Introduction to Parallel Computing

George Karypis Search Algorithms for Discrete Optimization Problems

Overview

- What is a Discrete Optimization Problem
- Sequential Solution Approaches
- Parallel Solution Approaches
- Challenges

Discrete Optimization Problems

- A discrete optimization problem (DOP) is defined as a tuple of (S, f)
 - \Box S : The set of feasible states
 - \Box *f* : A cost function *f* : *S* -> *R*
- The objective is to find the optimal solution x_{opt} in S such that $f(x_{opt})$ is maximum over all solutions.

Examples:

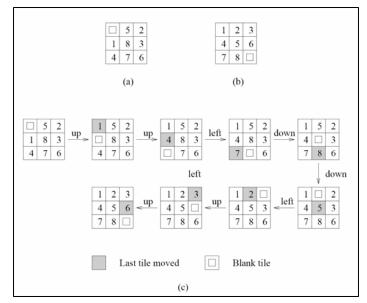
- □ 0/1 integer linear programming problem
- □ 8-puzzle problem

Examples

0/1 Linear integer problem:

Given an *mxn* matrix A, vectors b and c, find vector x such that

- x contains only 0s and 1s
- *Ax* > *b*
- $f(x) = x^{\mathsf{T}}c$ is maximized.
- 8-puzzle problem:
 - Given an initial configuration of an 8-puzzle find the shortest sequence of moves that will lead to the final configuration.

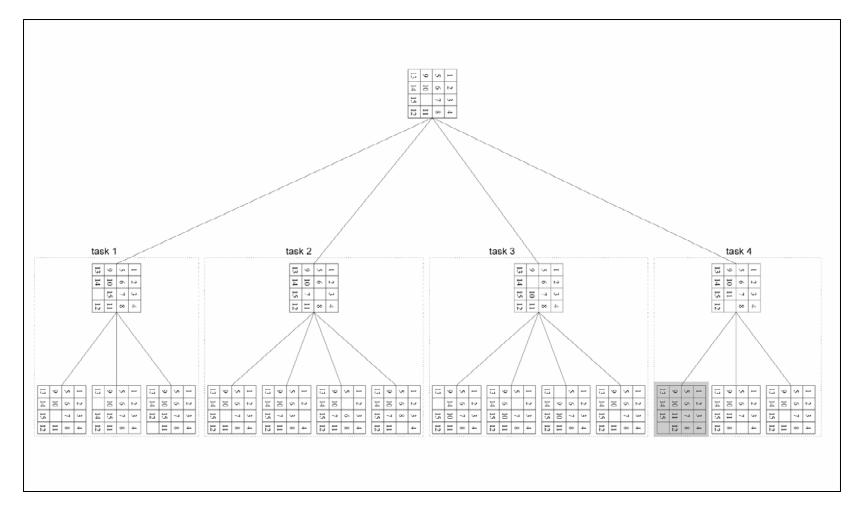


DOP & Graph Search

- Many DOP can be formulated as finding the a minimum cost path in a graph.
 - Nodes in the graph correspond to states.
 - States are classified as either
 - terminal & non-terminal
 - Some of the states correspond to feasible solutions whereas others do not.
 - Edges correspond to "costs" associated with moving from one state to the other.
- These graphs are called state-space graphs.

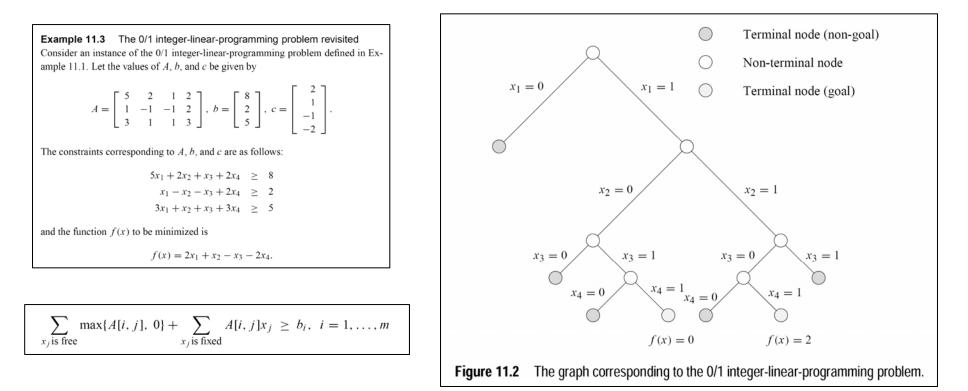
Examples of State-Space Graphs

15-puzzle problem:



Examples of State-Space Graphs

0/1 Linear integer programming problem
 States correspond to partial assignment of values to components of the *x* vector.



