
The Paths to Choreography Extraction?

Lúıs Cruz-Filipe, Kim S. Larsen, and Fabrizio Montesi

University of Southern Denmark {lcf,kslarsen,fmontesi}@imada.sdu.dk

Abstract. Choreographies are global descriptions of interactions among
concurrent components, most notably used in the settings of verifica-
tion and synthesis of correct-by-construction software. They require a
top-down approach: programmers first write choreographies, and then
use them to verify or synthesize their programs. However, most software
does not come with choreographies yet, which prevents their application.
To attack this problem, previous work investigated choreography extrac-
tion, which automatically constructs a choreography that describes the
behavior of a given set of programs or protocol specifications.
We propose a new extraction methodology that improves on the state
of the art: we can deal with programs that are equipped with state and
internal computation; time complexity is dramatically better; and we
capture programs that work by exploiting asynchronous communication.

1 Introduction

Choreographies are global descriptions of interactions among components. They
have been used as a basis for different models and tools that aim at tackling
the complexity of modern software, where separate units – such as processes,
objects, and threads – interact to reach a common goal [3, 25].

Two lines of research are of particular interest. In choreography specifications,
choreographies specify interaction protocols, e.g., multiparty session types [17].
In choreographic programming [20], choreographies are programs that define the
behavior of concurrent algorithms [13] and/or distributed systems [5, 6, 14].
The key feature of these works is EndPoint Projection (EPP), a procedure that
translates choreographies to correct endpoint behaviors in lower-level models. For
choreography specifications, EPP generates the local specifications of each par-
ticipant; these specifications can then be used for verification, to check whether
some programs implement their role in the protocol correctly and will thus inter-
act without problems at runtime [17]. In choreographic programming, instead,
EPP generates correct-by-construction implementations in a model of executable
code (program synthesis), typically given in terms of a process calculus [6].

EPP implements a top-down development methodology: developers first write
choreographies and then use the output mechanically generated by EPP. How-
ever, there are scenarios where this methodology is not applicable; for example:

? Montesi was supported by CRC (Choreographies for Reliable and efficient Commu-
nication software), grant DFF–4005-00304 from the Danish Council for Independent
Research. Cruz-Filipe and Larsen were supported in part by the Danish Council for
Independent Research, Natural Sciences, grant DFF-1323-00247.

– Analysis or integration of legacy software: either code developed previously,
or new code written in a technology without support for choreographies.

– Updates: endpoint programs generated by EPP can later be updated locally
(e.g., for configuration or optimizations). Since the original choreography is
not automatically updated, rerunning EPP loses these changes.

To attack these issues, previous work investigated a procedure to infer chore-
ographies from arbitrary endpoint descriptions. We call this procedure choreogra-
phy extraction. To the best of our knowledge, the current reference for extracting
choreography specifications is [19], where graphical choreographies that represent
protocol specifications are extracted from communicating automata [4]. Instead,
the state of the art for extraction in choreographic programming is [7], where
extraction takes terminating processes typed using a fragment of linear logic as
input. We advance both lines of work in several aspects, described below.

1.1 Contributions

Extraction for synchronous systems. We define an extraction procedure that
applies directly to both choreography specifications and choreographic program-
ming, by working with representative models. We focus on the more difficult case
of choreographic programming, and then show how our approach can be applied
to other settings in § 6. First we define an extraction algorithm for processes with
synchronous communications (§ 4), which showcases the key elements of our con-
struction: building a choreography corresponds to finding paths in a graph that
represents the abstract execution of the input processes. Our extraction also
helps in debugging: if extraction detects a potential deadlock, we pinpoint it
with a special term (1). This is the first extraction procedure for choreographic
programming that can deal with procedures and infinite behavior [7].

Asynchrony. We extend our development to asynchronous communication (§ 5).
The key novelty is that we can extract a new class of behaviors where processes
progress because of asynchronous communication. The simplest example of this
class is a two-way exchange: a network of two processes where each process starts
by sending a value to the other, and then consumes the received value. This net-
work is deadlocked under a synchronous semantics, violating the state-of-the-art
requirements for extraction [19]. Capturing these behaviors is challenging for two
reasons: there is no choreography language capable of representing them; and the
extraction algorithms presented so far require the behaviors of processes to be
representable also under a synchronous interpretation. We overcome both limita-
tions with a new choreography primitive for multiparty asynchronous exchange
and a look-ahead mechanism for asynchronous actions in extraction.

Efficiency. We show that our extraction has exponential worst-case time com-
plexity in both the synchronous and the asynchronous cases (§ 4 and § 5, re-
spectively), unlike the factorial case of [19], even though we can capture a new
class of behaviors. In particular, we need only one phase of exponential com-
plexity, while [19] uses multiple phases applied in sequence. The authors of [19]

2

detail only the complexities of their first two phases: the first has exponential
complexity (but in a quantity larger than ours), while the second has factorial
complexity in a function exponential in the size of the input. Our better time
complexity stems from the design of our process language, which does not allow
non-deterministic receives from different channels, and careful algorithm craft-
ing. Despite the restriction, we can still model interesting examples thanks to
asynchronous exchange. In § 5, we present a novel formulation of the alternating
2-bit protocol, which is given in [15] and used in [19] as a motivating example.
Our formulation is simpler and does not require threads as in [19].

2 Related Work

Choreographic Programming. The state of the art for extraction in choreographic
programming is [7], where synchronous processes with finite behavior are typed
using the multiplicative-additive fragment of linear logic. Our approach is signif-
icantly more expressive, bringing support for recursion and asynchronous com-
munication. Also, the proof theory in [7] requires that there are no cycles in the
structure of connections among processes. We do not have this limitation.

Choreography Specifications. To the best of our knowledge, the state of the art
for extracting choreography specifications is [19], which captures more behaviors
than previous works with similar objectives [18, 22].

Extraction in [19] is more restrictive wrt. to asynchrony, requiring all process
traces and choices to be represented in the synchronous transition system of the
network. Thus, networks that are safe because of asynchronous communication
are not extracted in [19]. Instead, our extraction can deal with programs that
use multiparty asynchronous exchange, where multiple processes exchange values
by exploiting asynchronous communication. As a consequence, we can extract
the alternating 2-bit protocol implemented via asynchronous exchange in § 5,
which is deadlocked under a synchronous semantics and thus cannot be extracted
in [19]. Our extraction is the first capturing systems that are not correctly ap-
proximated by synchronous semantics (cf. [2]). A precise characterization of the
class of extractable systems is thus an interesting future direction.

