf. also his
book [2]) that the consistency of Parsons theory is provable in the theory
I∆0(super2exp). Burgess’ book is a good reference for the precise definition
of this and similar theories. By Gödel’s second incompleteness theorem, this
result entails that I∆0(super2exp) is not interpretable in Parsons theory. In the
referred book, Burgess asks whether Heck’s theory (or even its extension to
∆1

1-comprehension) can be proved finitistically. The present work is dedicated
to providing finitistic consistency proofs for these theories.

The paper is organized as follows. In the next section, we prove the ex-
tension of the so-called Shoenfield’s theorem to theories with the predicative
value-range operator, thereby answering positively a question in [2]. Together
with the finitistic proof of the consistency of Parsons theory, this entails that
there is a finitistic proof of the consistency of Heck’s theory restricted to the
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predicative value-range operator. In order to deal with the full value-range
operator, we first extend our version of Shoenfield’s theorem to allow ∆1

1-
comprehension. This is done is Section 3. In the next section, having this ma-
terial available, we finally tackle Heck’s theory. A brief Section 5 extends our
results to ramified theories. In the last section, we briefly discuss the limits of
strict predicativity and raise some technical questions. The paper also includes
a small appendix where it is sketched a proof of cut-elimination for predicative
second-order logic which is formalizable in the theory I∆0(superexp).

The collaboration between the two authors of this paper can be described
as follows. While preparing his address to the Birkbeck conference on “Set
Theory and Higher-Order Logic: Foundational Issues and Mathematical De-
velopments” the second author was puzzled by the claim (e.g., in [2]) that the
cut-elimination theorem for pure predicative logic is formalizable in the theory
I∆0(superexp). It is not that he doubted the result but rather that he could
not see how to reduce this result to the usual cut-elimination for first-order
logic, nor how to readily formalize in this theory the usual textbook proof of
[13]. Moreover, he was unable to locate in print a proof of this claim. So,
he posed this problem to the first author. After some tries, a quite simple
solution was found by both authors. It is here given in the appendix. The
remainder of the paper is due to the second author only.

2 Shoenfield’s theorem extended

It is well-known how to set up a sequent calculus for pure predicative second-
order logic. This is done, for instance, in Takeuti’s book on proof theory
[13]. In the sequel, we use this calculus but with sequents consisting of sets
of formulas, instead of sequences of formulas (this is the inessential variant
that is studied in the appendix). The sequent calculus enjoys the property of
cut-elimination. It is important that the calculus is pure: There are no non-
logical axioms in the calculus, not even the equality axioms (but, of course, the
equality symbol may be present, inconspicuous among binary relation sym-
bols). The calculus is, nevertheless, set up so that predicative comprehension
is provable (to describe the calculus, Takeuti uses the meta-device of abstracts
given by formulas without second-order quantifiers). In order to simplify no-
tation, our second-order calculus only has unary second order variables even
though the natural setting allows any arity. There is no obstacle in extend-
ing the cut-elimination theorem to the calculus with a value-range operator.
The discussion of the several cases in the cut-elimination proof is unaltered
provided that one treats the new terms as plain terms which do not increase
the complexity of formulas (even though the value-ranges may apply to com-
plex formulas). The usual proof (see also the appendix) of cut-elimination is
independent of the structure of the terms. Of course, it is crucial that the cal-
culus remains pure, i.e., that there is no Law V present. Even though the next
theorem holds for the language with the unrestricted value-range operator, in
this and in the next section we are only interested in predicative value-range
term formation.

Theorem 2.1 The sequent calculus of pure predicative logic with the predica-
tive value-range operator enjoys the property of cut-elimination.
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The next result is a Herbrand-like consequence of the above theorem.

Corollary 2.2 Suppose that a formula ∃Fϕ(F ), where ϕ does not have
second-order quantifiers, is provable in the sequent calculus of pure predica-
tive logic with the predicative value-range operator. Then there are abstracts
{x : θ1(x, z1)}, . . . , {x : θn(x, zn)} such that the sequent

⇒ ∃z1ϕ({x : θ1(x, z1)}), . . . ,∃znϕ({x : θn(x, zn)})
is provable in the restriction of the above calculus to the language without
second-order quantifiers (in this restricted calculus, second-order variables
only occur free).

Proof The proof is standard (see, for instance, pp. 174-175 of [13]), but we
give it here for completeness and in order to draw attention to the appearance
of the variables z1, . . . , zn and the corresponding existential quantifications.
Of course, this appearance makes a lot of sense (semantically speaking), but
it is noteworthy to pin down exactly where it is required in the proof-theoretic
proof.

We prove a slightly more general and refined statement. Suppose Γ and ∆
are sequences of formulae without second-order quantifiers, and let ∃Fϕ(F )
be as in the theorem. We show that if the sequent calculus of pure pred-
icative logic with the predicative value-range operator proves the sequent
Γ ⇒ ∆,∃Fϕ(F ), then there are abstracts {x : θ1(x, z1)}, . . . , {x : θn(x, zn)}
such that the sequent calculus without second-order quantifiers proves

Γ ⇒ ∆, ∃z1ϕ({x : θ1(x, z1)}), . . . ,∃znϕ({x : θn(x, zn)}).
Importantly, we also require that the free first-order variables of each formula
∃ziϕ({x : θ1(x, zi)}) are exactly the same as the free first-order variables of
∃Fϕ(F ).

By Theorem 2.1, the sequent Γ ⇒ ∆,∃Fϕ(F ) has a cut-free proof. The
theorem is now proved by induction on the number of inferences of this proof.
The crucial case is when the sequent is obtained by the ∃2r-rule. In this case,
the sequent is inferred from a sequent of the form Γ ⇒ ∆, ϕ({x : θ(x, z)})
or of the form Γ ⇒ ∆,∃Fϕ(F ), ϕ({x : θ(x, z)}), where θ is a formula
without second-order quantifiers and z are the free first-order variables of
θ which do not occur among the free first-order variables of ∃Fϕ(F ) (we
do not care about second-order variables). In the first case, we can in-
fer Γ ⇒ ∆,∃zϕ({x : θ(x, z)}) and, clearly, we are done. In the second
case, by the induction hypothesis, there are abstracts {x : θ1(x, z1)}, . . . ,
{x : θn(x, zn)} such that the sequent calculus without second-order quanti-
fiers proves the sequent

Γ ⇒ ∆,∃z1ϕ({x : θ1(x, z1)}), . . . ,∃znϕ({x : θn(x, zn)}), ϕ({x : θ(x, z)}).
We can apply now the ∃r-rule to conclude the sequent

Γ ⇒ ∆,∃z1ϕ({x : θ1(x, z1)}), . . . ,∃znϕ({x : θn(x, zn)}),∃zϕ({x : θ(x, z)}).
This is what we want.

