
Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Description Logics, Rules and Multi-Context
Systems

Lúıs Cruz-Filipe
(joint work with R. Henriques and I. Nunes)

Escola Superior Náutica Infante D. Henrique / CMAF / LabMAg

LabMAg Seminar
December 6th, 2013

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Outline

1 Combinations of systems

2 (M)dl-programs

3 Multi-context systems

4 Correspondences

5 Conclusions

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Outline

1 Combinations of systems

2 (M)dl-programs

3 Multi-context systems

4 Correspondences

5 Conclusions

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Outline

1 Combinations of systems

2 (M)dl-programs

3 Multi-context systems

4 Correspondences

5 Conclusions

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Outline

1 Combinations of systems

2 (M)dl-programs

3 Multi-context systems

4 Correspondences

5 Conclusions

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Outline

1 Combinations of systems

2 (M)dl-programs

3 Multi-context systems

4 Correspondences

5 Conclusions

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Outline

1 Combinations of systems

2 (M)dl-programs

3 Multi-context systems

4 Correspondences

5 Conclusions

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Motivation

Proliferation of software

Expert systems

Technology reuse

Capitalize on domain-specific technology

Particular problem: combining description logics and rules

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Motivation

Proliferation of software

Expert systems

Technology reuse

Capitalize on domain-specific technology

Particular problem: combining description logics and rules

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Motivation

Proliferation of software

Expert systems

Technology reuse

Capitalize on domain-specific technology

Particular problem: combining description logics and rules

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Homogenous approach

Homogeneous systems

Several components of the same kind.

(Large) Java programs

MKNF knowledge bases

“Easy” to understand

Require specific technology

Hard to reuse existing tools

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Homogenous approach

Homogeneous systems

Several components of the same kind.

(Large) Java programs

MKNF knowledge bases

“Easy” to understand

Require specific technology

Hard to reuse existing tools

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Homogenous approach

Homogeneous systems

Several components of the same kind.

(Large) Java programs

MKNF knowledge bases

“Easy” to understand

Require specific technology

Hard to reuse existing tools

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Heterogenous approach

Heterogeneous systems

Several components of different kinds.

Service-oriented computing

dl-programs and their variants

Harder to understand

Rely on communication/interface

Highly modular

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Heterogenous approach

Heterogeneous systems

Several components of different kinds.

Service-oriented computing

dl-programs and their variants

Harder to understand

Rely on communication/interface

Highly modular

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Heterogenous approach

Heterogeneous systems

Several components of different kinds.

Service-oriented computing

dl-programs and their variants

Harder to understand

Rely on communication/interface

Highly modular

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Combining description logics with rules (I)

dl-programs (Eiter et al.)

Hex-programs (Eiter et al.)

Multi-context systems (Brewka et al.)

MKNF (Motik et al.)

How do these compare?

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Combining description logics with rules (I)

dl-programs (Eiter et al.)

One DL knowledge base + one logic program
Communication via special atoms
Generalized to several knowledge bases

Hex-programs (Eiter et al.)

Multi-context systems (Brewka et al.)

MKNF (Motik et al.)

How do these compare?

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Combining description logics with rules (I)

dl-programs (Eiter et al.)

Hex-programs (Eiter et al.)

Several knowledge bases (no restrictions)
One higher-order logic program
Communication atoms can access arbitrary resources

Multi-context systems (Brewka et al.)

MKNF (Motik et al.)

How do these compare?

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Combining description logics with rules (I)

dl-programs (Eiter et al.)

Hex-programs (Eiter et al.)

Multi-context systems (Brewka et al.)

Arbitrary knowledge bases
No logic program
Symmetric communication via bridge rules

MKNF (Motik et al.)

How do these compare?

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Combining description logics with rules (I)

dl-programs (Eiter et al.)

Hex-programs (Eiter et al.)

Multi-context systems (Brewka et al.)

MKNF (Motik et al.)

Homogeneous approach (so only one component)
Modal quantifiers over ontologies
“Mysterious” semantics

How do these compare?

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Combining description logics with rules (I)

dl-programs (Eiter et al.)

Hex-programs (Eiter et al.)

Multi-context systems (Brewka et al.)

MKNF (Motik et al.)

How do these compare?

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Combining description logics with rules (II)

Correspondence results:

(M)dl-programs (Hex-programs (trivial)

Hex-programs and MCSs incomparable

MKNF ⊆ MCS (Homola et al.)

(M)dl-programs (MCSs (hinted at in Brewka et al.)

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Combining description logics with rules (II)

Correspondence results:

(M)dl-programs (Hex-programs (trivial)

Hex-programs and MCSs incomparable

MKNF ⊆ MCS (Homola et al.)

(M)dl-programs (MCSs (hinted at in Brewka et al.)