To circumvent the limitation that asynchronous exchange is not supported,
choreographies in [19] support local concurrency: processes can have internal
threads. This opens up for an alternative formulation of the alternating 2-bit
protocol, where the two participants use two threads each. However, these chore-
ographies are harder to read. As an example, compare our choreography for the
alternating 2-bit protocol in § 5 to that obtained with the automata in [19]
(given in [15], Protocol 7 in Example 2.1). Our formulation is a simple recursive
procedure with two exchanges, whereas the control flow in [15] is rather intri-
cate and uses three different operators (fork, join, and merge) at different places
to compose two separate loops. In our opinion, our choreographies follow the
principles of structured programming to a greater extent, and are simpler; also
because coordination happens only through communication.

3

C ::= 0 | η;C | if p <-
=q thenC1 elseC2 | defX = C2 inC1 | X

η ::= p.e -> q | p -> q[l] e ::= v | ∗ | . . .

Fig. 1. Core Choreographies, Syntax.

More interestingly than readability, local concurrency makes the complex-
ity of extraction blow up factorially [19]: process threads are represented using
non-determinism between different actions in communicating automata. Deter-
mining whether the non-deterministic behavior of these automata is extractable
takes (super-)factorial time (factorial time in the size of a graph similar to our
AES, cf. Definition 2)! Thus, asynchronous exchange supports a more efficient
way of capturing an interesting class of behaviors. Nevertheless, we believe that
developing efficient extractions of local concurrency may be useful future work.

3 Core Choreographies and Stateful Processes

We review the languages of Core Choreographies (CC) and Stateful Processes
(SP), from [11], which respectively model choreographies and endpoint programs.
We introduce labels in the reduction semantics for these calculi to formalize the
link between choreographies and their process implementations as a bisimilarity.

Core Choreographies (CC). The syntax of CC is given in Figure 1. A choreog-
raphy C describes the behavior of a set of processes (p, q, . . .) running concur-
rently. Each process has an internal memory cell storing a local value (the value
of the process). Term 0 is the terminated choreography (omitted in examples).
Term η;C reads “the system executes η and proceeds as C”. An interaction
η is either: a value communication p.e -> q, where process p evaluates e and
sends the result to process q, which stores it in its memory cell, replacing its
previous value; or a selection p -> q[l], where p selects l among the branches
offered by q. We abstract from the concrete language of expressions e, which
models internal computation and is orthogonal to our development, assuming
only that: expressions can contain values v and the placeholder ∗, which refers
to the value of the process evaluating them; and evaluating expressions always

terminates and returns a value. In a conditional if p
<-
= q thenC1 elseC2, p checks

if its value is equal to q’s to decide whether the system proceeds as C1 or C2.
Term def X = C2 inC1 defines a procedure X with body C2, which can be called
in C1 and C2 by using term X.

The semantics of CC is given in terms of labeled reductions C, σ
λ−→ C ′, σ′;

the main reduction rules are given in Figure 2. Reductions are also closed under
context (procedure definitions) and under a structural precongruence �, allow-
ing procedure calls to be unfolded and non-interfering actions to be executed
in any order. The most interesting rule for � is rule bC|Eta-Etae, which swaps
communications between disjoint sets of processes (modeling concurrency). The

4

e[σ(p)/∗] ↓ v

p.e -> q;C, σ
p.v -> q−−−−−→ C, σ[q 7→ v]

bC|Come
p -> q[l];C, σ

p -> q[l]−−−−−→ C, σ
bC|Sele

σ(p) = σ(q)

if p
<-
=q thenC1 elseC2, σ

p
<-
=q:then−−−−−→ C1, σ

bC|Thene pn(η) ∩ pn(η′) = ∅
η; η′ � η′; η

bC|Eta-Etae

Fig. 2. Core Choreographies, Semantics and Structural Precongruence (selected rules).

B ::= q!〈e〉;B | p?;B | q⊕ l;B | p&{li : Bi}i∈I | N ::= p . B | 0 | N |N

| 0 | if ∗ <-=q thenB1 elseB2 | defX = B2 inB1 | X

Fig. 3. Stateful Processes, Syntax.

total function σ maps each process name to the value it stores. Labels λ tell
us which action has been performed, which helps stating our later results. In
rule bC|Come, v is the value obtained by evaluating (↓) the expression e, with ∗
replaced by the value of the sender p, σ(p). In the reductum, σ is updated such
that the receiver q stores v. Rule bC|Sele does not alter σ: selections model invok-
ing a method/operation available at the receiver. Rules bC|Thene and bC|Elsee
(omitted) model conditionals in the standard way. Function pn(C) returns all
the process names that appear in C, and C ≡ C ′ means C � C ′ and C ′ � C.

Example 1. We define a simple choreography for client authentication. We write
p -> c, s[l] as a shortcut for p -> c[l]; p -> s[l].

def X=
(

c.pwd -> a; if a
<-
= s then (a -> c, s[ok]; s.t -> c) else (a -> c, s[ko];X)

)
inX

In this choreography, a client process c sends a password to an authentication
process a, which checks if the password matches that contained in the server-
side process s. If the password is correct, a notifies c and s, and s sends an
authentication token t to c. Otherwise, a notifies c and s that authentication
failed, and a new attempt is made (by recursively invoking X). ut

Stateful Processes. The calulus SP models concurrent/distributed implementa-
tions. Thus, unlike in CC, actions are now distributed among processes.

The syntax of SP is given in Figure 3. Networks N are parallel compositions
of processes p . B, read “process p has behavior B”. An output term q!〈e〉;B
sends the result of evaluating e to q, and then proceeds as B. Outputs are meant
to synchronize with input terms at the target process, i.e., p?;B, which receives
a value from p to be stored locally and then proceeds as B. Term q ⊕ l;B
sends the selection of the branch labeled l to q. Branches are offered by the

5

e[σ(p)/∗] ↓ v

p . q!〈e〉;B1 | q . p?;B2, σ
p.v -> q−−−−−→ p . B1 | q . B2, σ[q 7→ v]

bS|Come

j ∈ I

p . q⊕ lj ;B | q . p&{li : Bi}i∈I , σ
p -> q[l]−−−−−→ p . B | q . Bj , σ

bS|Sele

e[σ(q)/∗] ↓ σ(p)

p . if ∗ <-=q thenB1 elseB2 | q . p!〈e〉;B′, σ p
<-
=q:then−−−−−→ p . B1 | q . B′, σ

bS|Thene

Fig. 4. Stateful Processes, Semantics (selected rules).

receiver with term p&{li : Bi}i∈I , which offers a choice among the labels li to
p. When one of these labels is selected, the respective behavior Bi is run. Term

if ∗ <-
= q thenB1 elseB2 communicates with process q to check whether it stores

the same value as the process running this behavior, in order to choose between
the continuations B1 and B2. Terms def X = B2 inB1 and X are procedure
definition and call, respectively.