The application of the induction hypothesis to the other rules is straight-
forward (note that the other second-order quantifier rules do not occur in the
cut-free proof), but we want to draw attention to the first-order quantifier
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rules ∃l and ∀r. We must be sure that the eigenvariable condition is still met
after applying the induction hypothesis to the top sequent of these rules, in
order to be able to apply the very same rule to the very same formula after-
wards. Of course, this is guaranteed by the aditional requirement described
above (thanks to the systematic inclusion of suitable existential first-order
quantifications). �

The appearance of a finite number of abstracts in the conclusion of the above
corollary is typical of a Herbrand-like theorem. In such theorems, the finite
number of abstracts is usually unavoidable, but sometimes it can be replaced
with a single one. This is the case if a procedure for definition by cases is
available. In the second-order case, a definition by cases can be simulated.
Let us see how this simulation works for two abstracts (the general case is
similar). Suppose that we have

⇒ ∃z1ϕ({x : θ1(x, z1)}),∃z2ϕ({x : θ2(x, z2)}).
Let us consider the abstract

{x : [θ1(x, z1) ∧ ∃z1ϕ({x : θ1(x, z1)})] ∨ [θ2(x, z2) ∧ ∀z1¬ϕ({x : θ1(x, z1)})]}.
If we denote this abstract by {x : θ(x, z1, z2)}, it is clear that

⇒ ∃z1∃z2ϕ({x : θ(x, z1, z2)}).
The corollary can be extended in several ways. First of all, we may have

a list of second-order quantifiers ∃F1 . . . ∃Fkϕ(F1, . . . , Fk) instead of just one
quantification. The proof is similar. Let us call a formula of the form ∃Fϕ(F ),
with ϕ without second-order quantifiers, a Σ1

1-formula. Dually, a Π1
1-formula

is obtained by replacing the existential second-order quantifiers by universal
quantifications. (We allow the empty list of second-order quantifiers, thereby
including predicative formulas among the Σ1

1 and Π1
1-formulas.) Let us intro-

duce some more terminology. A predicative instantiation of a Σ1
1-formula (as

above) is a formula of the form

∃y1 . . . ykϕ({x : θ1(x, y1)}, . . . , {x : θk(x, yk)}),
where θ1, . . . , θk are formulas without second-order quantifiers. When k = 0,
there is only one predicative instantiation of the formula: it is the formula
itself. A predicative instantiation of a Π1

1-formula is defined dually, with the
first-order existential quantifiers replaced by universal quantifiers. The most
general form of the corollary which we will use in the sequel applies when
the sequent calculus of pure predicative logic with the predicative value-range
operator proves the sequent

∀G1ρ1(G1), . . . ,∀Grρr(Gr) ⇒ ∃F 1ϕ1(F 1), . . . ,∃F rϕr(Fm),

where the formulas in ρ1, . . . , ρr, ϕ1, . . . , ϕm are all without second-order
quantifiers. Let us denote by Ai the formula ∀Giρi(Gi) (1 ≤ i ≤ r) and by
Bj the formula ∃F jϕj(F j) (1 ≤ j ≤ m). Under these circunstances there are

predicative instantiations A
?

1, . . . , A
?

r and B
?

1, . . . , B
?

m of A1, . . . , Ar and
B1, . . . , Bm, respectively, such that the following sequent is provable in the
restricted sequent calculus without second-order quantifiers:

A
?

1, . . . , A
?

r ⇒ B
?

1, . . . , B
?

m.
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This extended case of Corollary 2.2 can be proved directly by the same argu-
ment or, else, easily reduced to the corollary itself (modified to allow a list of
second-order existential quantifications).

Definition 2.3 Let us consider a second-order language (with a distinguished
symbol for first-order equality) extended with the predicative value-range op-
erator. A Π1

1-theory in this language is a theory with the first-order axioms of
reflexivity, symmetry and transitivity for equality, the further equality axiom:

(Eq) ∀F∀x∀y(x = y ∧ Fx→ Fy),

the axiom version of Law V:

(LV ) ∀F∀G(x̂.Fx = x̂.Gx↔ ∀x(Fx↔ Gx)),

and Π1
1 axioms peculiar to the theory (the so-called proper axioms of the

theory). We call a Π1
1-theory with no proper axioms a pure Π1

1-theory.

Given a language as in the definition above, we may consider the restriction of
this language to its first-order part: a so-called first-order Parsons language.
Let T be a Π1

1-theory. The first-order schematization of T is the theory Ts,
formulated in the associated first-order Parsons language, obtained from T by
replacing each Π1

1 axiom, including (LV) and (Eq), by the associated predica-
tive instantiations which have no second-order variables.

We are now ready to enunciate and give a finitistic proof of the following
extension of Shoenfield’s theorem.

Theorem 2.4 Let T be a Π1
1-theory. If Ts is consistent then T with predicative

comprehension is also consistent.

Proof Suppose that T with predicative comprehension proves a first-order
contradiction ⊥, e.g. ∃x(x 6= x). Let A be the conjunction of the axioms of
equality of reflexivity, symmetry and transitivity. Then there is a finite set of
proper axioms A1, . . . , An of T such that one can derive the sequent

LV, Eq, A,A1, . . . , An ⇒ ⊥
in pure predicative logic with the predicative value-range operator. Since
both LV and Eq are Π1

1-sentences, by the discussion following Corollary 2.2,

there are sequences of predicative instantiations LV
?
, Eq

?
, A1

?
, . . . , An

?
of

LV, Eq, A1, . . . , An (respectively) such that the sequent

LV
?
, Eq

?
, A,A1

?
, . . . , An

? ⇒ ⊥
is provable in the restriction of the calculus of pure predicative logic with
the predicative value-range operator to the language without second-order
quantifiers. If in this proof we replace all the second-order variables by (say)
the abstract {x : x = x}, we have a first-order proof of the sequent

LV
◦
, Eq

◦
, A,A

◦
1, . . . , A

◦
n ⇒ ⊥

where each ◦-formula is obtained from the corresponding ?-formula by the
substitution described above. Since all these ◦-formulas are in Ts , we have
shown that Ts is inconsistent. �

The above proof is formalizable in I∆0(superexp). All syntactic manipulations
are relatively simple. Technically, they are elementary, i.e., formalizable in
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I∆0(exp), except for an application of the cut-elimination theorem. But, as
noticed, this theorem is formalizable in I∆0(superexp).