Exploring the State-Space Search

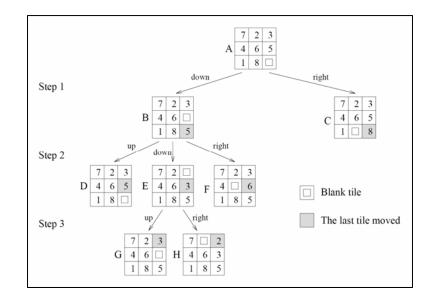
- The solution is discovered by exploring the state-space search.
 - Exponentially large
 - Heuristic estimates of the solution cost are used.
 - \Box Cost of reaching to a feasible solution from current state *x* is
 - l(x) = g(x) + h(x)
- Admissible heuristics are the heuristics that correspond to lower bounds on the actual cost.
 - Manhattan distance is an admissible heuristic for the 8-puzzle problem.
- Idea is to explore the state-space graph using heuristic cost estimates to guide the search.

□ Do not spend any time exploring "bad" or "unpromising" states.

Exploration Strategies

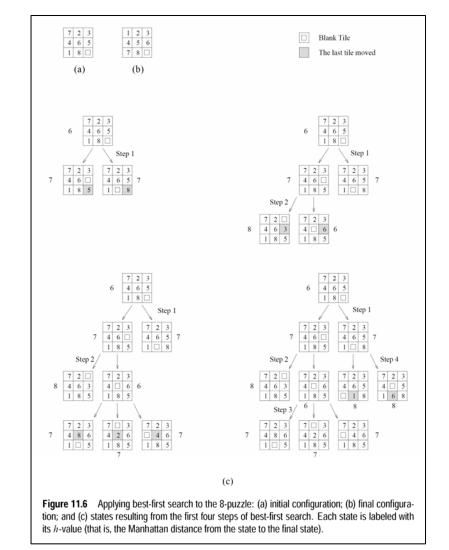
Depth-First

- Simple & Ordered Backtracking
- Depth-First Branch-and-Bound
 - Partial solutions that are inferior to the current best solutions are discarded.
- □ Iterative Deepening A*
 - Tree is expanded up to certain depth.
 - If no feasible solution is found, the depth is increased and the entire process is repeated.
- Memory complexity linear on the depth of the tree.
- Suitable primarily for state-graphs that are trees.



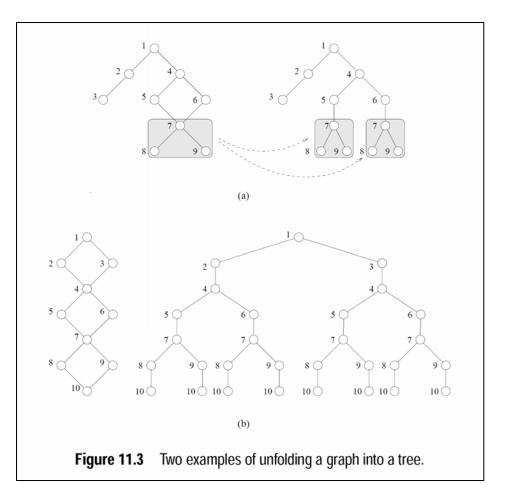
Exploration Strategies

- Best-First Search
 OPEN/CLOSED lists
 - □ A* algorithm
 - Heuristic estimate is used to order the nodes in the open list.
 - Large memory complexity.
 - Proportional to the number of states visited.
 - Suitable for state-space graphs that are either trees or graphs.



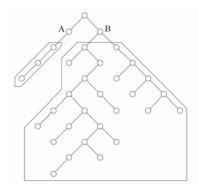
Trees vs Graphs

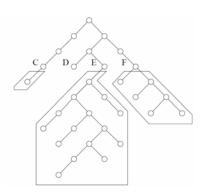
 Exploring a graph as if it was a tree.
 Can be a problem...



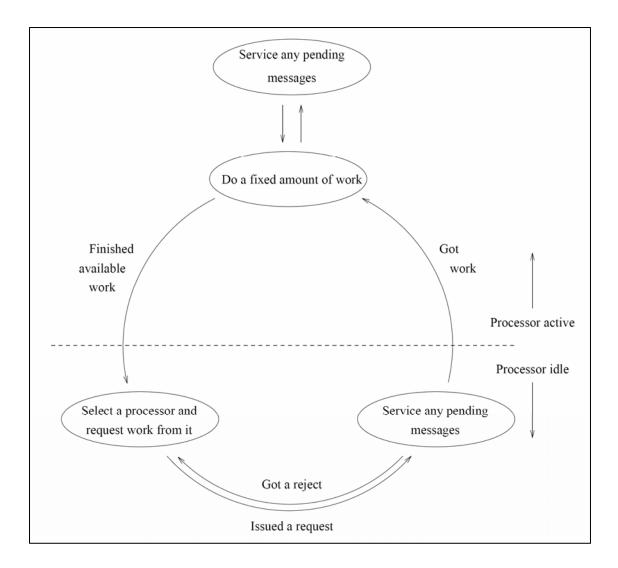
Parallel Depth-First Challenges

- Computation is dynamic and unstructured
 - □ Why dynamic?
 - □ Why unstructured?
- Decomposition approaches?
 - Do we do the same work as the sequential algorithm?
- Mapping approaches?
 How do we ensure load balance?





