
Introduction to 
Parallel Computing

George Karypis
Principles of Parallel Algorithm 
Design



Outline
Overview of some Serial Algorithms
Parallel Algorithm vs Parallel Formulation
Elements of a Parallel Algorithm/Formulation
Common Decomposition Methods

concurrency extractor!
Common Mapping Methods

parallel overhead reducer!



Some Serial Algorithms
Working Examples

Dense Matrix-Matrix & Matrix-Vector 
Multiplication
Sparse Matrix-Vector Multiplication
Gaussian Elimination
Floyd’s All-pairs Shortest Path
Quicksort
Minimum/Maximum Finding
Heuristic Search—15-puzzle problem



Dense Matrix-Vector Multiplication



Dense Matrix-Matrix Multiplication



Sparse Matrix-Vector Multiplication



Gaussian Elimination



Floyd’s All-Pairs Shortest Path



Quicksort



Minimum Finding



15—Puzzle Problem



Parallel Algorithm vs Parallel 
Formulation

Parallel Formulation
Refers to a parallelization of a serial algorithm.

Parallel Algorithm
May represent an entirely different algorithm than the 
one used serially.

We primarily focus on “Parallel Formulations”
Our goal today is to primarily discuss how to develop 
such parallel formulations.
Of course, there will always be examples of “parallel 
algorithms” that were not derived from serial 
algorithms. 



Elements of a Parallel 
Algorithm/Formulation

Pieces of work that can be done concurrently
tasks

Mapping of the tasks onto multiple processors
processes vs processors

Distribution of input/output & intermediate data across the different 
processors
Management the access of shared data

either input or intermediate
Synchronization of the processors at various points of the parallel 
execution

Holy Grail:
Maximize concurrency and reduce overheads due to parallelization!
Maximize potential speedup!



Finding Concurrent Pieces of Work

Decomposition:
The process of dividing the computation into 
smaller pieces of work i.e., tasks

Tasks are programmer defined and are 
considered to be indivisible



Example: Dense Matrix-Vector 
Multiplication

Tasks can be of different size.
• granularity of a task



Example: Query Processing

Query:



Example: Query Processing
Finding concurrent tasks…



Task-Dependency Graph
In most cases, there are dependencies between 
the different tasks

certain task(s) can only start once some other task(s) 
have finished

e.g., producer-consumer relationships
These dependencies are represented using a 
DAG called task-dependency graph



Task-Dependency Graph (cont)
Key Concepts Derived from the Task-
Dependency Graph

Degree of Concurrency
The number of tasks that can be concurrently 
executed

we usually care about the average degree of 
concurrency

Critical Path
The longest vertex-weighted path in the graph

The weights represent task size

Task granularity affects both of the above 
characteristics



Task-Interaction Graph
Captures the pattern of interaction between 
tasks

This graph usually contains the task-dependency 
graph as a subgraph

i.e., there may be interactions between tasks even if there 
are no dependencies

these interactions usually occur due to accesses on shared 
data



Task Dependency/Interaction 
Graphs

These graphs are important in developing 
effectively mapping the tasks onto the different 
processors

Maximize concurrency and minimize overheads

More on this later…



Common Decomposition Methods

Data Decomposition
Recursive Decomposition
Exploratory Decomposition
Speculative Decomposition
Hybrid Decomposition

Task 
decomposition 
methods



Recursive Decomposition
Suitable for problems that can be solved 
using the divide-and-conquer paradigm
Each of the subproblems generated by the 
divide step becomes a task



Example: Quicksort



Example: Finding the Minimum
Note that we can obtain divide-and-conquer algorithms 
for problems that are traditionally solved using non-
divide-and-conquer approaches



Recursive Decomposition
How good are the decompositions that it 
produces?

average concurrency?
critical path?

How do the quicksort and min-finding 
decompositions measure-up?



Data Decomposition
Used to derive concurrency for problems that operate on 
large amounts of data
The idea is to derive the tasks by focusing on the 
multiplicity of data
Data decomposition is often performed in two steps

Step 1: Partition the data
Step 2: Induce a computational partitioning from the data 
partitioning

Which data should we partition?
Input/Output/Intermediate?