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Outline

1 Combinations of systems

2 (M)dl-programs

3 Multi-context systems

4 Correspondences

5 Conclusions

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Syntax & semantics

Syntax

Logic program + DL knowledge bases

Special dl-atoms for communication

DLi︸︷︷︸
KB identifier

[S1 •1 p1, . . . ,Sn •n pn︸ ︷︷ ︸
input context

; Q︸︷︷︸
query

](~X)

with •k ∈ {],∪- }

Semantics

Herbrand models (with constants from the knowledge bases)

Minimal models

Answer-sets

Well-founded semantics

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Syntax & semantics

Syntax

Logic program + DL knowledge bases

Special dl-atoms for communication

DLi︸︷︷︸
KB identifier

[S1 •1 p1, . . . ,Sn •n pn︸ ︷︷ ︸
input context

; Q︸︷︷︸
query

](~X)

with •k ∈ {],∪- }

Semantics

Herbrand models (with constants from the knowledge bases)

Minimal models

Answer-sets

Well-founded semantics

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Syntax & semantics

Syntax

Logic program + DL knowledge bases

Special dl-atoms for communication

DLi︸︷︷︸
KB identifier

[S1 •1 p1, . . . ,Sn •n pn︸ ︷︷ ︸
input context

; Q︸︷︷︸
query

](~X)

with •k ∈ {],∪- }

Semantics

Herbrand models (with constants from the knowledge bases)

Minimal models

Answer-sets

Well-founded semantics

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

(M)dl-programs in practice

Simple!

Modular

Allow reuse of technology (ontologies)

Several publications with domain-specific examples

Interpretable in Hex-programs or MCSs

Reasoning tools

Design patterns

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Example

Example

Σ1 is a travel ontology, Σ2 is a wine ontology

wineDest(X)← DL2[; Region](X)

wineDest(Tasmania)←
wineDest(Sydney)←

overnight(X)← DL1[; hasAccommodation](X ,Y)

oneDayTrip(X)← DL1[Destination] wineDest; Destination](X),

not overnight(X)

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Outline

1 Combinations of systems

2 (M)dl-programs

3 Multi-context systems

4 Correspondences

5 Conclusions

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Syntax (I)

Logic

A logic is the language underlying a context, specifying its syntax
and semantics:
L = 〈KB,BS ,ACC 〉

KB is the set of knowledge bases

BS is the set of belief sets

ACC : KB → 2BS assigns acceptable belief sets to knowledge
bases

Examples: Reiter’s default logic; FOL; logic programs; description
logics; . . .

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Syntax (I)

Logic

A logic is the language underlying a context, specifying its syntax
and semantics:
L = 〈KB,BS ,ACC 〉

KB is the set of knowledge bases

BS is the set of belief sets

ACC : KB → 2BS assigns acceptable belief sets to knowledge
bases

Examples: Reiter’s default logic; FOL; logic programs; description
logics; . . .

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Syntax (II)

Context

A context is a specific knowledge base in a given logic:
C = 〈L, kb, br〉

L is a logic

kb is a particular knowledge base

br is a set of bridge rules connecting C to other contexts

A bridge rule:

p← (i1 : qi), . . . , (in : qn), not (in+1, qn+1), . . . , not (im, qm)

where ik are context identifiers (numbers) and qk are elements of
belief sets in the corresponding context

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Syntax (II)

Context

A context is a specific knowledge base in a given logic:
C = 〈L, kb, br〉

L is a logic

kb is a particular knowledge base

br is a set of bridge rules connecting C to other contexts

A bridge rule:

p← (i1 : qi), . . . , (in : qn), not (in+1, qn+1), . . . , not (im, qm)

where ik are context identifiers (numbers) and qk are elements of
belief sets in the corresponding context

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Syntax (III)

Multi-context system

A Multi-context system (MCS) is a set of contexts whose bridge
rules connect to contexts in the same set:
M = 〈C1, . . . ,Cn〉
and all context identifiers in bridge rules are numbers ranging from
1 to n.

Technically: non-monotonic heterogenous multi-context systems

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Syntax (III)

Multi-context system

A Multi-context system (MCS) is a set of contexts whose bridge
rules connect to contexts in the same set:
M = 〈C1, . . . ,Cn〉
and all context identifiers in bridge rules are numbers ranging from
1 to n.

Technically: non-monotonic heterogenous multi-context systems

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Semantics

A belief state is a set of belief sets, one for each context.

An equilibrium is a belief state such that that each belief set is
acceptable w.r.t. the knowledge base of that context extended with
the input from that context’s bridge rules, given the belief state.

Equilibrium

It’s a kind of fixpoint, dude!

Same idea as that of models of logic programming.

Minimal equilibria

Grounded equilibria

Well-founded equilibria

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Semantics

A belief state is a set of belief sets, one for each context.

An equilibrium is a belief state such that that each belief set is
acceptable w.r.t. the knowledge base of that context extended with
the input from that context’s bridge rules, given the belief state.

Equilibrium

It’s a kind of fixpoint, dude!

Same idea as that of models of logic programming.

Minimal equilibria

Grounded equilibria

Well-founded equilibria

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Semantics

A belief state is a set of belief sets, one for each context.

