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Abstract. We present and analyze a micro-macro acceleration method for the Monte Carlo
simulation of stochastic differential equations with separation between the (fast) time scale of indi-
vidual trajectories and the (slow) time scale of the macroscopic function of interest. The algorithm
combines short bursts of path simulations with extrapolation of a number of macroscopic state vari-
ables forward in time. The new microscopic state, consistent with the extrapolated variables, is
obtained by a matching operator that minimizes the perturbation caused by the extrapolation. We
provide a proof of the convergence of this method, in the absence of statistical error, and we analyze
various strategies for matching, as an operator on probability measures. Numerical experiments
we show illustrate the effects of the different approximations on the resulting error in macroscopic
predictions.
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1. Introduction. In many applications, one considers a process modeled with a
stochastic differential equation (SDE), while the ultimate concern is the evolution of
the expectation of a certain function of interest. For this type of problem, one often
resorts to Monte Carlo simulation [8], i.e., the simulation of a large ensemble of real-
izations of the SDE, combined with ensemble averaging to obtain an approximation
of the quantity of interest at the desired moments in time. In this manuscript we
present and analyze a micro-macro acceleration method for the Monte Carlo simula-
tion of SDEs, motivated by the development of generic multiscale techniques, such as
equation-free [40, 41] and heterogeneous multiscale methods [21, 22].

We consider an equation

dX(t) = a(t,X(t)) dt+ b(t,X(t)) ? dW(t), t ∈ [0, T ],(1)

in which a : [0, T ]×G→ Rd is the drift vector, b : [0, T ]×G→ Rd×m is the dispersion
matrix, G ⊆ Rd is open, and W is an m-dimensional Wiener process. As usual, (1)
is an abbreviation of the integral form

X(t) = X(0) +
∫ t

0
a(s,X(s)) ds+

∫ t

0
b(s,X(s)) ? dW(s), t ∈ [0, T ].(2)
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The integral with respect to W can be interpreted either as an Itô integral with
? dW = dW or as a Stratonovich integral with ?dW = ◦ dW. Equation (1), respec-
tively, (2), is solved for given X(0) independent of W. The function of interest for
the Monte Carlo simulation is defined as the expectation E of a continuous function
g : G→ Rd′ at time t ∈ [0, T ] via

t 7→ ḡ(t) = Eg(X(t)).(3)

Numerous methods exist to increase the efficiency of Monte Carlo simulation
of SDEs. Let us mention only weak explicit [53, 42, 43, 60, 17, 13, 1] and implicit
[42, 44, 16, 14, 15, 2] higher-order schemes, which can increase the time step but might
suffer from instability; various extrapolation methods [67] to obtain the precision
of higher-order from low-order schemes; and variance reduction techniques [54, 18],
including the multilevel Monte Carlo method [28, 29].

Our main interest lies in systems with a separation between a (fast) time scale, on
which individual trajectories of the SDE (1) need to be simulated, and a (slow) time
scale, on which the function of interest ḡ evolves. The technique we introduce serves
specifically to increase the time step for such stiff systems beyond step size for which
direct time discretization becomes unstable. Our approach can be augmented with
a variance reduction method or a higher-order scheme to yield gains in computational
efficiency and precision.

Due to possibly high computational cost, a large class of methods bypass Monte
Carlo simulation, replacing it by an analytically derived approximate macroscopic
model, which consists of a number of evolution equations for the macroscopic state
variables, complemented with a constitutive equation for the observable of interest
(as a function of these variables). This approach is particularly popular in the micro-
macro simulation of dilute solutions of polymers [47], the motivating example in this
paper, where an SDE models the evolution of the configuration of each individual
polymer driven by the flow field, and the observable is a non-Newtonian stress tensor.
See [39, 51] for derivations of macroscopic closures for FENE dumbbell models in
polymeric flow. In [35] the authors propose a quasi-equilibrium approach (based on
thermodynamical considerations) that is, in principle, applicable to general SDEs
with additive noise. Several algorithms exist for simulating the evolution of this
model numerically [63, 71]. In contrast with the numerical closures relying on the
assumption that a closed model exists in terms of the macroscopic state variables, the
micro-macro acceleration method only uses these variables for computational purposes
and maintains weak convergence to the full microscopic dynamics.

To describe briefly the algorithm let us define the microscopic level via an en-
semble X = (Xj)Jj=1 of J realizations evolving according to (1) and the macroscopic
level via a vector of L macroscopic state variables m = (m1, . . . ,mL), corresponding
to expected values of some appropriately chosen functions R1, . . . , RL. The method
exploits a separation in time scales by combining short bursts of microscopic simula-
tion using SDE (1) with a macroscopic extrapolation step, in which only the macro-
scopic state m is extrapolated forward in time. To connect two levels of description,
we introduce a restriction operator that computes the macroscopic state variables by
averaging,

RLX =

 J∑
j=1

R1(Xj), . . . ,
J∑
j=1

RL(Xj)

 ,
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One step of micro-macro acceleration algorithm

Time t
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Macroscopic
level True evolution of macroscopic variables
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Fig. 1. One step of the micro-macro acceleration method starts with a given initial ensemble
of realizations (top left). First, we propagate the ensemble for a few microscopic steps (i). Then,
we compute the macroscopic variables corresponding to the obtained ensembles by averaging (ii),
after which we extrapolate the macroscopic states forward in time (iii). Finally, to reinitialize the
microscopic simulation for the next step, we match the last available ensemble with the extrapolated
state (iv).

and a matching operator PL(m,X π) that alters a prior ensemble X π to make it con-
sistent with a given set of macroscopic state variables m, that is, RLPL(m,X π) = m.
A more precise definition of these operators will be given in section 3. With these
operators, one time step of the algorithm includes four stages (see also Figure 1):
(i) microscopic simulation of the ensemble X using SDE (1); (ii) restriction, i.e.,
extraction of an estimate of the macroscopic states (or macroscopic time derivative)
based on simulation in the first stage; (iii) forward in time extrapolation of the macro-
scopic state; and (iv) matching of the ensemble that was available at the end of the
microscopic simulation with the extrapolated macroscopic state. Here, the focus is
precisely this matching step.