Let Ȟ be the pure Π1
1-theory, based on the first-order language of equality,

together with predicative comprehension. This theory only differs from Heck’s
predicative theory in that it does not allow the formation of impredicative
value-ranges (along with the corresponding Law V that goes with them).

Corollary 2.5 Ȟ is consistent.

Proof The first-order schematization of Ȟ is just Parsons theory. As re-
marked in the introduction, Burgess proved the finitistic consistency of this
theory in [1]. Now, use the above theorem. �

3 The extension to ∆1
1-comprehension

The scheme of ∆1
1-comprehension is constituted by the formulas

∀x(ϕ(x)↔ ρ(x))→ ∃F∀x(Fx↔ ϕ(x)),

where ϕ is a Σ1
1-formula and ρ is a Π1

1-formula. The main aim of this section
is to extend Theorem 2.4 and prove finitistically the following result:

Theorem 3.1 Let T be a Π1
1-theory. If Ts is consistent then T with ∆1

1-
comprehension is also consistent.

In a first-order Parsons language, we can define a pairing operation. For
instance, the Kuratowski-Wiener ordered pair is defined thus:

〈x, y〉 := û.(u = v̂(v = x ∨ v = y) ∨ u = v̂(v = x)).

In Parsons theory, this pairing operation satisfies the pairing axiom P :

∀x, y, u, v(〈x, y〉 = 〈u, v〉 → x = u ∧ y = v).

The presence of pairing simplifies many formulations since there will be no
need to speak of tuples. However, the presence of pairing seems to be un-
avoidable for the efficient formulation of the following principle:

Definition 3.2 Modified Σ1
1-choice is the following scheme:

∀x∃F ϕ(F, x)→ ∃R∀x∃y ϕ(Rx,y, x),

where ϕ has no second-order quantifiers and Rx,y(u) stands for R(〈u, 〈x, y〉〉).

The (seemingly) unavoidability of pairing in the formulation of the above
principle lies in the fact that the occurrences of the variable y above may play
the role of a tuple of variables of unspecified arity. As it will be clear by the
proof of Lemma 3.4 below, this is important because we are going to rely on
Corollary 2.2 and, therefore, on abstracts with (unspecified) tuples of new
variables.

Modified Σ1
1-choice was introduced in [6], where the following result was

proved. We repeat the argument here for completeness:

Lemma 3.3 A pure Π1
1-theory with predicative comprehension and modified

Σ1
1-choice proves the scheme of ∆1

1-comprehension.
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Proof We argue informally. Suppose that ∀x(∀Gϕ(G, x) ↔ ∃F ρ(F, x)),
where both ϕ and ρ have no second-order quantifiers. In particular,

∀x∃G∃F (ϕ(G, x)→ ρ(F, x)).

By modified Σ1
1-choice (and using pairing cleverly), it is not difficult to con-

clude that ∃R∃Q∀x∃y∃z(ϕ(Rx,y, x)→ ρ(Qx,z, x)). Take R and Q such that

∀x∃y∃z(ϕ(Rx,y, x)→ ρ(Qx,z, x)).

We claim that ∃Fρ(F, x) is equivalent to ∃z ρ(Qx,z, x). Note that the latter
formula is predicative and, therefore, we can apply predicative comprehension
to it. The right-to-left direction of the claim is obvious. Let x be given and
assume that ∃Fρ(F, x). Take y and z such that ϕ(Rx,y, x) → ρ(Qx,z, x). By
hypothesis, we have ∀Gϕ(G, x). In particular, ϕ(Rx,y, x). We get ρ(Qx,z, x)
and, therefore, ∃zρ(Qx,z, x). �

In order to prove Theorem 3.1, we consider an extension of the calculus of se-
quents of the pure predicative logic with the predicative value-range operator.
The extension is obtained by adding the following rule:

Γ⇒ ∆,∃Fϕ(F, a)
(choice)

Γ⇒ ∆,∃R∀x∃y ϕ(Rx,y, x)

where ϕ has no second-order quantifiers and a is an eigenvariable. The fol-
lowing formal deduction shows that modified Σ1

1-choice is provable in this
extended calculus:

∃F ϕ(F, a)⇒ ∃F ϕ(F, a)
(∀l)

∀x∃F ϕ(F, x)⇒ ∃F ϕ(F, a)
(choice)

∀x∃F ϕ(F, x)⇒ ∃R∀x∃y ϕ(Rx,y, x)
(→ r)

⇒ ∀x∃F ϕ(F, x)→ ∃R∀x∃y ϕ(Rx,y, x)

The extended calculus does not enjoy the property of cut-elimination.
When one tries to eliminate a cut coming from the application of (choice)
there is no way to proceed. However, it is a known observation (see, for in-
stance, [4] in a slightly different setting) that proofs with (choice) enjoy partial
cut-elimination, in the sense that all cuts – with the exception of those whose
cut-formula is a Σ1

1-formula – can be eliminated. This has a conspicuous con-
sequence for proofs of sequents consisting only of Σ1

1-formulas. In this case,
a proof of such a sequent enjoying partial cut-elimination consists solely of
Σ1

1-formulas (because of the subformula property). In a nutshell: If a sequent
consisting only of Σ1

1-formulas is provable in the extended sequent calculus,
then it has a proof, in the same calculus, consisting only of Σ1

1-formulas.

Lemma 3.4 If a sequent consisting only of Σ1
1-formulas can be proved in

the sequent calculus of pure predicative logic with the predicative value-range
operator extended with the rule (choice), then it can be proved without this
rule in the presence of the pairing axiom.

Proof As we have discussed, such a sequent has a proof consisting only of
Σ1

1-formulas. We prove by induction on the number of inferences of this proof
that the sequent can be proved without (choice) in the presence of the pairing
axiom P . The only case that must be discussed is when the proof ends with an
application of (choice). So, let us consider an application of (choice) in which
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the sequents Γ and ∆ consist solely of Σ1
1-formulas. By induction hypothesis,

there is a proof in the restricted system – i.e., without (choice) – of the sequent
P,Γ⇒ ∆,∃Fϕ(F, a). If Γ has the form ∃G1ρ1(G1), . . . ,∃Grρr(Gr), where the
formulas ρ1(G1), . . . , ρr(Gr) are all without second-order quantifications, then
the restricted system proves

P, ρ1(G1), . . . , ρr(Gr) ⇒ ∆,∃Fϕ(F, a).

