
Introduction to 
Parallel Computing

George Karypis
Dense Matrix Algorithms



Outline
Focus on numerical algorithms involving 
dense matrices:

Matrix-Vector Multiplication
Matrix-Matrix Multiplication
Gaussian Elimination

Decompositions & Scalability



Review



Matrix-Vector Multiplication
Compute: y = Ax

y, x are nx1 vectors
A is an nxn dense matrix

Serial complexity: W = O(n2).
We will consider:

1D & 2D partitioning.



Row-wise 1D Partitioning

How do we perform the operation?



Row-wise 1D Partitioning
Each processor needs to have the entire x vector.

All-to-all broadcast Local computations

Analysis?



Block 2D Partitioning

How do we perform the operation?



Block 2D Partitioning
Each processor needs to have the portion of the x vector 

that corresponds to the set of columns that it stores.

Analysis?



1D vs 2D Formulation
Which one is better?



Matrix-Matrix Multiplication
Compute: C = AB

A, B, & C are nxn dense
matrices.

Serial complexity: 
W = O(n3).
We will consider:

2D & 3D partitioning.



Simple 2D Algorithm
Processors are arranged in a logical 
sqrt(p)*sqrt(p) 2D topology.
Each processor gets a block of 
(n/sqrt(p))*(n/sqrt(p)) block of A, B, & C.
It is responsible for computing the entries 
of C that it has been assigned to.
Analysis?

How about the
memory 

complexity?



Cannon’s Algorithm
Memory efficient variant of the simple 
algorithm.
Key idea:

Replace traditional loop:

With the following loop:

During each step, processors operate on 
different blocks of A and B.



Can we do better?
Can we use more than O(n2) processors?
So far the task corresponded to the dot-
product of two vectors

i.e., Ci,j = Ai,* . B*,j

How about performing this dot-product in 
parallel?
What is the maximum concurrency that we 
can extract?



3D Algorithm—DNS Algorithm
Partitioning the intermediate data



3D Algorithm—DNS Algorithm



Which one is better?



Gaussian Elimination
Solve Ax=b

A is an nxn dense matrix.
x and b are dense vectors

Serial complexity: 
W = O(n3).
There are two key steps in 
each iteration:

Division step
Rank-1 update

We will consider:
1D & 2D partitioning, and 
introduce the notion of 
pipelining.



1D Partitioning
Assign n/p rows of A to 
each processor.
During the ith iteration:

Divide operation is 
performed by the processor 
who stores row i.
Result is broadcasted to the 
rest of the processors.
Each processor performs 
the rank-1 update for its 
local rows.

Analysis? 

(one element per processor)



1D Pipelined Formulation
Existing Algorithm: 
Next iteration starts only when the 
previous iteration has finished.
Key Idea:
The next iteration can start as soon as the 
rank-1 update involving the next row has 
finished.

Essentially multiple iterations are perform 
simultaneously!



Cost-optimal with 
n processors



1D Partitioning
Is the block mapping a good idea?



2D Mapping
Each processor gets a 2D 
block of the matrix.
Steps:

Broadcast of the “active” column 
along the rows.
Divide step in parallel by the 
processors who own portions of 
the row.
Broadcast along the columns.
Rank-1 update.

Analysis?



2D Pipelined

Cost-optimal with 
n2 processors