The main contributions of the present paper are the following:
• From a theoretical viewpoint, we propose and analyze a general framework

for performing the matching step based on a matching operator that trans-
forms a given prior distribution into a distribution consistent with a number
of prescribed (extrapolated) macroscopic state variables, while introducing
a “minimal perturbation” with respect to the prior. We make precise the
notion of a “minimal perturbation” using different (semi-)distances between
probability measures.

• From a numerical analysis viewpoint, we discuss how the resulting error de-
pends on the number L of macroscopic state variables, the microscopic time
discretization error, and the extrapolation time step. We prove the conver-
gence of the micro-macro acceleration method in the absence of statistical
error, i.e., without discretization in probability space, requiring only some
general properties of the matching operator. We additionally show that these
consistency properties are fulfilled for a specific matching operator based on
the L2-norm (L2N) distance.
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• From a practical viewpoint, we provide numerical results for a nontrivial
test case originating from the micro-macro simulation of dilute polymers.
We discuss how to implement various matching operators for ensembles of fi-
nite size and illustrate the interplay between the different sources of numerical
error.

Section 2 gives the precise mathematical setting. Section 3 describes the micro-
macro acceleration method. Section 4 details some examples and analysis of matching
operators. In section 5 we provide the proof of convergence of the micro-macro accel-
eration method. Numerical implementation of matching and experiments illustrating
accuracy and performance are given in sections 6 and 7, while section 8 concludes
with an outlook to future work.

2. Mathematical setting.

2.1. Preliminaries. Throughout the paper we denote by N = {1, 2, . . .} the set
of natural numbers; N0 = {0} ∪ N the set of nonnegative integers; Rd, for d ∈ N,
the d-dimensional Euclidean space with 2-norm ‖ · ‖; R = R1. For any multi-index
α = (α1, . . . , αd) ∈ Nd0 and x = (x1, . . . , xd) ∈ Rd, ∂αx stands for the partial derivative
∂α1
x1
. . . ∂αdxd of order |α| = α1 + · · ·+ αd.

2.1.1. Notation and assumptions on the SDE. We consider SDE (1) on
the time interval I = [0, T ], with T > 0. We will need to compare solutions starting
from different initial conditions at different moments in time. To keep track of these
solutions, we denote by X( · ; t,Z) the solution of the auxiliary problem

X(s; t,Z) = Z +
∫ s

t

a(u,X(u; t,Z)) du+
∫ s

t

b(u,X(u; t,Z)) ? dW(u)(4)

on the interval [t, T ], with 0 ≤ t ≤ T and Z a given random variable independent
of {W(s)}s≥t. We will always assume, without explicitly mentioning, that the initial
random variable Z is viable in G, that is, Z ∈ G almost surely, and that the algebraic
moments E‖Z‖r = E[‖Z‖r] exist for all r ∈ N.

Assumption 2.1. For every viable initial condition Z, the set G is invariant un-
der (4) [11, Def. 2.2], that is, (4) has a unique strong solution X( · ; t,Z) such that for
every s ∈ [t, T ], X(s; t,Z) ∈ G almost surely.

Assumption 2.1 guarantees that the solutions are confined in the domain G, which
is not obvious whenever G is a proper subset of Rd. In practice, such behavior
is related to (i) degeneration of the diffusion b on the boundary of G, or (ii) the
repulsive character of the drift vector a close to the boundary of G. For (i), see, for
example, [10, 12], and for (ii), the finitely extensible nonlinear elastic (FENE) model
from section 7.

We are interested in the evolution of functionals of the form (3) for specific func-
tions of interest g : G → R. We first define the appropriate function class suitable
for our analysis. Let CrP (G,R) denote the space of all functions1 g ∈ Cr(G,R) that
can be (together with all their partial derivatives) polynomially bounded, i.e., for
which there exist constants C > 0 and κ > 0 such that |∂αx g(x)| ≤ C(1 + ‖x‖2κ) for
all |α| ≤ r and x ∈ G. Further, we write g ∈ Cq,rP (I × G,R) if g(·,x) ∈ Cq(I,R),
g(t, ·) ∈ Cr(G,R) for all t ∈ I, x ∈ G, and |∂it∂αx g(t,x)| ≤ C(1 + ‖x‖2κ) holds for all

1When writing Cr(G,R), we mean the space of functions from G to R which have continuous
partial derivatives up to order r ≥ 0.
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0 ≤ i ≤ q, |α| ≤ r, and x ∈ G, uniformly with respect to t ∈ I (cf. [42, p. 153], [53,
Def. 8.1, p. 102]).

We are now ready to state the main assumptions on the class of SDEs that we
consider.

Assumption 2.2. Let g ∈ C2(p+1)
P (G,R) with some p ∈ N0.

a. For every t ∈ [0, T ) the function (s, z) 7→ Eg
(
X(s; t, z)

)
belongs to the space

Cp+1,0
P ([t, T ]×G,R) with constants C and κ uniform also with respect to t.

b. For every s ∈ (0, T ] the function (t, z) 7→ Eg
(
X(s; t, z)

)
belongs to the space

C
0,2(p+1)
P ([0, s]×G,R) with constants C and κ uniform also with respect to s.

c. There is a constant Cg,T > 0 such that for every 0 ≤ t ≤ s ≤ T and any initial
random variables Z1,Z2,∣∣Eg(X(s; t,Z1)

)
− Eg

(
X(s; t,Z2)

)∣∣ ≤ Cg,T |Eg(Z1)− Eg(Z2)|.

Assumption 2.2.a corresponds to the existence of stochastic Taylor expansion
(w.r.t. increments of the time) of the expectation of the functions of interest, which is
essential for constructing extrapolation with appropriate order of consistency
(cf. Lemma 3.9). For the proof of convergence of such expansions and the analysis
of truncation error see [61]. Assumption 2.2.b ensures that the functions of interest
remain polynomially bounded under the evolution of the SDE (1) and is satisfied,
for instance, when a ∈ C2(p+1)

P (Rd,Rd) and b ∈ C2(p+1)
P (Rd,Rd×m) [42, Thm. 4.8.6,

p. 153]. Finally, we can look at Assumption 2.2.c as a particular kind of weak contin-
uous dependence on the initial condition.