By the discussion following Theorem 2.2, we can replace the Σ1
1-formulas in

∆ and the very formula ∃Fϕ(F, a) by suitable predicative instantiations. We
actually only care for the instantiations of the last formula. As discussed,
these instantiations can be reduced to only one. Let this instantiation be
given by the abstract {u : θ(u, y, a)}. Note that we may assume that y is a
single variable because of the availability of the pairing axiom.

It is clear that we may conclude that the restricted theory proves

P, ρ1(G1), . . . , ρr(Gr) ⇒ ∆,∃yϕ({u : θ(u, y, a)}, a).

Let θ̃(z) be the formula ∃u, y, x (θ(u, y, x) ∧ z = 〈u, 〈x, y〉〉). It is easy to

see that θ(u, y, x) and θ̃(〈u, 〈x, y〉〉) are equivalent (provably in the restricted
system with the pairing axiom). Therefore, the restricted theory proves

P, ρ1(G1), . . . , ρr(Gr) ⇒ ∆,∃yϕ({u : θ̃(〈u, 〈a, y〉〉)}, a).

Using the ∀r-rule, it also proves

P, ρ1(G1), . . . , ρr(Gr) ⇒ ∆,∀x∃yϕ({u : θ̃(〈u, 〈x, y〉〉)}, x),

and, hence, P, ρ1(G1), . . . , ρr(Gr) ⇒ ∆,∃R∀x∃yϕ(Rx,y, x). We conclude that
the sequent

P,∃G1ρ1(G1), . . . ,∃Grρr(Gr) ⇒ ∆,∃R∀x∃yϕ(Rx,y, x)

is provable in the restricted system. In other words, the restricted system does
indeed prove the sequent P,Γ⇒ ∆,∃R∀x∃yϕ(Rx,y, x), which corresponds to
the conclusion of the rule (choice). �

We are now ready to prove Theorem 3.1. We will actually show that the
theory T with ∆1

1-comprehension is Σ1
1-conservative over T with predicative

comprehension (then apply Theorem 2.4). Suppose that B is a Σ1
1-sentence

and that the theory T with ∆1
1-comprehension proves B. Let A be the con-

junction of the axioms of reflexivity, symmetry and transitivity for equality.
Then there is a finite set of proper axioms A1, . . . , An of T such that the
sequent

LV,Eq,A,A1, . . . , An ⇒ B

is provable in the extension, with (choice), of the calculus of sequents of
the pure predicative logic with the predicative value-range operator. All the
formulas in the antecedent of the above sequent are Π1

1-formulas. Consider

their negations L̃V , Ẽq, Ã1, . . . , Ãn in the form of Σ1
1-formulas by using the

De Morgan laws. Of course, we can prove the sequent

A⇒ L̃V , Ẽq, Ã1, . . . , Ãn, B

in the extended calculus. By the previous lemma, the sequent

P,A⇒ L̃V , Ẽq, Ã1, . . . , Ãn, B
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can be proved in the calculus of sequents of the pure predicative logic with the
predicative value-range operator. Therefore, so it happens with the sequent

LV,Eq, P,A,A1, . . . , An ⇒ B.

It follows that the theory T with predicative comprehension proves B.
The proof of Theorem 3.1 is finished and it is plain that it can be formalized

in I∆0(superexp). It is also worth noting that the proof delivers more than
∆1

1-comprehension: It even delivers modified Σ1
1-choice.

4 The consistency of Heck’s predicative second-order system

It was observed in the introduction that the consistency of Parsons theory has
a finitistic proof, formalizable in I∆0(super2exp). Hence, by Corollary 2.5, the
theory Ȟ (the modification of Heck’s predicative theory that does not allow
the formation of impredicative value-range terms) has a consistency proof in
I∆0(super2exp). In this section, we show that Heck’s theory H, with the full
value-range operator as regulated by schematic Law V, has also a consistency
proof in the theory I∆0(super2exp).

In order to take care of impredicative value-range terms, we chose to work
on the firm and well-studied ground of theories without a variable-binding
term-forming operator. We define a (consistent) theory PV+

ω and show that
H is interpretable in it. The language of this theory is the language of PVω
of Burgess (cf. [2]) together with a pairing apparatus (pairing objects into
objects). Briefly put, there is a style of variables x, y, z, . . . (first-order vari-
ables) for objects and, for each natural number n, a style of variable for n-th
round concepts variables Fn, Gn, Hn, . . . (we usually omit the superscript of
zeroth round concept variables and write F , G, H, . . . instead). We have the
identity symbol = for objects, a binary function symbol 〈 , 〉 for the pairing of
objects and, for each n, an extension symbol ‡n which can be applied to n-th
round concept variables Fn in order to form a first-order term ‡nFn (when
n = 0, we usually omit the superscripts and simply write ‡F ). The part of the
language restricted to variables of round at most n is denoted by Ln (hence,
only extension symbols ‡k, with k ≤ n, appear in Ln). The full language is
denoted by Lω. There are four kinds of axioms:

(1) 〈x, y〉 = 〈u, v〉 → x = u ∧ y = v.
(2) ∀x∃Fϕ(F, x)→ ∃R∀x∃y ϕ(Rx,y, x), where ϕ is a formula of L0 without

second-order quantifiers.
(3) ∃Fn∀x (Fnx↔ ϕ(x)), for n ≥ 1 and ϕ a formula of Ln without second-

order quantifiers of variables of round n.
(4) ‡nFn = ‡mGm ↔ ∀x(Fnx↔ Gmx), for natural numbers n and m.

Lemma 4.1 Heck’s theory H is interpretable in PV+
ω .

Proof The first-order domain of H is interpreted by the first-order domain of
PV+

ω , and the second-order domain of H is interpreted by the zeroth round do-
main of PV+

ω . We must interpret the value-range operator of H. The treatment
is different depending on whether the term is predicative or impredicative.

