Injective homomorphisms of directed graphs

Gary MacGillivray
University of Victoria
Canada

Abstract

A homomorphism from a digraph D to a digraph H is called injective if it is injective on the in-neighbourhood of each vertex. Complexity results for injective homomorphisms of irreflexive digraphs D are considered in the case when the target digraph H is reflexive, and in the case where the target graph H is irreflexive. A dichotomy theorem is obtained in the case where H is reflexive, whereas such a theorem in the case where H is irreflexive would imply one for all digraph homomorphism problems. The complexity of the related injective oriented chromatic number problems (the minimum n for which a digraph D admits an injective homomorphism to a digraph on n vertices – defined together with A. Raspaud) is also discussed.