We finish this section with one immediate consequence of Assumption 2.2.a.

Lemma 2.3. For every g ∈ C2
P (G,R) there are constants Cg,T and κg,T such that

for all 0 ≤ t ≤ s ≤ T and any initial random variable Z it holds that∣∣Eg(X(s; t,Z)
)∣∣ ≤ Cg,T (1 + E‖Z‖2κg,T ).

In particular, all moments E‖X(s; t,Z)‖2r remain uniformly bounded with respect to
t and s.

Proof. Let us fix t ∈ [0, T ) and denote v(s, z) = Eg
(
X(s; t, z)

)
, (s, z) ∈ [t, T ]×G.

If C and κ are the constants from Assumption 2.2.a, we get employing the mean value
theorem

|v(s, z)− v(t, z)| ≤ max
u∈[t,s]

|∂uv(u, z)| · (s− t) ≤ C(1 + ‖z‖2κ) · (s− t).

Hence, |Ev(s,Z) − Ev(t,Z)| ≤ C(1 + E‖Z‖2κ) · (s − t), by monotonicity of expected
value, and from the definition of v we obtain∣∣Eg(X(s; t,Z)− Eg

(
Z)
∣∣ ≤ C(1 + E‖Z‖2κ) · (s− t),(5)

where C and κ depend only on g and T . Consequently we have∣∣Eg(X(s; t,Z)
)∣∣ ≤ ∣∣Eg(X(s; t,Z)− Eg

(
Z)
∣∣+
∣∣Eg(Z)

∣∣
≤ CT (1 + E‖Z‖2κ) + C̃(1 + E‖Z‖2κ̃) ≤ Cg,T (1 + E‖Z‖2κg,T ),

where C̃, κ̃ come from the definition of the space CP and we put Cg,T = 2(CT + C̃),
κg,T = κ+ κ̃.
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2.1.2. Notation and assumptions on time discretization. Let δt > 0 and
let ξ ∈ Rm be a vector of m independent standard normal random variables, repre-
senting the increment of the m-dimensional Wiener process W over a time interval
of length one. We denote a generic one-step time discretization method approximating
the solution X(t+ δt; t,Z) of (4) as

S(t,Z; δt, ξ).(6)

Since, in the Monte Carlo setting, we are interested in the weak approximation, we
require S to satisfy the following definition (compare [53, p. 113]).

Definition 2.4 (weak consistency of SDE discretization). If for all functions
g ∈ C2(pS+1)

P (G,R) there exists a Cg,T ∈ C0
P (G,R) such that∣∣Eg(S(t, z; δt, ξ)

)
− Eg

(
X(t+ δt; t, z)

)∣∣ ≤ Cg,T (z) · (δt)pS+1

is valid for all z ∈ G and t, t+ δt ∈ I, we call the one-step method S weakly consistent
of order pS.

To discretize SDE (4) over the interval [t0, tK ] ⊆ I with K ∈ N uniform steps,
we let δt = (tK − t0)/K and put tk = t + kδt for k = 0, . . . ,K. Moreover, we fix
the sequence (ξk)k=1,...,K of independent normally distributed random vectors in Rm.
We begin by taking X0 = Z and, assuming that Xk is given for k < K, we put

Xk+1 = S(tk,Xk; δt, ξk, ) ≡ Sk(Xk; δt).(7)

We require the sequences of random variables generated by S to have moments uni-
formly bounded with respect to K.

Assumption 2.5. For every sufficiently large r there is a constant Cr,T such that,
if Xk is given by (7), we have

E‖Xk‖2r ≤ Cr,TE‖X0‖2r, k = 1, . . . ,K.

See, for example, [53, Lem. 9.1] for a sufficient condition on general one-step methods
for this requirement and [59, Prop. 6.2] in case of Runge–Kutta methods.

For the discretization on the whole interval [t0, tK ] we have, as a consequence
of assumptions already made, the following property.

Lemma 2.6. For all g ∈ C2(pS+1)
P there are constants Cg,T and κg,T such that∣∣Eg(X(s; tK ,XK)

)
− Eg

(
X(s; t0,X0)

)∣∣ ≤ Cg,T (1 + E‖X0‖2κg,T ) ·K(δt)pS+1,

uniformly with respect to s ∈ [tK , T ].

Proof. Assumption 2.2.c provides us with a constant C̃g,T > 0 such that∣∣Eg(X(s; tK ,XK)
)
−Eg

(
X(s; t0,X0)

)∣∣
≤

K∑
k=1

∣∣Eg(X(s; tk,Xk)
)
− Eg

(
X(s; tk−1,Xk−1)

)∣∣
≤ C̃g,T

K∑
k=1

∣∣Eg(Xk
)
− Eg

(
X(tk; tk−1,Xk−1)

)∣∣,
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where we used the identity X(s; tk−1,Xk−1) = X(s; tk,X(tk; tk−1,Xk−1)), valid due
to the uniqueness of solutions. Moreover by Definition 2.4∣∣Eg(Xk

)
− Eg

(
X(tk; tk−1,Xk−1)

)∣∣ ≤ ECg,T (Xk−1)(δt)pS+1

≤ C(1 + E‖Xk−1‖2κ)(δt)pS+1,

where C and κ are constants corresponding to function Cg,T ∈ C0
P (G,R). Finally,

for sufficiently large constants r > κ and C̃r,T > 1, independent of K, we can employ
Assumption 2.5 to get E‖Xk−1‖2κ ≤ 1 + E‖Xk−1‖2r ≤ C̃r,T (1 + E‖X0‖2r) for every
k = 1, . . . ,K.

In the Itô case, when G = Rd one can use the Euler–Maruyama scheme,

Xk+1 = Xk + a(tk,Xk)δt+ b(tk,Xk)
√
δtξk,(8)

which, for Lipschitz continuous coefficients, has weak order 1; see [53, 42]. In the case
that G is bounded, we supplement this scheme with a truncation step (see section 7).

2.1.3. Monte Carlo simulation. To discretize SDE (1) in probability space we
employ the Monte Carlo method [8], simulating a finite number J of SDE realizations.
Given a random variable X(t), the solution of (1) at time t ∈ I, we denote the
realization corresponding to the event ωj (that defines the specific Brownian path
t 7→W(t;ωj)) as Xj(t) ≡ X(t;ωj).

