A complexity dichotomy for the coloring of sparse graphs^{*}

Louis Esperet[†] Mickaël Montassier[‡] Pascal Ochem[§] Alexandre Pinlou[¶]

January 18, 2011

Abstract

Gallucio, Goddyn and Hell proved in 2001 that in any minor-closed class, graphs with large enough girth have a homomorphism to any given odd cycle. In this paper, we study the computational aspects of this problem. We show that for any minor-closed class \mathcal{F} containing all planar graphs, and such that all minimal obstructions are 3-connected, the following holds: for any k there is a $g = g(\mathcal{F}, k)$ such that every graph of girth at least g in \mathcal{F} has a homomorphism to C_{2k+1} , but deciding whether a graph of girth g - 1 in \mathcal{F} has a homomorphism to C_{2k+1} is NP-complete. The classes of graphs on which this result applies include planar graphs, K_n -minor free graphs, and graphs with bounded Colin de Verdière parameter (for instance, linklessly embeddable graphs).

We also show that the same dichotomy occurs in problems related to a question of Havel (1969) and a conjecture of Steinberg (1976) about the 3-colorability of sparse planar graphs.

^{*}This work was partially supported by the French Agence Nationale de la Recherche, through projects GRATOS (ANR-09-JCJC-0041-01) and HEREDIA (ANR-10-JCJC-0204-01).

[†]Laboratoire G-SCOP (Grenoble-INP, CNRS), Grenoble, France.

[‡]LaBRI (Université de Bordeaux, CNRS), Talence, France.

[§]LRI (Université Paris Sud, CNRS), Orsay, France.

[¶]LIRMM (Université Montpellier 2, CNRS), Montpellier, France.