Let us first consider the predicative case, concerning terms of Heck’s lan-
guage of the form x̂.ϕ(x), where ϕ has no second-order quantifiers. The
interpretation of these terms relies crucially on the availability of modified
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Σ1
1-choice, as stated in axiom (2). The class of extended Σ1

1-formulas (respec-
tively, extended Π1

1-formulas) is the smallest class of formulas of L0 which
contains the formulas without second-order quantifiers and is closed for con-
juntion, disjunction, first-order quantifications and existential second-order
quantifiers (respectively, universal second-order quantifiers). Since we have
modified Σ1

1-choice in L0, every extended Σ1
1-formula (respectively, extended

Π1
1-formula) is equivalent to a Σ1

1-formula (respectively, a Π1
1-formula) of the

language L0.
We are now ready to interpret Ȟ in the fragment of PV+

ω restricted to
L0. The terms of Ȟ of the form x̂.ϕ(x) can be ranked according to the
depth of nesting of these terms. If the rank is zero, this means that there
are no value-range operators in ϕ. Let LȞ0 be the fragment of the lan-

guage LȞ of Ȟ in which only terms of rank zero occur. We interpret a for-
mula of the form x̂.ϕ(x) = y, where x̂.ϕ(x) has rank zero, by the formula
∃F (y = ‡F ∧∀x(Fx↔ ϕ(x))). By predicative comprehension (a consequence
of axiom 2) and axiom (4) restricted to m = n = 0, this formula is equivalent
to the Π1

1-formula: ∀F (y = ‡F ↔ ∀x(Fx ↔ ϕ(x))). Of course, a nega-
tion of the form x̂.ϕ(x) 6= y, for x̂.ϕ(x) of rank zero, can also be put in Σ1

1

and Π1
1-form. With this base case discussed, it is now standard to translate

(by induction on the complexity) every formula ϕ of LȞ0 without second-
order quantifiers into equivalent extended Σ1

1-formulas ϕ∃ and extended Π1
1-

formulas ϕ∀ of L0. By ∆1
1-comprehension (again, a consequence of axiom

2), we have (∗) PV+
ω ` ∃F∀x((Fx ↔ ϕ∃(x)) ∧ (Fx ↔ ϕ∀(x))) for such ϕ

of LȞ0 . Suppose now that x̂.ϕ(x) is a term of rank 1. Let us interpret the
formula x̂.ϕ(x) = y. We translate this equality by the equivalent formulas
∃F (y = ‡F ∧ ∀x(Fx ↔ ϕ∃(x))) and ∀F (y = ‡F ↔ ∀x(Fx ↔ ϕ∀(x))). This
time the equivalence holds because we have (∗), as well as the already men-
tioned restriction of (4). Note that the above formulas are equivalent to Σ1

1-
formulas and Π1

1-formulas, respectively. This can be easily seen by replacing
ϕ∃ by ϕ∀ (and vice-versa) in appropriate places. The translation standardly
extends to all formulas of LȞ1 (the fragment of LȞ in which only terms of
rank zero and one occur) without second-order quantifiers, and the compre-
hension scheme (∗) extends to these formulas. It is clear that the iteration of
this process provides a translation of the formulas of LȞ without second-order
quantifiers into the fragment of PV+

ω restricted to L0. By construction, the
comprehension principle (∗) holds for these formulas. The extension of the
translation to all formulas of LȞ is automatic: Translate second-order quan-
tifiers by corresponding (zero round) second-order quantifiers. Since the base
case without second-order quantifiers has two (equivalent) translations, we fix
one such translation and extend it – as was just described – to all formulas of
Ȟ: ϕ; ϕT .

It remains to extend the interpretation to the full language of H, i.e., to
formulas which also include terms of the form x̂.ϕ(x), where ϕ may have
second-order quantifiers. We can give a (impredicative) rank to terms of
this form. If ϕ has no second-order quantifiers, the term x̂.ϕ(x) has zero
(impredicative) rank. If ϕ has only terms of (impredicative) rank ≤ n, then
x̂.ϕ(x) has (impredicative) rank ≤ n + 1. We have already shown how to
interpret formulas of the language of Ȟ, i.e., formulas of H which only have
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terms of zero (impredicative) rank. Given one such formula ϕ(x), we translate
the equality x̂.ϕ(x) = y by ∃F 1(y = ‡F 1∧∀x(F 1x↔ ϕT (x))). Note that, due
to axiom (3), PV+

ω ` ∃F 1∀x (F 1x ↔ ϕT (x)). It is now standard to translate
formulas of H with terms of at most impredicative rank 1 by formulas of L1.
This procedure can be iterated and we end up translating the formulas of H
which only include terms of at most (impredicative) rank n by formulas of
Ln. The translation of the Law V of the theory H is provable in PV+

ω because
of axiom scheme (4).

We have obtained an interpretation of H into PV+
ω . �

Let us call T0 the restriction of the theory PV+
ω to L0, together with the

sentences ∃kx∀F (x 6= ‡F ) (one for each natural number k, saying that there
are at least k objects outside of the range of ‡).

Lemma 4.2 The theory T0 is consistent.

Proof The proof consists of three steps. In the first step, we observe that
Burgess’ consistency proof of Parsons theory in pp. 136-137 and p. 140 of
[2] can be easily adapted so that it contains an auxiliary unary predicate
symbol R such that: (i) the scheme ¬R(x̂.ϕ(x)) holds for all formulas ϕ of
the language; (ii) ∃kxR(x), for all natural numbers k. In the second step,
we use the results of Section 3 to conclude that the second-order version of
this theory with modified Σ1

1-choice and the axiom ∀F¬R(x̂.Fx) is consistent.
(This is the only step in proving the finitistic consistency of H where we use
the results of the previous sections.) In the third step, we interpret T0 in the
theory of the previous step by translating ‡F by x̂.Fx and pairing via the
Kuratowski-Wiener definition. It is clear that this argument does the job. �

We are working with the (two-sorted) first-order theory T0 instead of the
more natural theory described in the first step of the above proof because, in
order to deal with impredicative value-range terms, we need to rely on some
results typical of first-order logic: the splitting lemma, the injection lemma,
etc (cf. [2]). These results have not yet been considered in the framework of
a language with value-ranges.

Lemma 4.3 The theory PV+
ω is consistent.

Proof We have shown that the theory T0 is consistent. Notice that there are
infinitely many elements outside of the range of ‡ (the intuitive idea is that
there is enough room left for interpreting the impredicative value-ranges).
The construction at the turn of pages 136-137 of [2] (which uses the above
mentioned splitting lemma, injection lemma, etc) shows that the theory T1,
the restriction of PV+

ω to the language L1, is consistent. Moreover, we can
ensure that ∃kx∀F 1(x 6= ‡1F 1). Of course, this process iterates to all the
restrictions Tn of PV+

ω to the language Ln. Therefore, the consistency of their
union, i.e., of PV+

ω , is established. �

As Burgess remarks, the relative consistency proofs of Tn+1 with respect to
Tn are formalizable in I∆0(superexp). In fact, the theory I∆0(superexp) proves
∀n (ConTn → ConTn+1), where ConT formalizes the consistency of the theory

T. As a consequence, we get I∆0(super2exp) ` ConT0 → ConPV+
ω

. On the other



The finitistic consistency of Heck’s predicative Fregean system 13

hand, the consistency of T0 hinges upon the consistency of Parsons theory. It
is now clear that I∆0(super2exp) ` ConT0 . Hence, I∆0(super2exp) ` ConPV+

ω
.