For a given function of interest g : Rd → Rd′ and the ensemble X = {Xj}Jj=1,
the Monte Carlo estimate of the expectation of g is

ĝ(X ) =
1
J

J∑
j=1

g(Xj).

We approximate the evolution of ḡ, defined in (3), on [t0, tK ] ⊆ I with the sequence
ĝk = ĝ(X k), k = 1, . . . ,K, where {X k}Kk=1 is produced by the time discretization
scheme (7) with uniform mesh {t0, t1, . . . tK}. The total error of simulation consists
of a deterministic or systematic error—due to the time discretization (quantified by
the weak error of the scheme)—and a statistical error—due to the finite number of
samples. See [42] and references therein for more details on Monte Carlo simulation.

2.1.4. Probability density functions. For the analysis of the matching oper-
ator we will assume that, for every t ∈ I = [0, T ], the solution X(t) of (1) has a prob-
ability density function (PDF) ρ(t, ·). In the Itô case this density evolves according
to an advection-diffusion equation, also known as the Fokker–Planck equation,

∂tρ = ∇x ·
(
−ρa +

1
2
∇x · (ρΣ)

)
on (0, T )×G,(9)

where Σ = bbT is the diffusion matrix. We supplement (9) with the initial-boundary
condition

ρ(0, ·) = ρ0 on G, ρ(·,x) = 0 for every x ∈ ∂G,(10)
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where ρ0 is the law of X(0). It can be proved (under certain assumptions; see [56])
that for all t ∈ I the solution ρ(t, ·) of (9)–(10) is also a probability density. Hence,
we can equivalently compute the averages in (3) as

g(t) =
∫
G

g(x) ρ(t,x) dx, t ∈ I.(11)

Note that, for G = Rd, the integral is finite for any g ∈ C0
P (G,R) when ρ(t, ·) is decay-

ing rapidly (i.e., faster than any polynomial) at infinity. Moreover, we can guarantee
the higher regularity of the solutions to (9) (this is related to Assumption 2.2) with
appropriate smoothness of the initial condition ρ0 and the coefficients a and b (see
the discussion in section 7 and [56]).

3. Micro-macro acceleration method. Our method aims at being faster than
a full microscopic simulation, while converging to it when the extrapolation time step
vanishes. The underlying assumption is that the macroscopic state variables can be
simulated on a much slower time scale than the microscopic dynamics, thus allow-
ing the choice of a large extrapolation time step compared with the time step for
microscopic simulation. We introduce the restriction and matching operators (sub-
section 3.1) to connect the two levels of description, then we discuss the extrapolation
step (subsection 3.2). We present specific matching operators in section 4.

3.1. Matching and restriction operators.

3.1.1. Moments of probability measures. Let M1(G), where G ⊆ Rd is mea-
surable, denote the set of all probability measures on G, i.e., all nonnegative measures
µ on Rd with support in G and such that µ(G) = 1. For our analysis, we consider
a sequence of moments (ml(µ))∞l=1, obtained from µ by taking the expectations of
given functions Rl, i.e.,

ml(µ) =
∫

Rd
Rl(x)µ(dx), l ≥ 1.(12)

Henceforward we will call Rl the moment function and we will say that the value ml

is the lth moment of measure µ.
The choice of the functions Rl is problem-dependent. Clearly, they should be se-

lected such that the integrals in (14) exist, at least for a subset of M1(G) containing
the laws of all trajectories of the SDE (1) in consideration. In our case it suffices
that Rl are in the class of continuous and polynomially bounded functions defined
in subsection 2.1.1. We also want each moment to hold new information about the
measures, so that the functionals µ 7→ ml(µ), l ≥ 1, are linearly independent. Thus,
we need an appropriate notion of independence for moment functions. Finally, we
require a one-to-one correspondence between the measure µ and its full moment rep-
resentation (ml(µ))∞l=1. To collect all required properties, we introduce the following
assumption (for more on the pseudo-Haar property, see [4] and Appendix A).

Assumption 3.1. The functions Rl, l ≥ 1, satisfy the following conditions:
a. they are linearly independent on every nonnull subset of G (pseudo-Haar);
b. for each l, Rl ∈ C0

P (Rd,R) is nonconstant;
c. if the law of the random variable Z is uniquely determined by all its moments, the

same is true for X(s; t,Z), for any 0 ≤ t < s ≤ T .

Example 3.2 (algebraic moments). In particular, we can consider the functions
Rα(x) = xα = xα1

1 · · ·x
αd
d , x ∈ G, where α ∈ Nd0 is any multi-index, so that each value



A MICRO-MACRO ACCELERATION METHOD 2753

mα(µ) is the mixed raw moment of probability measure µ. If G = Rd these moments
exist for measures having densities decaying at infinity faster than any polynomial,
and for all elements of M1(G) if G is bounded. The uniqueness of the moment
representation is guaranteed by the existence of the moment generating function.

3.1.2. Definition and basic properties of restriction and matching.
Restriction. To reduce the distributions to a finite collection of L macroscopic

state variables, we introduce a restriction operator

RL : M1(G)→ RL, µ 7→ RLµ.(13)

The values of RL represent the coarse-grained description of a microscopic law. We
want to analyze the convergence of micro-macro acceleration method with increasing
L; thus we will consider the hierarchy of restriction operators in which

RLµ =
(
m1(µ), . . . ,mL(µ)

)
, L ≥ 1,(14)

i.e., we truncate the moment representation (12) of the measure µ to its first L terms.
Note that if one is only interested in approximating dynamics up to some toler-
ance, one may clearly consider the restriction operator in terms of a limited number
of macroscopic state variables of interest, leaving the rest of the hierarchy unspecified.

Matching. Conversely, to obtain a probability measure (a law of a random vari-
able) that is consistent with a finite set of L macroscopic state variables, we consider
a matching operator PL. Since we have to deal with distributions that are in general
not uniquely determined by a finite set of macroscopic state variables, the matching
represents the inference procedure with which we associate a law to this macroscopic
state. This is the case for the laws arising in the FENE dumbbell model presented in
section 7.