The semantics of SP is given by labeled reductions N, σ
λ−→ N ′, σ′, with labels

λ as in CC.1 Figure 4 shows the key rules (see the appendix for the complete set).
Two processes can synchronize when they refer to each other. In rule bS|Come,
an output at p directed at q synchronizes with the dual input action at q –
intention to receive from p; in the reductum, q’s value is updated. The reduction
receives the same label as the equivalent communication term in CC. The other
rules shown are similar. The omitted rules are standard, and close the semantics
under parallel composition, structural precongruence, and procedure definitions.

Example 2. The following network implements the choreography in Example 1.

c . def X = a!〈pwd〉; a&{ok : s?, ko : X} inX

| a . def X = c?; if ∗<-= s then (c⊕ ok; s⊕ ok) else (c⊕ ko; s⊕ ko;X) inX

| s . def X = a!〈∗〉; a&{ok : c!〈t〉, ko : X} inX

EndPoint Projection (EPP). As shown in [11], there exists a partial function
[[·]] : CC→ SP, called EndPoint Projection (EPP), that produces correct imple-
mentations of choreographies. EPP produces a parallel composition of processes,
one for each process name in the original choreography: [[C]] =

∏
p∈pn(C) p. [[C]]p.

The rules for computing [[C]] project the local action performed by the process
of interest. For example, [[p.e -> q]]p = q!〈e〉 and [[p.e -> q]]q = p?.

The network presented in Example 2 is exactly the EPP of the choreography
in Example 1. Observe that the projection of the conditional in the original
choreography for the processes c and s is a branching that supports all the

1 Deviating from [11], we model process values using σ as for CC, for simplicity.

6

possible choices made by process a in its projected conditional. Producing these
branching terms is possible only if, whenever there is a conditional at a process
(a in our example), all other processes receive a label that tells them which
branch such a process has chosen. (In case the behaviors of the other processes
are the same in both cases, producing branching terms is not necessary.) When
this cannot be done for a choreography C, the EPP for C is undefined, and we
say that C is unprojectable. Conversely, C is projectable if [[C]] is defined.

In the remainder, we relate choreographies to network implementations via a
strong labeled reduction bisimilarity ∼. Bisimilarity is defined as usual [24]: it is
the union of all bisimulation relations R, which in our case relate choreographies
to networks. A relation R is one such bisimulation if whenever CRN we have
that, for all σ: i) C, σ

λ−→ C ′, σ′ implies N, σ
λ−→ N ′, σ′ for some N ′ with C ′RN ′;

ii) N, σ
λ−→ N ′, σ′ implies C, σ

λ−→ C ′, σ′ for some C ′ with C ′RN ′.

Theorem 1 (adapted from [11]). If C is projectable, then C ∼ [[C]].

4 Extraction from SP

The finite case. We first investigate finite SP, the fragment of SP without re-
cursive definitions, which we use to discuss the intuition behind our extraction.

Definition 1. We define a rewriting relation on the language of CC extended
with terms ([N]), where N is a network in finite SP, as the transitive closure of:

N ≡ 0
([N]) 0

N ≡ p . q!〈e〉;Np | q . p?;Nq |N ′

([N]) p.e -> q; ([Np |Nq |N ′])
N ≡ p . q⊕ lk;Np | q . p&{l1 : Nq1 , . . . , ln : Nqn} |N ′

([N]) p -> q[lk]; ([Np |Nqk |N ′])

N ≡ p . if ∗<-= q thenNp1 elseNp2 | q . p!〈e〉;Nq |N ′

([N]) if p
<-
= q then ([Np1 |Nq |N ′]) else ([Np2 |Nq |N ′])

no other rule applies

([N]) 1

A network N in finite SP extracts to a choreography C if ([N]) C.

The last rule guarantees that every network is extractable. Extraction uses
structural precongruence (namely, commutativity and associativity of parallel
composition) to find matching actions. For finite SP, this is not a problem (the
set of networks equivalent to a given one is finite), but it makes extraction
nondeterministic, e.g., the network p . q!〈e〉 | q . p? | r . s!〈e′〉 | s . r? extracts both
to p.e -> q; r.e′ -> s and r.e′ -> s; p.e -> q. These choreographies are equivalent
by Rule bC|Eta-Etae (Figure 2). This holds in general, as stated below.

Lemma 1. If ([N]) C1 and ([N]) C2, then C1 ≡ C2.

There is one important design option to consider: what to do with actions that
cannot be matched, i.e., processes that will deadlock. There are two alternatives:

7

p . q!〈e〉;B1 | q . p?;B2
p.e -> q−−−−−→ p . B1 | q . B2

bS|Come

p . if ∗ <-=q thenB1 elseB2 | q . p!〈e〉;B′ p
<-
=q:then−−−−−→ p . B1 | q . B′

bS|Thene

Fig. 5. Stateful Processes, Abstract Semantics (selected rules).

restrict extraction to lock-free networks (networks where all processes eventually
progress, in the sense of [8]); or extract stuck processes to a new choreography
term 1, with the same semantics as 0. We choose the latter option for debugging
reasons. Specifically, practical applications of extraction may annotate 1 with
the code of the deadlocked processes, giving the programmer a chance to see
exactly where the system is unsafe, and attempt at fixing it manually. Better
yet: since the code to unlock deadlocked processes in process calculi can be
efficiently synthesized [8], our method may be integrated with the technique
in [8] to suggest an automatic system repair.

Remark 1. If ([N]) C and C does not contain 1, then N is lock-free. However,
even if C contains 1, N may still be lock-free: the code causing the deadlock
may be dead code in a conditional branch that is never chosen during execution.

Extraction is sound: it yields a choreography that is bisimilar to the original
network. Also, for finite SP, it behaves as an inverse of EPP.

Theorem 2. Let N be in finite SP. If ([N]) C, then C ∼ N . Furthermore, if
N = [[C ′]] for some C ′, then ([N]) C ′.

As we show later, the second part of this theorem does not hold in the presence
of recursive definitions.

We now restate extraction in terms of a particular graph, which is the hall-
mark of our development: when we add recursion to SP, we can no longer define
extraction as a set of rewriting rules. We first introduce a new abstract semantics
for networks, N

α−→ N ′, defined as in Figure 4 except for the rules for value com-
munication and conditionals, which are replaced by those in Figure 5 (we omit
the obvious rule bS|Elsee). In particular, conditionals are now nondeterministic.
Labels α are like λ but may now contain expressions (see the new rule bS|Come);
in all other rules, λ is replaced by α. We write N

α̃−→∗ N ′ for N
α1−−→ · · · αn−−→ N ′.