Overall load-balancing strategy



Some more details

Load balancing strategies

- Which processor should I ask for work?
 - Global round-robin
 - Asynchronous (local) round-robin
 - Random
- Work splitting strategies
 - Which states from my stack should I give away?
 - top/bottom/one/many

Analysis

- How can we analyze these algorithms?
- Focus on worst-case complexity.
- Assumptions/Definitions:
 - \Box a-splitting:
 - A work transfer request between two processors results in each processor having at least aW work for 0<a<=5 and W the original work available to one processor.
 - V(p) the number of work-transfer requests that are required to ensure that each processor has been requested for work at least once.

Then...

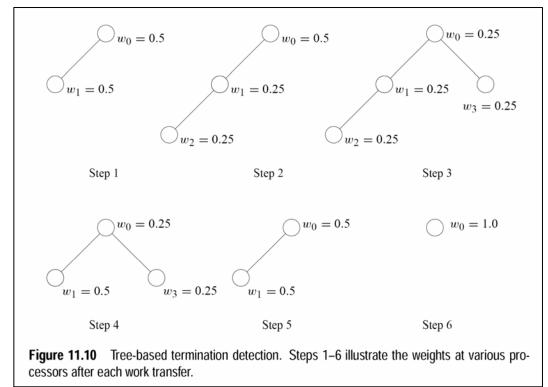
$$T_o = t_{comm} V(p) \log W$$

Analysis

- Different load balancing schemes have different V(p)
 - \Box Global round-robin: V(p)=O(p).
 - \Box Asynchronous round-robin: V(p) = O(p²)
 - \Box Random: V(p) = O(plog(p))

Termination Detection

- How do we know that the total work has finished?
 - Dijkstra's algorithm
 - □ Tree-based termination

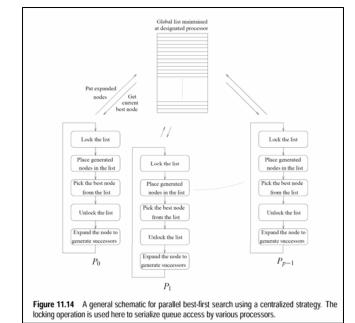


Parallel Best-First Challenges

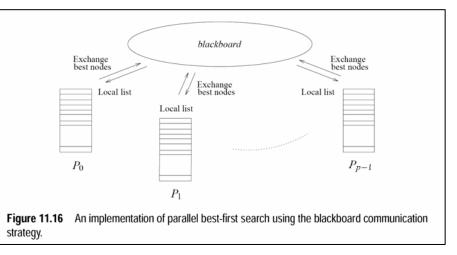
Who maintains the Open & Closed listsHow do you search a graph?

Open/Closed List Maintenance

- Centralized scheme
 - contention
- Distributed scheme
 - □ non-essential computations.
 - periodic information exchange.







Searching graphs

- Associate a processor with each individual node
 - Every time a node is generated is sent to this processor to check if it has been generated before.
 - Random hash-function that ensures load balancing.
 - □ High communication cost.

Speedup Anomalies

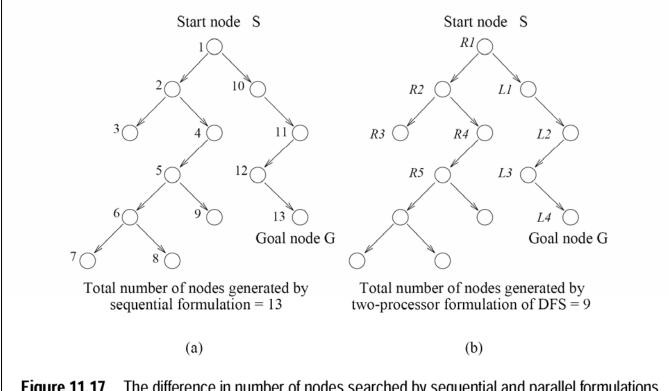


Figure 11.17 The difference in number of nodes searched by sequential and parallel formulations of DFS. For this example, parallel DFS reaches a goal node after searching fewer nodes than sequential DFS.