The idea of the matching operator is to use a prior measure µ ∈M1(G) that we
alter to make it consistent with the vector of (extrapolated) macroscopic states m ∈
RL. In general, this is an underdetermined problem—infinitely many solutions are
possible. One therefore has to choose a particular strategy that, at least under certain
assumptions, will pick a unique distribution. In section 4, we analyze a strategy based
on a generalization of the entropy principle, which selects the consistent probability
measure that is “closest” to the prior. Hence, the matching operator with L moments
will be defined, at least formally, as

PL(m, µ) = argmin
ν∈R−1

L (m)
d(µ, ν),(15)

where d(·, ·) quantifies the (quasi-)distance between probability measures. We will
consider d to be an L2N distance or an f -divergence [9].

Remark 3.3 (Restriction and matching with random variables). We defined the
restriction and matching operators as acting on probability measures. However, with
a slight abuse of notation, we will also write RL(X) and PL(m,X) for a random
variable X, meaning we consider its distribution as the argument in the operators.
As a value of matching we take any random variable with the law given by PL(m,X).

Restriction-matching pair. The matching and restriction operators are related
and need to be studied simultaneously. Thus, we introduce the following notion.

Definition 3.4 (restriction-matching pair). Let L ∈ N and G ⊆ Rd be measur-
able. Assume that RL : M1(G) → RL and PL : RL ×M1(G) ⊇ domPL → M1(G),
satisfy
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1. RL (PL(m, µ)) = m for all (m, µ) ∈ domPL,
2. PL(RL(µ), µ) = µ for all (RL(µ), µ) ∈ domPL (projection property).

Then we call (RL, PL) the restriction-matching pair with L macroscopic state vari-
ables.

A few remarks on the restriction-matching pair are in order.

Remark 3.5 (domain of the matching operator). The first assumption in Defi-
nition 3.4 implies that domPL ⊆ ImRL ×M1(G), meaning that the moment vector
m we consider must always correspond to at least one probability distribution. This
is, of course, a necessary condition for the existence of the matched measure but it
may not be sufficient, as we point out in the case of matching based on f -divergences.
In subsection 6.3, we discuss the effect on the numerical behavior of trying to match
a prior µ with a set of moments that are not realizable. We also restrict the domain
to a subset of M1(G), since sometimes not all measures can be obtained through
the matching operator, for instance, if higher integrability or absolute continuity is
required (see section 4).

Remark 3.6 (the term projection). Let m ∈ imRL and consider the mapping
PL(m, ·). The second condition in Definition 3.4 implies that P2

L(m, ·) = PL(m, ·).
This justifies the use of the term projection.

We are now ready to formulate the requirements on the sequences of restriction-
matching pairs that allow us to show convergence of the micro-macro acceleration
method to the full microscopic dynamics.

Property 3.7 (continuity of matching). Fix L ∈ N and let (RL,PL) be a
restriction-matching pair with L macroscopic state variables. We say that PL is
(weakly) continuous if for all g ∈ C0

P (G,R) there exists a constant CL = CL(g) > 0
such that ∣∣Eg(PL(m1,Z))− Eg(PL(m2,Z))

∣∣ ≤ CL‖m1 −m2‖(16)

for every random variable Z and all vectors mi ∈ ImRL with (mi,Z) ∈ domPL,
i = 1, 2.

Property 3.8 (consistency of matching). Consider a sequence {(RL,PL)}∞L=1
of restriction-matching pairs with RL given by (14) and satisfying Assumption 3.1.
We say that this sequence is consistent with (1) if for any solution X
a. for all L and 0 ≤ t′ ≤ t ∈ I we have

(
RLX(t),X(t′)

)
∈ domPL;

b. for every g ∈ C2(p+1)
P (G,R) and L ∈ N, there exists a constant CL = CL(g) > 0

such that with mL = RLX(t; t′,Z)∣∣Eg(PL(mL,Z)
)
− Eg

(
X(t; t′,Z)

)∣∣ ≤ CL(t− t′)(17)

for all 0 ≤ t′ ≤ t ∈ I and all initial random variables Z;
c. for fixed g ∈ C2(p+1)

P (G,R), CL → 0 as L→ +∞.

We study specific matching operators, and discuss Properties 3.7 and 3.8, in
section 4.

3.2. Extrapolation operator. In this manuscript we only consider first-order
extrapolation, which is reminiscent of forward Euler integration of the macroscopic
state variables. This idea was first proposed in [26]; see also [40, 41, 70].

We introduce two indices, k = 0, . . . ,K and n = 0, . . . , N , to emphasize the fact
that there are two time steps involved: the microscopic time step δt > 0, over which
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we will evolve the full microscopic dynamics, and the macroscopic time step ∆t > 0,
over which we will perform extrapolation of the macroscopic state variables. The idea
is to take a small number K of microscopic steps of size δt, such that Kδt � ∆t,
and from a microscopic simulation, starting at time tn = n∆t, evaluate mn,k at
time tn,k = tn + kδt, for k = 1, . . . ,K, using the restriction operator (13). We then
extrapolate as follows:

mn+1 = E
(
(mn,k)Kk=0; δt,∆t

)
= mn,0 +

∆t
Kδt

(mn,K −mn,0),(18)

in which mn,0 ≡mn. Clearly, the forward Euler extrapolation (18) satisfies

‖mn+1
1 −mn+1

2 ‖ ≤ ∆t
Kδt
‖mn,K

1 −mn,K
2 ‖+

( ∆t
Kδt

− 1
)
‖mn,0

1 −mn,0
2 ‖

≤ ∆t
Kδt

(
‖mn,K

1 −mn,K
2 ‖+ ‖mn,0

1 −mn,0
2 ‖

)
,

(19)

with any two sequences {mn,k
i }k=0,...,K , i = 1, 2, where in the first estimate we used

the fact that Kδt ≤ ∆t. Moreover, we have the following lemma (the proof follows
from a simple first-order Taylor expansion).

Lemma 3.9 (consistency of extrapolation). Let m̃ ∈ C2([tn, tn+1]) and put

mn+1 = E
(
(m̃(tn,k))Kk=0; δt,∆t

)
with the extrapolation operator E defined in (18). Then, we have

‖m̃(tn+1)−mn+1‖ ≤ max
[tn,tn+1]

‖m̃′′‖ · (∆t)2.