Now, by Lemma 4.1, we may conclude that the consistency of H is provable
in I∆0(super2exp). Of course, our proof even shows that this is also true for
Heck’s theory with the ∆1

1-comprehension scheme.

5 The consistency of Heck’s ramified predicative system

Let T be a theory in a first-order Parsons language and consider TH its exten-
sion to the second-order language with predicative comprehension and with
the full value-range operator regulated by schematic Law V. The arguments
of the previous section can be adapted to show the following:

Theorem 5.1 If T is consistent, then TH is also consistent.

Although the checking is a bit tiresome (one must go through theorems 2.4,
3.1 and the constructions of the previous section), it should be clear that
the above theorem is also true for first-order Parsons languages with finitely
many sorts. Therefore, we can apply the theorem to the theory TH itself
and get that (TH)H is consistent, if T is. We can iterate this procedure and
define R0 = T and Rn+1 = (Rn)H. Of course, the union of these theories is
consistent. Do notice that, when we start with Parsons “first-order portion of
the Grundgesetze,” the union of these theories is essentially Heck’s ramified
predicative fragment of Frege’s arithmetic (cf. section 4 of [9]). Therefore:

Theorem 5.2 Heck’s ramified predicative second-order system is consistent.

This result was proved by Heck in [9], using model theory. We have proved
more. Theorem 5.1 is true even if we allow ∆1

1-comprehension (or modified Σ1
1-

choice) instead of just predicative comprehension. As a consequence, Theorem
5.2 also holds if, at each round, one has ∆1

1-comprehension (or even modified
Σ1

1-choice).
Our consistency proofs were designed to be finitistic. What finitistic theory

proves Theorem 5.2 (and its extension mentioned in the previous paragraph)?
The consistency of Parsons first-order theory is provable in I∆0(super2exp).
Theorem 5.1 is also provable in this theory. Therefore, the above theorem is
provable in I∆0(super3exp).

6 Some observations, some questions

Burgess comments in [2] that “technical issues have not been wholly resolved”
for predicative Fregean theories with the value-range operator. In this pa-
per, we addressed the problems described by Burgess. Nevertheless, there do
remain some unresolved technical issues, although ones that are not solely
typical of Fregean theories.

We have observed in the introduction that the bounded theory I∆0 is inter-
pretable in Heck’s predicative second-order system. One can do much better
for Heck’s ramified predicative second-order system: This theory interprets
the bounded theory I∆0(exp). This is a consequence of a result of Burgess and
Allen Hazen in [3]. What Burgess and Hazen actually show is that I∆0(exp) is
interpretable in the ramified predicative arithmetic built on top of an infinite
Dedekind domain (axiomatized via a first-order theory with sucessor and zero
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symbols, and axioms saying that sucessor is injective and that zero is outside
the range of the injection). A close inspection of the proof shows that only
two-rounds of variables are necessary to interpret I∆0(exp). Since the consis-
tency of this two-round fragment is known to be provable in I∆0(superexp),
the result is optimal for these two rounds. However, the consistency of the
full ramified theory (with all finite rounds) is only known to be provable in
I∆0(super2exp). There is a gap between what is known to be interpretable in
the Burgess-Hazen ramified theory (compare with the last section of [3]) and
the theory in which it is known that its consistency proof can be formalized.
Is it possible to close this gap? The gap is even wider for Heck’s ramified
predicative second-order system because our consistency proof is only formal-
izable in I∆0(super3exp). Of course, Heck’s ramified second-order system has
more resources than the Burgess-Hazen ramified theory, due to the presence
of the value-range operator. Can the presence of this operator be explored to
obtain stronger interpretations? Can the gaps be bridged?

7 Appendix on predicative cut-elimination

The result that the theorem of cut-elimination for pure predicative second-
order logic is formalizable in the theory I∆0(superexp) seems to be folklore.
The proof of Takeuti in [13] does not seem to be readily formalizable in this
theory. The problem hinges on the fact that a (predicative) instantiation of a
second-order quantification can arise through first-order formulas of arbitrary
complexity. A new measure of complexity of formulas is needed. Below, in
order to avoid a transfinite measure, we opt for a two stage cut-elimination.
In the first stage, we describe a cut-elimination procedure for cut-formulas
with second-order bounded quantifiers (second-order cuts). This procedure
does not eliminate predicative cuts (i.e., cuts of first-order formulas, possibly
with second-order parameters). We claim that this cut-elimination result is
formalizable in I∆0(superexp). Therefore, this theory proves that every theo-
rem of pure predicative logic has a derivation without second-order cuts. The
attentive reader will notice that this amount of cut-elimination is sufficient for
the proofs of this paper, namely for Corollary 2.2 and (suitably adapted for
the partial cut-elimination used) for the remark before Lemma 3.4. However,
having now a proof without second-order cuts, it is a well trodden path to get
the full cut-elimination result. We duly discuss this further stage also.

Rules of the sequent calculus. We work within the context of a sequent calculus
where sequents are of the form Γ⇒ ∆, with Γ and ∆ sets of formulas (unlike
in Takeuti [13]). As usual, we separate the elements in these sets by commas,
and write e.g. Γ, ϕ for Γ ∪ {ϕ}. The logical rules are the same as in [13],
with two exceptions. Fistly, the only structural rule is Cut. Secondly, axioms
are of the form Γ, ϕ ⇒ ∆, ϕ, where ϕ is a predicative formula (this choice
of initial sequents is specially adapted for the proof below). We do without
the syntactic distinction between free and bound variables and adopt the
conventions of [11] (suitably adapted to our setting) regarding this issue.

