

Embedding a Mesh in a Linear Array

Embedding linear array in mesh:

congestion: 1; dilation: 1

Embedding a Mesh in a Linear Array by using the inverse mapping:

Cost – Performance – Tradeoff: Comparison Fat-Mesh / Hypercube - p nodes identical costs: proportional to the number of wires

	fat-mesh	hypercube
costs	k (=2p * f)	k (= p/2 * log p)
costs per channel	$f = (\log p)/4$	1
average distance of two nodes	$I_{av} = \sqrt{p} / 2$	$I_{av} = \frac{1}{2} * \log p$
time for sending message of size m between two random nodes (cut-through routing)	$t_s + t_h \cdot I_{av} + t_w / f \cdot m$	$t_s + t_h \cdot I_{av} + t_w \cdot m$
per word transfer time	$t_{w} / f = 4 t_{w} / (\log p)$	t _w
average communication latency	$t_s + t_h \sqrt{p} / 2 + 4 t_w m/(\log p)$	$t_s + t_h \cdot (\log p)/2 + t_w m$

 \Rightarrow for p>16 and m sufficiently large, the fat-mesh is better

Note: cut-through routing and light load conditions!

Cost – Performance – Tradeoff: Comparison Fat-Mesh / Hypercube - p nodes identical costs: bisection width

	fat-mesh	hypercube
costs	k (= $2\sqrt{p} * f$)	k (= p/2)
costs per channel	$f = \sqrt{p}/4$	1
average distance of two nodes	$I_{av} = \sqrt{p}/2$	$I_{av} = \frac{1}{2} \cdot \log p$
time for sending message of size m between two random nodes (cut-through routing)	$t_s + t_h \cdot I_{av} + t_w / f \cdot m$	$t_s + t_h \cdot I_{av} + t_w \cdot m$
per word transfer time	$t_w / f = 4 \cdot t_w / \sqrt{p}$	t _w
average communication latency	$t_s + t_h \sqrt{p} / 2 + 4 t_w m / \sqrt{p}$	$t_s + t_h \cdot (\log p)/2 + t_w m$

\Rightarrow again: for p>16 and m sufficiently large, the fat-mesh is better

even when the network is heavily loaded, the performance is similar to that of the hypercube at the same cost