An equilibrium is a belief state such that that each belief set is
acceptable w.r.t. the knowledge base of that context extended with
the input from that context’s bridge rules, given the belief state.

Equilibrium

It’s a kind of fixpoint, dude!

Same idea as that of models of logic programming.

Minimal equilibria

Grounded equilibria

Well-founded equilibria

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Semantics

A belief state is a set of belief sets, one for each context.

An equilibrium is a belief state such that that each belief set is
acceptable w.r.t. the knowledge base of that context extended with
the input from that context’s bridge rules, given the belief state.

Equilibrium

It’s a kind of fixpoint, dude!

Same idea as that of models of logic programming.

Minimal equilibria

Grounded equilibria

Well-founded equilibria

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

MCSs in practice

Highly expressive

Modular

Allow reuse of technology (not only ontologies)

Even more publications with domain-specific examples

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Outline

1 Combinations of systems

2 (M)dl-programs

3 Multi-context systems

4 Correspondences

5 Conclusions

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Motivation

MCSs were proposed as a generalization of dl-programs, but there
are some differences.

No logic program (where do the rules go?)

Many local “views” of the knowledge base vs only global
changes

Example

wineDest(X)← DL2[; Region](X)

overnight(X)← DL1[; hasAccommodation](X ,Y)

oneDayTrip(X)← DL1[Destination] wineDest; Destination](X),

not overnight(X)

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Motivation

MCSs were proposed as a generalization of dl-programs, but there
are some differences.

No logic program (where do the rules go?)

Many local “views” of the knowledge base vs only global
changes

Example

wineDest(X)← DL2[; Region](X)

overnight(X)← DL1[; hasAccommodation](X ,Y)

oneDayTrip(X)← DL1[Destination] wineDest; Destination](X),

not overnight(X)

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Idea

Generate a logic program context

Split the original program between that context and bridge
rules

Generate a context for each view of a knowledge base

Add bridge rules to these contexts corresponding the the
desired view

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Big but. . .

Problem

How does an ontology generate a context?

Example

O = {C (a)}, U = {a, b}
How do we close the world?

Bridge rule: “¬C (X)← not (1 : C (X))”

Problem

Does not work!

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Big but. . .

Problem

How does an ontology generate a context?

Example

O = {C (a)}, U = {a, b}
How do we close the world?

Bridge rule: “¬C (X)← not (1 : C (X))”

Problem

Does not work!

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Big but. . .

Problem

How does an ontology generate a context?

Example

O = {C (a)}, U = {a, b}
How do we close the world?

Bridge rule: “¬C (X)← not (1 : C (X))”

Problem

Does not work!

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Big but. . .

Problem

How does an ontology generate a context?

Example

O = {C (a)}, U = {a, b}
How do we close the world?

Bridge rule: “¬C (X)← not (1 : C (X))”

Problem

Does not work!

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

The translation

Knowledge base Σi induces a context C j
i for each input

context in dl-atoms querying Σi

The logic C j
i defines ACC (kb) as the (singleton set containing

the) set of logical consequences of kb

The logic program induces a context C0 containing its purely
logical part

Rules with dl-atoms become bridge rules

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

The translation

Knowledge base Σi induces a context C j
i for each input

context in dl-atoms querying Σi

The logic C j
i defines ACC (kb) as the (singleton set containing

the) set of logical consequences of kb
May not be a model of kb!

The logic program induces a context C0 containing its purely
logical part

Rules with dl-atoms become bridge rules

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

The translation

Knowledge base Σi induces a context C j
i for each input

context in dl-atoms querying Σi

The logic C j
i defines ACC (kb) as the (singleton set containing

the) set of logical consequences of kb

The logic program induces a context C0 containing its purely
logical part

Rules with dl-atoms become bridge rules

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Our example

C 1
1 : travel ontology with no bridge rules

C 2
1 : travel ontology with bridge rule

Destination(X)← (0 : wineDest(X))

C2: wine ontology with no bridge rules

C0: the logic program

wineDest(Tasmania)←
wineDest(Sydney)←

with bridge rules

wineDest(X)← (2 : Region(X))

overnight(X)← (11 : hasAccommodation(X ,Y))

oneDayTrip(X)← (12 : Destination(X)), (0 : not overnight(X))

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

At the semantic level

Belief state S induced by interpretation I for the logic program

Theorem

S is equilibrium (for the MCS) iff I is a model (of the
Mdl-program)

S is minimal iff I is minimal

S is grounded iff I is answer-set

S is well-founded iff I is well-founded

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Outline

1 Combinations of systems

2 (M)dl-programs

3 Multi-context systems

4 Correspondences

5 Conclusions

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Mdl-programs vs Multi-context systems

Strictly included

Equivalence of semantics

Portability of results

Combinations of systems (M)dl-programs Multi-context systems Correspondences Conclusions

Thank you.

	Combinations of systems
	(M)dl-programs
	Multi-context systems
	Correspondences
	Conclusions