Second-order size of a formula. Since we are only interested in eliminating
second-order cuts, we use a special measure for the size of a formula. In this
measure, predicative formulas have measure zero. The second-order size |ϕ|2
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of a formula ϕ is defined as follows: |ϕ|2 = 0 if ϕ is a predicative formula; in
the remaining cases |¬ϕ|2 = |∀xϕ|2 = |∃xϕ|2 =

∣∣∀2Rϕ
∣∣
2

=
∣∣∃2Rϕ

∣∣
2

= |ϕ|2 +1

and |ϕ ∨ ψ|2 = |ϕ ∧ ψ|2 = |ϕ→ ψ|2 = max (|ϕ|2, |ψ|2) + 1.
A straightforward induction shows that |ϕ[θ/R]|2 = |ϕ|2 for every formula

ϕ and first-order abstract θ. Here, ϕ[θ/R] denotes the formula obtained by
effecting the substitution of the abstract θ for the second-order variable R in
ϕ.

Length of a derivation. This is defined as in first-order logic, with axioms as
derivations of length zero (see [11]). We denote the length of a derivation d
by |d|.

Second-order cut-rank of a derivation. If d is a derivation, then the second-
order cut-rank of d is ρ2(d) = max {|ϕ|2: ϕ is a cut-formula of d}.

Our strategy is an adptation of the argument in [11].

Weakening lemma. A derivation d of Γ⇒ ∆ can be weakened into a derivation

dΓ′,∆′

Γ,∆ of Γ′ ⇒ ∆′ by adding Γ′ \ Γ to the left-hand side of each sequent and

∆′ \∆ to the right-hand side of each sequent, assuming Γ ⊆ Γ′ and ∆ ⊆ ∆′.

The length and second-order cut-rank of d and dΓ′,∆′

Γ,∆ are the same.

First-order substitution lemma. If d is a derivation of Γ⇒ ∆ and x is not the
eigenvariable of any application of ∀r or ∃l in d then, by replacing every occur-
rence of x by a term s in d, one obtains a derivation d[s/x] of Γ[s/x]⇒ ∆[s/x]
with the same length and second-order cut-rank as d.

Second-order substitution lemma. If d is a derivation of Γ ⇒ ∆ and R is
not the eigenvariable of any application of ∀2r or ∃2l in d then, by effect-
ing the substitution of every occurrence of R by the predicative abstract θ
in d, one obtains a derivation d[θ/R] of Γ[θ/R] ⇒ ∆[θ/R] with the same
length and second-order cut-rank as d. Both the remark after the defini-
tion of second-order size of a formula and our statement of the axioms with
first-order formulas ϕ are essential to the proof of this result.

Second-order inversion lemma. Suppose that the formulas ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ,
ϕ→ ψ, ∀xϕ, ∃xϕ, ∀Rϕ and ∃Rϕ below are not predicative formulas. Then

(1) If d is a derivation of Γ,¬ϕ ⇒ ∆, then there exists a derivation dϕ of
Γ⇒ ∆, ϕ.

(2) If d is a derivation of Γ⇒ ∆, ϕ∧ψ, then there exist a derivation dϕ of
Γ⇒ ∆, ϕ and a derivation dψ of Γ⇒ ∆, ψ.

(3) If d is a derivation of Γ, ϕ∨ψ ⇒ ∆, then there exist a derivation dϕ of
Γ, ϕ⇒ ∆ and a derivation dψ of Γ, ψ ⇒ ∆.

(4) If d is a derivation of Γ, ϕ → ψ ⇒ ∆, then there exist a derivation dϕ
of Γ⇒ ∆, ϕ and a derivation dψ of Γ, ψ ⇒ ∆.

(5) If d is a derivation of Γ⇒ ∆,∀xϕ, then there exists a derivation dϕ of
Γ⇒ ∆, ϕ.

(6) If d is a derivation of Γ,∃xϕ⇒ ∆, then there exists a derivation dϕ of
Γ, ϕ⇒ ∆.

(7) If d is a derivation of Γ⇒ ∆,∀Rϕ, then there exists a derivation dϕ of
Γ⇒ ∆, ϕ.
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(8) If d is a derivation of Γ,∃Rϕ⇒ ∆, then there exists a derivation dϕ of
Γ, ϕ⇒ ∆.

Furthermore, in all cases |dθ| ≤ |d| and ρ2 (dθ) ≤ ρ2(d), for θ = ϕ,ψ.

The above result is an adaptation of the inversion lemma of [11] to our
setting. The reader might be puzzled by the restriction to non-predicative
formulas in the above lemma. In fact, points (1) to (8) of the inversion lemma
are always true. It is the bound |dθ| ≤ |d|, with θ = ϕ,ψ, that does not hold
anymore. The reason lies in the fact that we are admitting axioms of the
form of Γ, ϕ ⇒ ∆, ϕ, with ϕ is a predicative formula (as opposed to atomic
formulas ϕ in [11]). For instance, consider in case (1) the situation in which
Γ,¬ϕ ⇒ ∆ is an axiom. If ¬ϕ is non-predicative then Γ ∩ ∆ must have a
common formula and, therefore, Γ ⇒ ∆, ϕ is also an axiom. However, if ¬ϕ
were predicative, then the sequent Γ ⇒ ∆, ϕ need not be an axiom. In this
case, ¬ϕ ∈ ∆ and the argument is as follows: Γ, ϕ ⇒ ∆, ϕ is an axiom and,
from this sequent, we may conclude Γ ⇒ ∆, ϕ by the rule ¬r. Note that,
in this situation, |dϕ| = |d| + 1. A unit must be added. Actually, we could
have formulated the above lemma for all formulas (not only the predicative
formulas) as long as we were content with the bound |dθ| ≤ |d| + 1, with
θ = ϕ,ψ. This is a perfectly good option. The only consequence is that the
bounds in the results below would have to be slightly increased (but still quite
acceptable for our formalizations).

Lemma 7.1 (Second-order reduction lemma) Suppose that d1 is a derivation
of Γ1 ⇒ ϕ,∆1 and d2 is a derivation of Γ2, ϕ ⇒ ∆2 such that ρ2 (d1) < |ϕ|2
and ρ2 (d2) < |ϕ|2. Then there exists a derivation d such that:

• d is a derivation of Γ1,Γ2 ⇒ ∆1,∆2;
• |d| ≤ |d1|+ |d2|;
• ρ2(d) < |ϕ|2.

Proof To start with, observe that ϕ is not a predicative formula (because
|ϕ|2 > 0). The proof distinguishes several cases, according to the form of ϕ.
In each case, the proof is by induction on |d1|+ |d2| and a corresponding case
of the second-order inversion lemma is used in the argument (the proof follows
the blueprint of the reduction lemma of [11]). Here, we analyze only the case
where ϕ is the formula ∀2Rψ.