Well… all of the above—leading to different data decomposition 
methods

How do induce a computational partitioning?
Owner-computes rule



Example: Matrix-Matrix 
Multiplication

Partitioning the output data



Example: Matrix-Matrix 
Multiplication

Partitioning the intermediate data



Data Decomposition
Is the most widely-used decomposition 
technique

after all parallel processing is often applied to 
problems that have a lot of data
splitting the work based on this data is the natural 
way to extract high-degree of concurrency

It is used by itself or in conjunction with other 
decomposition methods

Hybrid decomposition



Exploratory Decomposition
Used to decompose computations that 
correspond to a search of a space of 
solutions



Example: 15-puzzle Problem



Exploratory Decomposition
It is not as general purpose
It can result in speedup anomalies

engineered slow-down or superlinear
speedup



Speculative Decomposition
Used to extract concurrency in problems in 
which the next step is one of many 
possible actions that can only be 
determined when the current tasks 
finishes
This decomposition assumes a certain 
outcome of the currently executed task 
and executes some of the next steps

Just like speculative execution at the 
microprocessor level



Example: Discrete Event 
Simulation



Speculative Execution
If predictions are wrong…

work is wasted
work may need to be undone

state-restoring overhead
memory/computations

However, it may be the only way to extract 
concurrency!



Mapping the Tasks
Why do we care about task mapping?

Can I just randomly assign them to the available processors?

Proper mapping is critical as it needs to minimize the 
parallel processing overheads

If Tp is the parallel runtime on p processors and Ts is the serial 
runtime, then the total overhead To is p*Tp – Ts

The work done by the parallel system beyond that required by the
serial system

Overhead sources:
Load imbalance
Inter-process communication

coordination/synchronization/data-sharing

remember the 
holy grail…

they can 
be at odds 
with each 

other



Why Mapping can be Complicated?
Proper mapping needs to take into account the task-dependency 
and interaction graphs

Are the tasks available a priori?
Static vs dynamic task generation

How about their computational requirements?
Are they uniform or non-uniform?
Do we know them a priori?

How much data is associated with each task?
How about the interaction patterns between the tasks?

Are they static or dynamic?
Do we know them a priori?
Are they data instance dependent?
Are they regular or irregular?
Are they read-only or read-write?

Depending on the above characteristics different mapping 
techniques are required of different complexity and cost

Task 
dependency 
graph

Task 
interaction 
graph



Example: Simple & Complex Task 
Interaction



Mapping Techniques for Load 
Balancing

Be aware…
The assignment of tasks whose aggregate 
computational requirements are the same does not 
automatically ensure load balance. 

Each 
processor is 

assigned three 
tasks but (a) is 
better than (b)!



Load Balancing Techniques
Static

The tasks are distributed among the processors prior 
to the execution
Applicable for tasks that are 

generated statically
known and/or uniform computational requirements

Dynamic
The tasks are distributed among the processors 
during the execution of the algorithm

i.e., tasks & data are migrated
Applicable for tasks that are

generated dynamically
unknown computational requirements



Static Mapping—Array Distribution

Suitable for algorithms that 
use data decomposition 
their underlying input/output/intermediate data 
are in the form of arrays

Block Distribution
Cyclic Distribution
Block-Cyclic Distribution
Randomized Block Distributions

1D/2D/3D



Examples: Block Distributions



Examples: Block Distributions



Example: Block-Cyclic Distributions

Gaussian Elimination
The active portion
of the array shrinks
as the computations
progress



Random Block Distributions
Sometimes the computations are performed only 
at certain portions of an array

sparse matrix-matrix multiplication



Random Block Distributions
Better load balance can be achieved via a 
random block distribution



Graph Partitioning
A mapping can be achieved by directly 
partitioning the task interaction graph.

EG: Finite element mesh-based computations



Directly partitioning this graph



Example: Sparse Matrix-Vector
Another instance of graph partitioning



Dynamic Load Balancing Schemes

There is a huge body of research
Centralized Schemes

A certain processors is responsible for giving out work
master-slave paradigm

Issue:
task granularity

Distributed Schemes
Work can be transferred between any pairs of processors.
Issues:

How do the processors get paired?
Who initiates the work transfer? push vs pull
How much work is transferred?



Mapping to Minimize Interaction 
Overheads

Maximize data locality
Minimize volume of data-exchange
Minimize frequency of interactions
Minimize contention and hot spots
Overlap computation with interactions
Selective data and computation replication

Achieving the above is usually an interplay of 
decomposition and mapping and is usually done iteratively