Higher-order versions of (18) can be constructed in several ways, e.g., using the
polynomial extrapolation [26]. Adams–Bashforth or Runge–Kutta implementations
of (18) are also possible [57, 49, 45, 46], as are implicit versions, partially discussed in
[25]. Another idea, based on [65], trades accuracy for stability by designing a multistep
state extrapolation method based on macroscopic states at multiple macroscopic time
steps [69].

3.3. Description of the method and convergence result. Now that we have
introduced all building blocks, we describe the method as a whole in Algorithm 1.
Let us also discuss briefly some of the issues related to the method.

Stability of the algorithm. To investigate the efficiency of the method, we would
be interested in the maximal value of the ratio ∆t/δt that is affordable. Clearly, this
efficiency will depend on the time-scale separation that is present in the problem.
A common approach is to ask when a numerical method preserves the asymptotic
stability of an equilibrium in a particular test equation, i.e., a linear stability analysis.
In the stochastic context, the choice of the test equation and its connection with
nonlinear dynamics is more involved than in the deterministic case, and numerous
approaches exist [62, 6, 7]. In this manuscript, we concentrate on the convergence to
the microscopic dynamics and leave the stability analysis for future work.

Time-scale separation. In numerical closure methods, such as the equation-free
and heterogeneous multiscale methods [40, 21], one obtains an algorithm that approx-
imates an unavailable closed system of ODEs for the moments. We do not need such
a closed model to exist in our approach, but when it does, the spectral properties of
this system relate to the stability of extrapolation, the third stage in Algorithm 1.
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Algorithm 1. Micro-macro acceleration step.
Given a microscopic state Xn at time tn, macroscopic step size ∆t > 0, microscopic
step size δt > 0, and a number K ∈ N of microscopic steps, with Kδt ≤ ∆t, compute
the microscopic state Xn+1 at time tn+1 = tn + ∆t via a four-step procedure:

(i) Simulate the microscopic system over K time steps of size δt using a microscopic
discretization scheme

Xn,k+1 = Sn,k(Xn,k; δt), k = 0, . . . ,K − 1,(20)

defined in (7), with Xn,0 = Xn.
(ii) Record the macroscopic states mn,k = RLXn,k for k = 0, . . . ,K using the

restriction operator (13).
(iii) Extrapolate the macroscopic states mn,0, . . . ,mn,K over a step of size ∆t to a

new macroscopic state mn+1 at time tn+1 using the extrapolation operator (18),

mn+1 = E
(
(mn,k)Kk=0; δt,∆t

)
.(21)

(iv) Match the microscopic state Xn,K at time tn,K with the extrapolated macro-
scopic state mn+1 using the matching operator (15),

Xn+1 = PL(mn+1,Xn,K),(22)

to obtain a new microscopic state Xn+1 at time tn+1.

In particular, the time-scale separation will then manifest itself as a large gap in the
spectrum, and the combination of microscopic simulation with extrapolation dumps
the fast components, allowing for large ∆t. We refer to [25, 70] for the study of the
extrapolation procedure (18) in this context.

Numerical implementation. We present the algorithm as it operates on the ran-
dom variables; see also Remark 3.3 on how we understand the matching step in this
framework. In the numerical implementation, we will need to consider a version of
the algorithm that deals with an ensemble of realizations X = {Xj}Jj=1 instead of
the random variable X. This will be discussed in section 6, where we demonstrate
how the particular matching strategies lead to a natural reweighting procedure.

Convergence of this method is guaranteed by the following theorem.

Theorem 3.10. Consider the SDE (1) satisfying Assumptions 2.1 and 2.2 and its
solution X with initial condition X(0) = X0. Let Rl ∈ C4(G,R), l ≥ 1, be a sequence
of moment functions, fulfilling Assumption 3.1, that generate restriction operators
RL, L ≥ 1, by (14) and let {(RL,PL)}∞L=1 be a sequence of restriction-matching pairs
having Properties 3.7 and 3.8. Furthermore, consider a time discretization scheme (7)
of order pS ≥ 1 with time step δt and satisfying Assumption 2.5. Finally, let E be the
extrapolation operator (18) with extrapolation step ∆t and let K ∈ N be a number of
microscopic steps with Kδt ≤ ∆t.

If we denote the solution of Algorithm 1 with L macroscopic state variables
at time T as XN

L , for any function g ∈ C2(pS+1)
P (G,R) we have∣∣E[g(XN

L )− g(X(T ))
]∣∣ ≤ CL + C̃L

(
(δt)pS + ∆t

)
,(23)

in which CL and C̃L are constants that depend also on T, g, and X0, with CL → 0 as
L→ +∞.
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Remark 3.11. Note that in Theorem 3.10, we only require a consistency rela-
tion Kδt ≤ ∆t. When ∆t = Kδt, due to the projection property in Definition 3.4,
Algorithm 1 reduces to the first stage—the microscopic simulation. Thus, our con-
vergence analysis is relevant for ∆t > Kδt, when the extrapolation-matching stage is
turned on.

The proof of Theorem 3.10 will be given in section 5. Theorem 3.10 shows that the
error of the micro-macro acceleration method is composed of three terms: (i) matching
error that depends only on the number L of macroscopic state variables and that can
be made arbitrarily small by choosing L sufficiently large; (ii) microscopic discretiza-
tion error; and (iii) extrapolation error. The last two errors can be made arbitrarily
small by a suitable choice of δt and ∆t. Moreover, convergence does not rely on
the precise definition of the restriction-matching pair but only on its generic continu-
ity and consistency properties. Specific restriction-matching pairs are discussed and
analyzed in section 4.

4. Matching operators. This section is devoted to the investigation of spe-
cific matching operators that can be used in the micro-macro acceleration method.
All operators are based on the minimization of a distance (subsection 4.2) or an
f -divergence (subsection 4.3) between the PDFs with the constraints given by the
restriction operator.