Definition 2. Given a network N , the Abstract Execution Space (AES) of N
is the directed graph obtained by considering all possible abstract reduction paths

from N . Its vertices are all the networks N ′ such that N
α̃−→∗ N ′, and there is an

edge between two vertices N1 and N2 labeled α if N1
α−→ N2.

A Symbolic Execution Graph (SEG) for N is a subgraph of its AES that
contains N and such that each vertex N ′ 6� 0 has either one outgoing edge

labeled by an η or two outgoing edges labeled p
<-
= q : then and p

<-
= q : else.

8

Intuitively, the AES of N represents all possible evolutions of N (each evolu-
tion is a path in this graph). A SEG fixes the order of execution of actions, but
still abstracts from the state (and thus considers both branches of conditionals).
For networks in finite SP, these graphs are finite.

Given a network N , there is a one-to-one correspondence between SEGs for
N and choreographies C such that ([N]) C. Indeed, given a SEG we can
extract a choreography as follows. We start from the initial vertex, labeled N . If
there is an outgoing edge with label η to N ′, we add η to the choreography and

continue from N ′. If there are two outgoing edges with labels p
<-
= q : then and

p
<-
= q : else to N1 and N2, respectively, we extract a conditional whose branches

are the choreographies extracted by continuing exploration from N1 and N2,
respectively. When we reach a leaf, we extract 0 or 1, according to whether its
label is equivalent to 0 or not. Conversely, we can build a SEG from a particular
rewriting of ([N]) by following the choreography actions one at a time.

Treating recursive definitions. We now extend extraction to networks with re-
cursive definitions, using SEGs. We need to be careful with the definition of the
AES, since including all possible (abstract) executions now may make it infinite
(due to recursion unfolding), and thus extraction may not terminate. To avoid
this, we only allow recursive definitions to be unfolded (once) if they occur at
the head of a process involved in a reduction. With this restriction, we can define
the AES and SEGs for a network as in the finite case. These graphs may now
contain cycles: a network may evolve into the same term after a few reductions.

Example 3. Consider the following network.

p . def X = q!〈∗〉; q&{l : q!〈∗〉;X,r : 0} in q!〈∗〉;X

| q . def Y = p?; p?; if ∗<-= r then p⊕ l;Y else p⊕ r; 0 inY | r . def Z = q!〈∗〉;Z inZ

This network generates the AES in Figure 6, which is also its SEG. ut

The key insight is that the definitions of recursive procedures are extracted
from the loops in the SEG, rather than from the recursive definitions in the
source network. This construction typically yields mutually recursive definitions,
motivating a small change to CC that does not add expressivity: we replace the
constructor def X = C2 inC1 by top-level procedure definitions, in the style
of [12]. A choreography now becomes a pair 〈D, C〉, where D = {Xi = Ci} and
all procedure calls in either C or the Ci are to some Xi defined in D.

Definition 3. The choreography extracted from a SEG is defined as follows.
We annotate each node that has more than one incoming edge with a unique
procedure identifier. Then, for every node annotated with an identifier, say X, we
replace each of its incoming edges with an edge to a new leaf node that contains a
special term X (so now the node annotated with X has no incoming edges). This
eliminates all loops in the SEG, allowing us to reuse the extraction procedure for
the non-recursive case to extract the desired pair 〈D, C〉. We get C by extraction

9

p . q!〈∗〉;X | q . Y | r . Z
p.∗ -> q��

p . X | q . p?; if ∗ <-= r then p⊕ l;Y else p⊕ r;0 | r . Z

p.∗ -> q��
p . q&{l : q!〈∗〉;X,r : 0} |

q . if ∗ <-= r then p⊕ l;Y else p⊕ r;0 | r . Z
q
<-
=r.then

��

q
<-
=r.else��

p . q&{l : q!〈∗〉;X,r : 0} | q . p⊕ r;0 | r . Z
q -> p[r]��

p . q&{l : q!〈∗〉;X,r : 0} | q . p⊕ l;Y | r . Z

q -> p[l]

//

p . 0 | q . 0 | r . Z

Fig. 6. The AES and SEG for the network in Example 3.

starting from the initial network. Then, for each node that we annotated with an
X, we extract a choreographic procedure X in D that has as body the choreography
extracted from the graph that starts from that annotated node. Any new leaf node
containing a special term X is extracted as a procedure call X.

Example 4. Consider the SEG in Figure 3. To extract a choreography, we anno-
tate the topmost node with a procedure identifier X and replace the incoming
edge to that node with an edge to a new leaf X. We thus extract X to be

p.∗ -> q; p.∗ -> q; if q
<-
= r then q -> p[l];X else q -> p[r]; 1

and the extracted choreography itself is simply X. The body of X is not pro-
jectable (the branches for r are not mergeable, cf. [11]), but it faithfully describes
the behavior of the original network. ut

The procedure in Definition 3 always terminates, but sometimes it yields
choreographies that starve some processes. As an example, the network

p . def X = q!〈∗〉;X inX | q . def Y = p?;Y inY (1)

| r . def Z = s!〈∗〉;Z inZ | s . def W = r?;W inW

has two SEGs, which extract to the choreographies def X = p.∗ -> q;X inX
and def X = r.∗ -> s;X inX, none of which captures all the behaviors of N .

To avoid this problem, we change the definitions of AES and SEGs slightly.
We annotate all procedure calls in networks with either ◦ or •. The node in the
AES corresponding to the initial network has all procedure calls annotated with
◦. There is an edge from N to N ′ with label α if N

α−→ N ′ and the procedure
calls in N ′ are annotated as follows.

– If executing α does not require unfolding procedure calls, then all calls in
N ′ are annotated as in N .

– If executing α requires unfolding procedure calls, then we annotate all the
calls in N ′ introduced by these unfoldings with •. If N ′ now has all procedure
calls annotated with •, we change all annotations to ◦.

10

We then require loops in a SEG to contain a node where every procedure
call is annotated with ◦. This ensures that every procedure call is unfolded at
least once before returning to the same node. This holds even if p.X unfolds to
a behavior that calls different procedures, but not X: in order to return to the
same node, the newly invoked procedures themselves need to be unfolded.

