
Introduction to 
Parallel Computing

George Karypis
Sorting



Outline
Background
Sorting Networks
Quicksort
Bucket-Sort & Sample-Sort



Background
Input Specification

Each processor has n/p elements
A ordering of the processors

Output Specification
Each processor will get n/p consecutive elements of 
the final sorted array.
The “chunk” is determined by the processor ordering.

Variations
Unequal number of elements on output.

In general, this is not a good idea and it may require a shift to 
obtain the equal size distribution.



Basic Operation: 
Compare-Split Operation

Single element per processor

Multiple elements per processor



Sorting Networks
Sorting is one of the fundamental problems in 
Computer Science
For a long time researchers have focused on the 
problem of “how fast can we sort n elements”?

Serial
nlog(n) lower-bound for comparison-based sorting

Parallel
O(1), O(log(n)), O(???)

Sorting networks
Custom-made hardware for sorting!

Hardware & algorithm
Mostly of theoretical interest but fun to study!



Elements of Sorting Networks
Key Idea:

Perform many comparisons in 
parallel.

Key Elements:
Comparators:

Consist of two-input, two-output 
wires
Take two elements on the input 
wires and outputs them in sorted 
order in the output wires.

Network architecture:
The arrangement of the 
comparators into interconnected 
comparator columns 

similar to multi-stage networks

Many sorting networks have been 
developed.

Bitonic sorting network
Θ(log2(n)) columns of 
comparators.



Bitonic Sequence

Bitonic sequences are 
graphically represented 
by lines as follows:

1
2

7

0

4
6



Why Bitonic Sequences?
A bitonic sequence can be “easily” sorted in 
increasing/decreasing order.

s s1 s2

• Every element of s1 will be less than or equal to every element of s2
• Both s1 and s2 are bitonic sequences.
• So how can a bitonic sequence be sorted?

Bitonic
Split



An example 



Bitonic Merging Network

A comparator network that 
takes as input a bitonic
sequence and performs a 
sequence of bitonic splits 
to sort it.

+BM[n]
A bitonic merging 
network for sorting in 
increasing order an n-
element bitonic
sequence.

-BM[n]
Similar sort in decreasing 
order.



Are we done?
Given a set of elements, how do we re-arrange them into 
a bitonic sequence?
Key Idea:

Use successively larger bitonic networks to transform the set into 
a bitonic sequence.



An example



Complexity
How many columns of 
comparators are required 
to sort n=2l elements?

i.e., depth d(n) of the 
network?



Bitonic Sort on a Hypercube
One-element-per-processor case

How do we map the algorithm onto a hypercube?
What is the comparator?
How do the wires get mapped?

What can you say about the
pairs of wires that are inputs
to the various comparators?



Illustration



Communication Pattern



Algorithm

Complexity?



Bitonic Sort on a Mesh
One-element-per-processor case

How do the wires get mapped?

Which one is better?
Why?



Row-Major Shuffled Mapping

Complexity?

Can we do better?
What is the lowest bound of sorting on a mesh?

communication performed by each process



More than one element per 
processor

Hypercube

Mesh



Bitonic Sort Summary



Quicksort



Parallel Formulation
How about recursive decomposition?

Is it a good idea?
We need to do the partitioning of the array around 
a pivot element in parallel.

What is the lower bound of parallel 
quicksort?

What will it take to achieve this lower bound?



Optimal for CRCW PRAM
One element per processor
Arbitrary resolution of the concurrent writes.
Views the sorting as a two-step process:

(i) Constructing a binary tree of pivot elements
(ii) Obtaining the sorted sequence by performing an inorder
traversal of this binary tree.



Building the Binary Tree

Complexity?



Practical Quicksort
Shared-memory

Data resides on a shared array.
During a partitioning each 
processor is responsible for a 
certain portion.

Array Partitioning:
Select & Broadcast pivot.
Local re-arrangement.

Is this required?
Global re-arrangement.



Efficient Global Rearrangement



Practical Quicksort
Complexity

Complexity for message-passing is similar assuming that the all-to-all
personalized communication is not cross-bisection bandwidth limited.



A word on Pivot Selection
Selecting pivots that lead to balanced 
partitions is importance

height of the tree
effective utilization of processors



Sample Sort
Generalization of bucket sort with data-driven sampling

n/p elements per-processor.
Each processor sorts is local elements. 
Each processor selects p-1 equally spaced elements from its 
own list.
The combined p(p-1) set of elements are sorted and p-1 equally 
spaced elements are selected from that list.
Each processor splits its own list according to these splitters into 
p buckets.
Each processor sends its ith bucket to the ith processor.
Each processor merges the elements that it receives.
Done.



Sample Sort Illustration



Sample Sort Complexity

Assumes 
a serial sort