4.1. Notation and function spaces. In this subsection, we will work in the
Lebesgue spaces Lp(G,µ) with norm ‖ · ‖p, where G ⊂ Rd is open and bounded, µ is
a finite Borel measure on Rd with full support on G, and p ∈ [1,+∞). We will also
consider the convex set Pp(G) ⊂ Lp(G) of all probability densities integrable with
pth power, and the cone Lp+(G,µ) of all nonnegative functions in Lp(G,µ). Finally,
recall that the dual space to Lp(G,µ) is isomorphic (congruent) to Lq(G,µ) with
q ∈ (1,+∞] satisfying 1/p + 1/q = 1 (see [33, p. 128]). The dual pairing between
ϕ ∈ Lq(G,µ) and φ ∈ Lp(G,µ) is given by

〈ϕ, φ〉 =
∫
G

ϕ(x)φ(x)µ(dx).

Later on, we will specifically use p = 1 and p = 2.
By definition, for an appropriate vector m ∈ RL of moments and a prior density

π ∈ P(G) the result of matching is a PDF, i.e., PL(m, π) ∈ P(G). Hence, we
need to ensure that the solutions of minimization problem (15) integrate to one and
are nonnegative. We deal with the first requirement by adding the unity of the
zeroth moment (mass) as an additional linear constraint. To avoid confusion with
the constraints imposed by the moments m, we introduce the (extended) restriction
operator R̃L : Lp(G,µ)→ RL+1, in which, besides the finite number of moments, the
conservation of mass is included:

(R̃Lφ)l = 〈Rl, φ〉, l = 0, . . . , L,(24)

for some moment functions Rl ∈ Lq(G,µ), l = 1, . . . , L, and R0 ≡ 1 ∈ L∞(G,µ); see
also (14). The norm of this operator satisfies |||R̃L||| ≤ ‖R‖q, where R = (R0, . . . , RL)
is the vector of moment functions. To ensure nonnegativity of the solution we proceed
in two ways. In subsection 4.2, we do not include this property in the problem itself.
Instead, we distinguish later the set of prior densities and moments for which positivity
is preserved. This approach facilitates the analysis of the matching operator. In
subsection 4.3, we include this restriction directly in the minimization problem as a
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convex constraint using the cone Lp+(G). In this case all solutions are guaranteed to
be PDFs, but the analysis becomes more difficult.

4.2. Matching with L2-norm. First, in subsection 4.2.1, we construct a match-
ing using the L2N, which we denote ‖ · ‖2, as a distance criterion between probability
measures. Here, our approach does not guarantee from the outset the positivity of
the resulting density, but we indicate a sufficient condition to preserve this property.
We also establish the continuity of this matching (Property 3.7). Second, in subsec-
tion 4.2.2, we restrict our analysis to the one-dimensional case with the algebraic mo-
ments from Example 3.2, and we demonstrate the consistency (Property 3.8). Hence,
the L2N based matching fulfills the two basic requirements from subsection 3.1.2.

4.2.1. Definition and continuity. Let (Rl)+∞
l=1 ⊂ L2(G) be a sequence of non-

constant, linearly independent moment functions. Fix L ∈ N and assume that we
are given a positive prior PDF π ∈P2(G), uniquely determined by all its moments,
and a vector of target moments m ∈ RL such that m = RL(Ψ) for some density
Ψ ∈P2(G). Consider the optimal solution ϕ2(m, π) to the problem

inf
1
2
‖ϕ− π‖22

s.t. R̃Lϕ = (1,m),

ϕ ∈ L2(G),

(25)

where R̃L is the restriction operator (24). Here we take µ to be the Lebesgue measure
on G and without loss of generality we can assume that the system {Rl}l=0,1,... is
a basis for L2(G). The unique solution to problem (25) always exists, as can be seen
by putting φ = ϕ−Ψ and considering equivalently the following least squares problem
in L2(G): 

inf
1
2
‖φ− (π −Ψ)‖22

s.t. φ ∈ R̃−1
L (0),

(26)

in which the constraints imply that R̃L(ϕ) = R̃L(Ψ). If we denote by {Ql}l=0,1,... the
orthonormal basis obtained from {Rl}l=0,1,... by the Gram–Schmidt orthogonalization
procedure, we have R̃−1

L (0) = span{Ql : l ≥ L + 1}. This equality is an easy conse-
quence of the fact that the change of basis in the Gram–Schmidt orthonormalization
procedure is described by the infinite lower triangular matrix Q̂ such that

Ql =
l∑

j=0

Q̂l,jRj , l = 0, 1, . . . .(27)

The solution to the least squares problem (26) is
∑+∞
l=L+1〈π −Ψ, Ql〉Ql (see, e.g., [3,

Sect. 3.4 and 3.6]), so going back to ϕ we obtain

ϕ2(m, π) =
L∑
l=0

〈Ψ, Ql〉Ql +
+∞∑
l=L+1

〈π,Ql〉Ql.(28)

Let us also mention that for fixed m, ϕ2(m, · ) is a nonexpansive projection operator
in L2(G) onto the hyperplane R̃−1

L (m) [3, Prop. 3.4.4]. Here nonexpansiveness means
‖ϕ2(m, π1)− ϕ2(m, π2)‖2 ≤ ‖π1 − π2‖2 for any π1, π2 ∈ L2(G).
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To derive the formula in the original basis, let Q̂L be the (L + 1) × (L + 1) left
upper submatrix of Q̂. Adding and subtracting π on the right-hand side of (28), and
using the fact that for l ≤ L we can write L in the upper limit of the sum in (27), we
obtain

ϕ2(m, π) =
L∑
l=0

〈Ψ− π,Ql〉Ql + π =
L∑
l=0

L∑
i,j=0

〈Ψ− π,Rj〉 Q̂l,iQ̂l,j Ri + π

=
L∑
i=0

 L∑
j=0

(Q̂TLQ̂L)i,j〈Ψ− π,Rj〉

Ri + π =
[
H−1
L 〈Ψ− π,R〉

]T
R + π,

where HL is the (L+1)× (L+1) matrix such that (HL)−1 = Q̂TLQ̂L. Thus, we finally
get

ϕ2(m, π) =
L∑
l=0

λlRl + π =

(∑L
l=0 λlRl
π

+ 1

)
· π,(29)

where the coordinates of the vector H−1
L 〈Ψ − π,R〉 = H−1

L (0,m − RLπ), denoted
by λl, can be viewed as Lagrange multipliers. The entries of HL are of the form

(HL)k,l =
∫
G

Rk(x)Rl(x) dx(30)

for k, l = 0, . . . , L, as can be seen from (27) using the identity 〈Qk, Ql〉 = δk,l.
Of course, ϕ2(m, π) has mass one but can in general be negative on the set of

positive Lebesgue measures thus it corresponds to a signed measure. However, we can
ensure positivity when the prior distribution is bounded away from zero on G and
the target moments m are close enough to the moments of the prior π. The following
lemma is an easy consequence of representation (29).