Example 5. The annotated AES for the network (1) is:

p . X◦ | q . Y ◦ | r . Z◦ | s . W ◦

p.∗ -> q
tt r.∗ -> s**

p . X• | q . Y • | r . Z◦ | s . W ◦

r.∗ -> s
33

p.∗ -> q

??
p . X◦ | q . Y ◦ | r . Z• | s . W •

p.∗ -> q
kk

r.∗ -> s

__

This AES now has the following two SEGs:

p . X◦ | q . Y ◦ | r . Z◦ | s . W ◦

p.∗ -> q		

p . X◦ | q . Y ◦ | r . Z◦ | s . W ◦

r.∗ -> s		
p . X• | q . Y • | r . Z◦ | s . W ◦

r.∗ -> s
II

p . X◦ | q . Y ◦ | r . Z• | s . W •
p.∗ -> q

II

Observe that the self-loops are discarded because they do not go through a node
with all ◦ annotations. From these SEGs, we can extract two definitions for X:

def X = p.∗ -> q; r.∗ -> s;X inX and def X = r.∗ -> s; p.∗ -> q;X inX

Both of these definitions correctly capture all behaviors of the network. ut

A similar situation may occur if there are processes with finite behavior (no
procedure calls): the network

p . def X = q!〈∗〉;X inX | q . def Y = p?;Y inY | r . s!〈∗〉 | s . r?

can be extracted to the choreography X, with X = p.∗ -> q;X, where r and s
never communicate. Hence, we require that if a node in a SEG has more than one
incoming edge (it is a “loop” node) and contains processes with finite behavior,
then these processes must be deadlocked (being finite, this is trivially verifiable).
This ensures that if finite processes are able to reduce, they cannot be in a loop.

Definition 4. A SEG for a network N is valid if all its loops:

– pass through a node where all recursive calls are marked with ◦;
– start in a node where all processes with finite behavior are deadlocked.

A network N extracts to a choreography C if C can be constructed (as in Defi-
nition 3) from a valid SEG for N .

Validity implies, however, that there are some non-deadlocked networks that
are not extractable, such as

p . def X = q!〈∗〉;X inX | q . def Y = p?;Y inY | r . def Z = p?;Z inZ

for which there is no valid SEG. This is to be expected, since deadlock-freedom
is undecidable in SP. We can generalize this observation as a necessary condition
for extraction to be defined, in the following theorem.

11

Theorem 3. If the AES for a network N does not contain nodes from which a
process is always deadlocked, then N is extractable.

Lemma 1 and the first part of Theorem 2 still hold for extraction in SP with
recursion, but the second part of Theorem 2 does not: in general, the projection
of a choreography is extracted to a choreography with different procedures, since
extraction ignores the actual definitions in the source network.

Theorem 4. If C is a choreography extracted from a network N , then N ∼ C.

We conclude this section with some complexity theoretical considerations.

Lemma 2. The annotated AES for a network of size n has at most e
2n
e vertices.

Theorem 5. Extraction from a network of size n terminates in time O(ne
2n
e).

As discussed earlier, this time complexity is a dramatic improvement over
earlier, comparable work. However, in practice, we may be able to perform even
better. Algorithmically, all the required work stems from traversals of the AES,
so any reduction in its (explored) size will lead to proportional runtime improve-
ments. Thus, instead of first computing the entire AES and then a valid SEG, we
can compute the relevant parts of the AES lazily as we need them, so parts of the
AES that are never explored while computing a valid SEG are never generated.

5 Asynchrony

We now discuss an asynchronous semantics for SP, with which we can express
new safe behaviors. Most notably, SP can now express asynchronous exchange
(Example 6). We also show a novel choreography primitive that successfully cap-
tures this pattern, which cannot be described in previous works on choreographic
programming, and extend our algorithm to extract it from networks.

Asynchronous SP. Asynchronous communication can be added to SP using stan-
dard techniques for process calculi. In the semantics of networks, we add a FIFO
queue for each pair of processes. Communications now synchronize with these
queues: send actions append a message in the queue of the receiver, and receive
actions remove the first message from the queue of the receiver (see [12] for a
formalization in an extension of SP).

Example 6. The network p . q!〈∗〉; q? | q . p!〈∗〉; p? exemplifies the pattern of
asynchronous exchange. This network is deadlocked in synchronous SP, but runs
without errors in asynchronous SP: both p and q can send their respective val-
ues, becoming ready to receive each other’s messages. This behavior is not repre-
sentable in any previous work on choreographies (including CC from § 3), since
all choreographies presented so far can only describe processes that are not dead-
locked under a synchronous semantics (see [12] for a formal argument). ut

12

The multicom. The situation in Example 6 is prototypical of programs that are
safe only in an asynchronous setting: a group of processes wants to send messages
to a group of receivers, with circular dependencies among communications.

We deal with this situation by means of a new choreography action, which
we call a multicom. Syntactically, a multicom is a list of communication actions
with distinct receivers, which we write (η̃). In the unary case, we obtain the usual
communications and selections; by removing these from the syntax of CC and
adding the multicom, we obtain a more expressive calculus with fewer primitives.
The semantics of multicom is given by the following rule, which generalizes (and
replaces) both bC|Come and bC|Sele.

I = {i | pi.ei -> qi ∈ η̃} vi = ei[σ(pi)/∗]

(η̃);C, σ
(η̃)[ei/vi]i∈I−−−−−−−−→ C, σ[qi 7→ vi]i∈I

bC|MCome

Structural precongruence rules for the multicom are motivated by its intuitive
semantics: actions inside a multicom can be permuted as long as the senders
differ, and sequential multicoms can be merged as long as they do not share
receivers and there are no sequential constraints between them (i.e., none of the
receivers in the first multicom is a sender in the second one).

pn(η1) ∩ pn(η2) = ∅(
. . . , η1, η2, . . .

)
≡
(
. . . , η2, η1, . . .

) bC|MCom-Perme

rcv(η) ∩ rcv(ν) = ∅ rcv(η̃) ∩ snd(ν̃) = ∅(
η̃
)

;
(
ν̃
)
≡
(
η̃, ν̃

) bC|MCom-MCome

From these rules we can derive all instances of bC|Eta-Etae, e.g.:

p.∗ -> q; r.∗ -> s ≡
(

p.∗ -> q
r.∗ -> s

)
≡
(

r.∗ -> s
p.∗ -> q

)
≡ r.∗ -> s; p.∗ -> q

The problematic program in Example 6 can now be written as

(
p.∗ -> q
q.∗ -> p

)
.

Structural precongruence rules for multicom also allow us to define a normal
form for choreographies, where no multicom can be split in smaller multicoms.

Extraction. In order to extract choreographies containing multicoms, we alter
the definition of the AES for a process network by allowing multicoms as labels
for the edges. These can be computed using the following iterative algorithm.

1. For a process p with behavior q!〈e〉;B (or q ⊕ l;B), set actions = ∅ and
waiting = {p.e -> q} (resp. waiting = {p -> q[l]}).

2. While waiting 6= ∅:
(a) Move an action η from waiting to actions. Assume η is of the form r.e -> s

(the case for label selection is similar).
(b) If the behavior of s is of the form a1; . . . ; ak; r?;B where each ai is ei-

ther the sending of a value or a label selection, then: for each ai, if the
corresponding choreography action is not in actions, add it to waiting.