We begin with the situation in which ϕ is not the principal formula in at
least one of the derivations d1 or d2. Suppose it is not the principal formula
in d1 (the d2 case is similar). A possibility is that Γ1 ⇒ ϕ,∆1 is an axiom.
In this case we do not have to use the induction hypothesis: there must be a
commom (predicative) formula in Γ1 and ∆1 and, therefore, Γ1,Γ2 ⇒ ∆1,∆2

is also an axiom. In case Γ1 ⇒ ϕ,∆1 is the conclusion of a rule in d1, one just
applies the induction hypothesis to the derivation of each premise together
with d2 and, with the resulting sequence(s), apply the very same rule (see
[11]).

The interesting situation is when ϕ is the principal formula of the last
step of both d1 and d2. Then the rules ∀2r and ∀2l must have been applied
in the last inferences of d1 and d2, respectively. Without loss of generality
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(eventually applying the weakening lemma), assume that ϕ is a side formula
in the last step of d2. Then d2 has the form

d′2
Γ2, ϕ, ψ[θ/R]⇒ ∆2

(∀2l)
Γ2, ϕ⇒ ∆2

where θ is a predicative abstract. (In our notation, d′2 is a derivation of
the sequent Γ2, ϕ, ψ[θ/R] ⇒ ∆2. Therefore, it includes this sequent.) Ap-
plying the induction hypothesis to d1 and d′2, we find a derivation d′ of
Γ1,Γ2, ψ[θ/R]⇒ ∆1,∆2 such that

|d′| ≤ |d1|+ |d′2| < |d1|+ |d2| and ρ2 (d′) < |ϕ|2 .
Applying the inversion lemma to d1, we find a derivation dψ of Γ1 ⇒ ∆1, ψ
such that

|dψ| ≤ |d1| and ρ2 (dψ) ≤ ρ2 (d1) .

By the second-order substitution lemma, the derivation dψ[θ/R] has the same
length and second-order cut-rank as dψ, and furthermore dψ[θ/R] is a deriva-
tion of Γ1 ⇒ ∆1, ψ[θ/R]. Take d to be the following derivation.

dψ[θ/R]

Γ1 ⇒ ∆1, ψ[θ/R]
d′

Γ1,Γ2, ψ[θ/R]⇒ ∆1,∆2
(cut)

Γ1,Γ2 ⇒ ∆1,∆2

Then:

|d| = max (|dψ[θ/R]| , |d′|) + 1 ≤ max (| d1 |+1, | d1 |+| d2 |) ≤ |d1|+ |d2|
ρ2(d) = max (ρ2 (dψ[θ/R]) , ρ2 (d′) , |ψ[θ/R]|2) < |ϕ|2

since |ψ[θ/R]|2 = |ψ|2, as observed before. �

Lemma 7.2 (Second-order cut-elimination) Suppose that d is a derivation of
Γ ⇒ ∆ . If ρ2(d) > 0, then there exists a derivation d′ of Γ ⇒ ∆ such that
ρ2 (d′) < ρ2(d) and |d′| ≤ 2|d|.

Proof The proof is by induction on |d|. If the last inference is not a cut
with second-order cut-rank ρ2(d), the result follows easily by the induction
hypothesis. So, assume that the last inference is

d1

Γ1 ⇒ ∆1, ϕ

d2

Γ2, ϕ⇒ ∆2
(cut)

Γ⇒ ∆
where |ϕ|2 = ρ2 (d). By the induction hypothesis, there are derivations d′1
and d′2 of Γ1 ⇒ ∆1, ϕ and Γ2, ϕ⇒ ∆2, respectively, such that |d1| ≤ 2|d1| and
|d2| ≤ 2|d2|, both with second-order cut-rank strictly less than ρ2(d).

By the reduction lemma there is a derivation d′ of Γ1,Γ2 ⇒ ∆1,∆2 such
that

|d′| ≤ |d′1|+ |d′2| ≤ 2|d1| + 2|d2| ≤ 2max(|d1|,|d2|)+1 = 2|d|

and ρ2(d′) < |ϕ|2 = ρ2(d). �

As in [11], let 2a0 = a and 2ak+1 = 22a
k . The following is now straightforward

by induction on n:
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Theorem 7.3 Assume that d is a derivation of Γ ⇒ ∆. Then there exists

a derivation d′ of the same sequent such that ρ2 (d′) = 0 and |d′| ≤ 2
|d|
ρ2(d).

Therefore, d′ has only predicative cuts.

Notice that the above results also hold if we allow for value-range terms in the
syntax of the language (predicative or impredicative, it does not matter), as
long as the calculus remains pure (without Law V), because the above proofs
are independent of the structure of the terms.

As discussed in the first paragraph of this appendix, the above results
are enough for the arguments of this paper. However, we can go further and
obtain full cut-elimination. We only have to remove the remaining predicative
cuts. This can be done following the blueprint of cut-elimination for first-order
logic (the extra second-order rules pose no problems in the analysis since a cut
formula can never be the principal formula of such a rule). If we follow [11], it
would be very convenient to have only axioms of the form Γ, ϕ⇒ ∆, ϕ, with ϕ
is an atomic formula, in the proof without second-order cuts (in order to have
an inversion lemma similar to the one in [11]: see the discussion before Lemma
7.1). But, of course, we can suppose this. Just replace all the axioms of the
form Γ, ϕ⇒ ∆, ϕ, with ϕ a predicative formula, by derivations starting with
axioms for atomic formulas. There are such simple enough (even cut-free)
derivations.
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[8] P. Hájek and P. Púdlak. Metamathematics of First-Order Arithmetic. Springer-
Verlag, 1993.

[9] R. Heck. The consistency of predicative fragments of Frege’s Grundgesetze der
Arithmetik. History and Philosophy of Logic, 17:209–220, 1996.

[10] T. Parsons. On the consistency of the first-order portion of Frege’s logical
system. Notre Dame Journal of Formal Logic, 28:161–168, 1987.



The finitistic consistency of Heck’s predicative Fregean system 19

[11] H. Schwichtenberg. Some applications of cut-elimination. In J. Barwise, editor,
Handbook of Mathematical Logic, pages 867–895. North-Holland, 1977.

[12] William Tait. Finitism. Journal of Philosophy, 78:524–546, 1981.

[13] G. Takeuti. Proof Theory. Studies in Logic and the Foundations of Mathemat-
ics. North-Holland, 1987.

[14] A. Tarski, A. Mostowski, and R. Robinson. Undecidable Theories. Studies in
Logic and the Foundations of Mathematics. North-Holland, 1953.
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