formalizing approximation fixpoint theory in coq

luís cruz-filipe¹ bart bogaerts²

¹ department of mathematics and computer science university of southern denmark

> ² department of computer science vrije universiteit brussel

types for proofs and programs june 14th, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

in a nutshell

approximation fixpoint theo	ry		
what			
■ why			
■ how			
■ how			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

coq formalization

- guiding principles
- current status
- challenges

approximation fixpoint theory

what

a framework for studying fixpoints

- of operators over complete lattices
- of approximators to these operators

イロト 不得 トイヨト イヨト

э

approximation fixpoint theory

what

a framework for studying fixpoints

- of operators over complete lattices
- of approximators to these operators

why

unifying theory for many different constructions in (non-monotonic) logics

(日) (四) (日) (日) (日)

approximation fixpoint theory

what

a framework for studying fixpoints

- of operators over complete lattices
- of approximators to these operators

why

unifying theory for many different constructions in (non-monotonic) logics

how

heavy use of transfinite sequences and transfinite induction

$the \ coq \ formalization$

$design \ decisions$

- constructive (as far as possible)
- follow the mathematical development closely

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$the \ coq \ formalization$

design decisions

- constructive (as far as possible)
- follow the mathematical development closely

$current\ status$

- type of unbounded sets of ordinals
 - examples: ω , ω^{ω}
- type of complete lattices [very standard!]
 - example: powersets
 - constructions: billatice, dual
- basic definitions of aft (see abstract)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$the \ coq \ formalization$

$design \ decisions$

- constructive (as far as possible)
- follow the mathematical development closely

$current\ status$

- type of unbounded sets of ordinals
- type of complete lattices [very standard!]
- basic definitions of aft (see abstract)

main challenges

adapt proofs relying on some classical decidability properties

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

formalizing approximation fixpoint theory in coq

thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