13

3. Return actions.

This algorithm may fail (the behavior of s in step 2(b) is not of the required form),
in which case the action initially chosen cannot be unblocked by a multicom.

Example 7. Consider the network from Example 6. Starting with action q!〈∗〉 at
process p, we initialize actions = ∅ and waiting = {p.∗ -> q}. We pick the action
p.∗ -> q from waiting and move it to actions. The behavior of q is p!〈∗〉; p?, which
is of the form described in step 2(b); the choreography action corresponding to
p!〈∗〉 is q.∗ -> p, so we add this action to waiting, obtaining actions = {p.∗ -> q}
and waiting = {q.∗ -> p}. Now we consider the action q.∗ -> p, which we
move from waiting to action, and look at p’s behavior, which is q!〈∗〉; q?. The
choreography action corresponding to q!〈∗〉 is p.∗ -> q, which is already in actions,
so we do not change waiting. The set waiting is now empty, and the algorithm

terminates, returning

(
p.∗ -> q
q.∗ -> p

)
. We would obtain the equivalent

(
q.∗ -> p
p.∗ -> q

)
by starting with the send action at q. ut

Example 8. As a more sophisticated example, we show how our new choreogra-
phies with multicom can model the alternating 2-bit protocol. Here, Alice alter-
nates between sending a 0 and a 1 to Bob; in turn, Bob sends an acknowledgment
for every bit he receives, and Alice waits for the acknowledgment before sending
another copy of the same bit. Since we are in an asynchronous semantics, we
only consider the time when the messages arrive. With this in mind, we can
write this protocol as the following network.

a . def X = (b?; b!〈0〉; b?; b!〈1〉;X) in (b!〈0〉; b!〈1〉;X)

| b . def Y = (a?; a!〈ack0〉; a?; a!〈ack1〉;Y) inY

This implementation imposes exactly the dependencies dictated by the pro-
tocol. For example, Alice can receive Bob’s acknowledgment to the first 0 before
or after Bob receives the first 1. This network extracts to the choreography

a.0 -> b;X where X =

(
a.1 -> b

b.ack0 -> a

)
;

(
a.0 -> b

b.ack1 -> a

)
;X

which is a simple and elegant representation of the alternating 2-bit protocol. ut

Extraction for asynchronous SP is still sound, but behavioral equivalence is
now an expansion [1, 24], as each communication now takes two steps in asyn-
chronous SP. Its complexity is also no larger than for the synchronous case. The
algorithm computing the multicom takes linear time in the size of the multicom
produced. Via a one-time preprocessing of the network, we can assume direct
references from communication terms in one process to the process it directs its
communication at, and from there to the current state of that process. Other
than the above, all constant steps in the algorithm can be seen as an extension of
the multicom. Since adding a communication to a multicom removes a potential
node in the AES (as we are combining communications), the worst-case time

14

complexity is no worse than in the synchronous case. In practice, this complex-
ity actually gets better when larger multicoms are created, since building these
is a much cheaper local operation than exploring graphs that would be larger in
terms of nodes as well as edges without the multicoms.

6 Extensions and Applications

We discuss some straightforward modifications of our extraction to cover other
scenarios occurring in the literature.

More expressive communications and processes. In real-world contexts, the val-
ues stored and communicated by processes are typed, and the receiver process
can also specify how to treat incoming messages [12]. This means that communi-
cation actions now have the form p.e -> q.f , where f is the function consuming
the received message, and systems may deadlock because of typing errors. Our
construction applies without changes to this scenario.

Some works allow processes to store several values, used via variables [5, 6].
Again, dealing with this situation does not require any changes to our algorithm.

Local conditionals. Many choreography models allow for a local conditional con-
struct, i.e., if p.e thenC1 elseC2 [6, 21, 14]. Dealing with this construct is simple:
the if and then transitions now can occur whenever a process has a conditional
as top action, since they no longer require synchronization with other processes.

Choreography Specifications. So far, we have considered choreographies that de-
scribe concrete implementations, i.e., processes are equipped with storage and
local computational capabilities. However, choreographies have also been advo-
cated for the specification of communication protocols. Most notably, multiparty
session types use choreographies to define types used in the verification of pro-
cess calculi [17]. While there are multiple variants of multiparty session types,
the one so far most used in practice is almost identical to a simplification of SP.
In this variant, each pair of participants has a dedicated channel, and communi-
cation actions refer directly to the intended sender/recipient as in SP (see, e.g.,
the theory of [6, 21, 9, 10] and the practical implementations in [16, 23, 20]). To
obtain multiparty session types from SP (and CC), we just need to: remove the
capability of storing values at processes; replace message values with constants
(representing types, which could also be extended to subtyping in the straightfor-
ward way); and make conditionals nondeterministic (since in types we abstract
from the precise values and expression used by the evaluator). These modifi-
cations do not require any significant change to our approach, since our AES
already abstracts from data and thus our treatment of the conditional is already
nondeterministic. For reference, we can simply treat the standard construct for
an internal choice at a process p – C1 ⊕p C2 – as syntactic sugar for a local
conditional like if p.coinflip thenC1 elseC2.

15

References

1. S. Arun-Kumar and Matthew Hennessy. An efficiency preorder for processes. Acta
Inf., 29(8):737–760, 1992.

2. Samik Basu and Tevfik Bultan. Choreography conformance via synchronizability.
In WWW, pages 795–804, 2011.

3. Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0/.
4. D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM,

30(2):323–342, April 1983.
5. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centered pro-

gramming for web services. ACM Trans. Program. Lang. Syst., 34(2):8, 2012.
6. M. Carbone and F. Montesi. Deadlock-freedom-by-design: multiparty asyn-

chronous global programming. In R. Giacobazzi and R. Cousot, editors, POPL,
pages 263–274. ACM, 2013.

7. M. Carbone, F. Montesi, and C. Schürmann. Choreographies, logically. In P. Bal-
dan and D. Gorla, editors, CONCUR, volume 8704 of LNCS, pages 47–62. Springer,
2014.

8. Marco Carbone, Ornela Dardha, and Fabrizio Montesi. Progress as compositional
lock-freedom. In Proc. of COORDINATION, pages 49–64, 2014.

9. Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip
Wadler. Coherence generalises duality: A logical explanation of multiparty session
types. In Josée Desharnais and Radha Jagadeesan, editors, 27th International
Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec
City, Canada, volume 59 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

10. Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca
Padovani. Global progress for dynamically interleaved multiparty sessions. Math-
ematical Structures in Computer Science, 26(2):238–302, 2016.

11. L. Cruz-Filipe and F. Montesi. A Core Model for Choreographic Programming. In
FACS, LNCS. Springer, accepted for publication.

12. Lúıs Cruz-Filipe and Fabrizio Montesi. Choreographies, divided and conquered.
CoRR, abs/1602.03729, 2016. Submitted for publication.

13. Lúıs Cruz-Filipe and Fabrizio Montesi. Choreographies in practice. In Elvira Albert
and Ivan Lanese, editors, Formal Techniques for Distributed Objects, Components,
and Systems - 36th IFIP WG 6.1 International Conference, FORTE 2016, Held
as Part of the 11th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings,
volume 9688 of Lecture Notes in Computer Science, pages 114–123. Springer, 2016.

14. M. Dalla Preda, M. Gabbrielli, S. Giallorenzo, I. Lanese, and J. Mauro. Dynamic
choreographies – safe runtime updates of distributed applications. In T. Holvoet
and M. Viroli, editors, COORDINATION, volume 9037 of LNCS, pages 67–82.
Springer, 2015.

15. Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet commu-
nicating automata. In Helmut Seidl, editor, ESOP, volume 7211 of LNCS, pages
194–213. Springer, 2012.

16. K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, and N. Yoshida. Scribbling
interactions with a formal foundation. In R. Natarajan and A.K. Ojo, editors,
ICDCIT, volume 6536 of LNCS, pages 55–75. Springer, 2011.

17. Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous
session types. J. ACM, 63(1):9, 2016.

16

http://www.omg.org/spec/BPMN/2.0/

18. Julien Lange and Emilio Tuosto. Synthesising choreographies from local session
types. In CONCUR, pages 225–239, 2012.

19. Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines
to graphical choreographies. In Sriram K. Rajamani and David Walker, editors,
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, pages 221–232. ACM, 2015.

20. F. Montesi. Choreographic Programming. Ph.D. thesis, IT University of Copen-
hagen, 2013. http://fabriziomontesi.com/files/choreographic programming.pdf.

21. F. Montesi and N. Yoshida. Compositional choreographies. In P.R. D’Argenio and
H.C. Melgratti, editors, CONCUR, volume 8052 of LNCS, pages 425–439. Springer,
2013.

22. Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in
partially commutative asynchronous sessions. In ESOP, pages 316–332, 2009.

23. Nicholas Ng and Nobuko Yoshida. Pabble: Parameterised scribble for parallel pro-
gramming. In 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP 2014, Torino, Italy, February 12-14, 2014,
pages 707–714. IEEE Computer Society, 2014.

24. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

25. W3C WS-CDL Working Group. Web services choreography description language
version 1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/, 2004.

Full semantics of SP

The full semantics of SP is given in Figure 7.

EndPoint Projection

EPP is inductively defined by the rules in Figure 8. EPP produces a parallel com-
position with one process for each one process name in the original choreography.
The rules for projecting process behaviors follow the intuition of projecting the
local action performed by the process of interest. The rules for projecting re-
cursive definitions and calls assume that procedure names have been annotated
with the process names appearing inside the body of the procedure, in order to
avoid projecting unnecessary procedure code (see [11]). The rule for projecting a
conditional uses the partial merging operator t to merge the possible behaviors
of a process that does not know which branch will be chosen. Merging is a homo-
morphic binary operator; for all terms but branchings it requires isomorphism,
e.g.: q!〈e〉;Btq!〈e〉;B′ = q!〈e〉; (BtB′). Branching terms can have unmergeable
continuations, as long as they are guarded by distinct labels. In this case, merge
returns a larger branching including all options (merging branches with the same
label):

p&{li : Bi}i∈J t p&{li : B′i}i∈K =

p&
(
{li : (Bi tB′i)}i∈J∩K ∪ {li : Bi}i∈J\K ∪ {li : B′i}i∈K\J

)
17

http://fabriziomontesi.com/files/choreographic_programming.pdf

e[σ(p)/∗] ↓ v

p . q!〈e〉;B1 | q . p?;B2, σ
p.v -> q−−−−−→ p . B1 | q . B2, σ[q 7→ v]

bS|Come

p . B1 | N, σ λ−→ p . B′1 | N ′, σ′

p . defX = B2 inB1 | N, σ λ−→ p . defX = B2 inB
′
1 | N ′, σ′

bS|Ctxe

j ∈ I

p . q⊕ lj ;B | q . p&{li : Bi}i∈I , σ
p -> q[l]−−−−−→ p . B | q . Bj , σ

bS|Sele

e[σ(q)/∗] ↓ σ(p)

p . if ∗ <-=q thenB1 elseB2 | q . p!〈e〉;B′, σ p
<-
=q:then−−−−−→ p . B1 | q . B′, σ

bS|Thene

e[σ(q)/∗] 6↓ σ(p)

p . if ∗ <-=q thenB1 elseB2 | q . p!〈e〉;B′, σ p
<-
=q:else−−−−−→ p . B2 | q . B′, σ

bS|Elsee

N, σ
λ−→ N ′, σ′

N |M, σ
λ−→ N ′ |M, σ′

bS|Pare
N �M M,σ

λ−→ M ′, σ′ M ′ � N ′

N,σ
λ−→ N ′, σ′

bS|Structe

Fig. 7. Stateful Processes, Semantics.

Proofs of results on extraction (finite case)

Proof (Lemma 1). By definition, has the diamond property, and all the possi-
ble diamonds correspond exactly to rules in the definition of the structural pre-
congruence relation for CC. The thesis then follows by induction on the number
of rewriting steps in N ∗ C1.

Proof (Theorem 2). Straightforward by structural induction on C.

Remark 2. The extracted choreography can be exponential in the size of the
original network. Consider the family of networks Nn defined as follows.

Nn =

n∏
i=1

(
p2i−1 . if ∗<-= p2i then 0 else 0 | p2i . p2i−1!〈e〉

)
Nn contains exactly 2n actions, of which half are conditionals and half are mes-
sage sends. A straightforward induction proof establishes that every choreogra-
phy C such that ([Nn]) ∗ C contains 2n−1 conditionals (and no other actions).

Encoding top-level definitions in CC

We show how to encode top-level definitions in the original syntax of CC. We
illustrate the exponential growth by means of a choreography with two mutually
recursive definitions: 〈{X = CX , Y = CY }, C〉 where both CX , CY and C contain

18

[[C, σ]] =
∏

p∈pn(C)

p .σ(p) [[C]]p

[[p.e -> q;C]]r =

q!〈e〉; [[C]]r if r = p

p?; [[C]]r if r = q

[[C]]r o.w.

[[p -> q[l];C]]r =

q⊕ l; [[C]]r if r = p

p&{l : [[C]]r} if r = q

[[C]]r o.w.

[[if p
<-
=q thenC1 elseC2]]r =

if ∗ <-=q then [[C1]]r else [[C2]]r if r = p

p!〈∗〉; ([[C1]]r t [[C2]]r) if r = q

[[C1]]r t [[C2]]r o.w.

[[0]]r = 0

[[defX p̃ = C2 inC1]]r =

{
defX = [[C2]]r in [[C1]]r if r ∈ p̃

[[C1]]r o.w.
[[X p̃]]r =

{
X if r ∈ p̃

0 o.w.

Fig. 8. Core Choreographies, EndPoint Projection (EPP).

calls to X and Y . If we try to define it as a choreography of the form def X =
C2 inC1, then both C1 and C2 must be able to invoke Y , which means we have
to duplicate the definition of Y , obtaining

def X = (def Y = CY inCX) in (def Y ′ = CY [Y ′/Y] inC[Y ′/Y])

and the terms in parentheses correspond to the choreographies 〈{Y = CY }, CX〉
and 〈{Y = CY }, C〉 (where they are allowed to use X).

In general, we can therefore encode procedure definitions at the top by means
of an operator {[D, C]} defined as

{[∅, C]} = C

{[{X = CX} ∪ D, C}]} = def X = {[D, CX]} in {[D, C]}

where we rely on α-renaming to obtain different names for the procedures defined
in the two recursive calls to {[·]}.

Theorem 6. The choreographies 〈D, C〉 and {[D, C]} are behaviorally equivalent.

Proofs of results on extraction (general case)

Proof (Theorem 3). We describe an algorithm to find a valid SEG in the AES,
if it exists. To make it clearer, we first describe how one (possibly invalid) SEG
could be found. Start with the node representing the initial network and move

along edges in the graph, noting that if an edge labeled
p
<-
=q:then−−−−−→ is chosen,

then the path containing the corresponding else action must also be taken (and
reciprocally). We keep exploring the graph until all paths explored end or loop

19

into nodes already explored. Given the method of construction, we can view this
as a tree with loops back to earlier nodes. This construction will give us one
SEG.

To find a valid SEG, we backtrack over all the nodes where there were al-
ternative path continuations. We enumerate nodes consecutively as we explore
them, so if their number is different from the initial dummy value, we have found
a loop. From such a node where we just discovered that a loop started, we can
traverse the loop again by going towards the node with larger (initialized) num-
ber whenever there is a choice, and check for the existence of an all-white node
somewhere on the loop. If found, we proceed recursively with the latest unex-
plored branch. Otherwise, we backtrack, choosing the most recent unexplored
choice.

If there are no more possible unexplored alternatives, then one of the pro-
cesses in the node where the loop started is deadlocked in all subsequent states,
contradicting the hypothesis.

Proof (Theorem 4, sketch). Let N be a network and C be a choreography ex-
tracted from N . Define a relation R ⊆ C × N , where C = {C ′ | C →∗ C ′} and
N = {N ′ | N →∗ N ′}, as follows: C ′RN ′ if C →∗ C ′ and N →∗ N ′ with the
same sequence of actions. We prove that R is a bisimulation by induction on the
length of this sequence.

If the sequence is empty and C → C ′′, then clearly N → N ′′ with the same
action, since C is defined by choosing an action that N can make. If N → N ′′,
there are two cases; the interesting one is when the action taken is not the same
as specified at the top of C. Note that the processes involved are not able to
participate in any other reductions, so the action remains enabled in all execution
paths of N , in particular in that taken by C, and is swappable with every action
in C. Then we simply need to show that C eventually takes this action, which
is guaranteed by the fairness conditions imposed in Definition 4.

If this sequence is not empty, the proof for the case when C ′ makes a move
remains the same. For the case when N ′ makes a move, we can make a similar
argument by considering the actions from N to N ′ that occur at the top level
in C, which are necessarily swappable with the remaining ones; so C can reduce
to a choreography C∗, which can execute the action executed by N ′ (as in the
base case) and then the remaining actions in the reduction from N to N ′ to C ′′.
Again by swapping, also C ′ → C ′′.

Proof (Lemma 2). Let N be a network with p processes of sizes n1 through np,
where the size of a process is the number of nodes in an abstract syntax tree
representing the syntactical term. We let n =

∑p
i=1 ni denote the size of N .

Since recursive definitions are unfolded only when they occur at the top of
a behavior, a process of size ni can give rise to at most ni different terms when
all possible reductions are considered. Thus, N can reduce to at most

∏p
i=1 ni

different terms. Since the reductions give rise to the edges in the graph, this is also
an upper bound on the number of edges, so the graph is sparse. By the AM-GM
inequality,

∏p
i=1 ni is maximized when all the ni are equal, where it evaluates

20

to
(
n
p

)p
. We now consider annotations. We observe that all procedure calls in

the same process must be marked with the same token, so there are at most
2p annotations for each network, giving a total upper bound of 2p(np)p = (2n

p)p

different nodes in the AES. This expression attains its maximum when p = 2n
e ,

where e is Euler’s number, giving the upper bound of e
2n
e nodes in the AES

graph. ut

Proof (Theorem 5). Constructing the graph can be done iteratively by maintain-
ing a set of unexplored nodes. Whenever an unexplored node is examined, the
possible reductions lead to new terms; by keeping all created nodes in a search
structure, we can check if the node already exists (and get a reference to it) in
logarithmic time in the number of nodes (which is O(n)) and linear time in the
size of the term (which is also logarithmic in the size of the graph). Thus, the

AES can be constructed with overall complexity O(ne
2n
e).

To extract a valid SEG from the AES, we perform a graph traversal, which is
linear in the size of the graph. There is the one complication, however: checking
that loops contain an all-white node. Rechecking the entire loop could potentially
move the overall complexity to factorial time; we explain how to handle this
without increasing the asymptotic time complexity. Recall from the proof of
Theorem 3 that we stop our search and start backtracking when we discover
a loop; we thus conceptually have a path from the start node to our current
node at all times, and the path behaves in a stack-like manner. We introduce
an explicit stack as an auxiliary data structure. Each node on the current path
has a pointer to its entry on the stack. An item on the stack contains a boolean
stating if its corresponding node is all-white and a counter of how many white
nodes can be found further down on the stack. This information can easily be
maintained in constant time as we push and pop elements in connection with
running the backtracking algorithm. When we encounter a loop, we follow the
pointer to the node’s associated stack item and check the counter, c. The loop
just found has at least one white node if and only if the counter of the top item
on the stack is strictly greater than c.

21

	The Paths to Choreography Extraction