Lemma 4.1. Assume that π ≥ c a.e. on G for some constant c > 0. There exists
a constant δ = δ(L,G,R) > 0 such that if |m − RLπ| < δ, we have ϕ2(m, π) ≥ 0
a.e. on G.

Let us now analyze operator ϕ2. The continuity of matching (Property 3.7)
follows from the next lemma.

Lemma 4.2. Let π,Ψ, Ψ̃ ∈P2(G), and let mL = RLΨ, m̃L = RLΨ̃ with L ∈ N.
Then

‖ϕ2(mL, π)− ϕ2(m̃L, π)‖2 ≤ ‖Q̂L‖ · ‖mL − m̃L‖.(31)

Proof. Let us denote by πl,Ψl, Ψ̃l the lth Fourier coefficient of π,Ψ, Ψ̃, respec-
tively, in the basis {Ql}l=0,1,.... Note that for ϕ2(mL, π) and ϕ2(m̃L, π) only the first
sum in expansion (28) differs. Thus, Parseval’s identity implies

‖ϕ2(mL, π)− ϕ2(m̃L, π)‖22 =

∥∥∥∥∥
L∑
l=0

(Ψl − Ψ̃l)Ql

∥∥∥∥∥
2

2

=
L∑
l=0

(Ψl − Ψ̃l)2.

Now, according to (27), we have (Ψ0, . . . ,ΨL) = Q̂LmL and (Ψ̃0, . . . , Ψ̃L) = Q̂Lm̃L.
Hence, we finally obtain

‖ϕ2(mL, π)− ϕ2(m̃L, π)‖22 = ‖Q̂L(mL − m̃L)‖2,

from which (31) follows.
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4.2.2. Consistency. In this section, we prove consistency (Property 3.8) of L2N
based matching, assuming G = (−γ, γ) ⊂ R and that the moment functions are
given as

Rl(x) = xl, l = 0, 1, . . . ,(32)

so that the restriction operator RL extracts the first L algebraic moments.
For a given prior probability density π ∈ L2(−γ, γ) the solution to (25) is

ϕ2(m, π)(x) = λTR(x) + π(x) =
L∑
l=0

λlx
l + π(x),(33)

where λ = H−1
L R̃L(Ψ− π) and according to (30)

Hi,j =
1 + (−1)i+j

i+ j + 1
γi+j+1(34)

for i, j = 0, . . . , L. The set {Rl : l = 0, 1, . . .} ⊂ L∞(−γ, γ) is the monomial basis of
L2(−γ, γ) and its Gram–Schmidt orthonormalization Ql ∈ L∞(−γ, γ), l = 0, 1, . . . ,
satisfies Ql(x) = Pl(x/γ)/

√
γ with Pl the lth (normalized) Legendre polynomial on

(−1, 1).
Before stating the main result of this section, Theorem 4.6, let us establish two

supporting lemmas.

Lemma 4.3. Let φ ∈ C2([−γ, γ]) and let φl =
∫ γ
−γ Ql(x)φ(x) dx, l = 0, 1, . . . ,

denote its Fourier coefficients with respect to {Ql}. Then

γ

+∞∑
l=0

l(l + 1)|φl|2 =
∫ γ

−γ

(
γ2 − x2) |φ′(x)|2 dx.(35)

The proof is a straightforward generalization of the proof in [68] that uses the relation
between Ql and the Legendre polynomials.

Remark 4.4 (on generalization to multidimensional G). The subsequent analysis
hinges upon (35), a consequence of Legendre’s differential equation. The extension to
the d-dimensional case would require the study of similar relations for the orthogo-
nalization of multivariate algebraic polynomials from Example 3.2.

For the second lemma let us denote by W 1,2([−γ, γ]) the Sobolev space of all
functions φ ∈ L2([−γ, γ]) such that φ′ ∈ L2([−γ, γ]) with norm ‖φ‖1,2 = ‖φ‖2 +‖φ′‖2.

Lemma 4.5. Fix L ∈ N, Ψ ∈ P2([−γ, γ]) and let mL = RLΨ. The projection
operator ϕ2(mL, · ) is continuous in W 1,2([−γ, γ]).

Proof. Let us take (φn)+∞
n=0 ⊂ W 1,2([−γ, γ]) such that limn→∞ ‖φn − φ0‖1,2 = 0.

According to (33), ϕ2(mL, φn) is the sum of φn and a polynomial, so it belongs to
W 1,2([−γ, γ]) and we obtain

‖ϕ2(mL, φn)′ − ϕ2(mL, φ0)′‖2 ≤ ‖φ′n − φ′0‖2 +
∥∥∥∥ L−1∑
l=0

(l + 1)(λnl+1 − λ0
l+1)Rl

∥∥∥∥
2

≤ ‖φ′n − φ′0‖2 + L

L−1∑
l=0

|λnl+1 − λ0
l+1| · ‖Rl‖2

≤ ‖φ′n − φ′0‖2 + L‖λn − λ0‖ · ‖R‖2,
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where λn = H−1
L (0,mL − RLφn) and the last estimate is based on the Hölder in-

equality. Moreover, using the estimate on the norm of R̃L we have

‖λn − λ0‖ ≤ ‖H−1
L ‖ · ‖R̃L(φn − φ0)‖ ≤ ‖H−1

L ‖ · ‖R‖2 · ‖φn − φ0‖2

with ‖H−1
L ‖ the matrix norm. Combining these two estimates together with the

nonexpansiveness of ϕ2(mL, ·) gives

‖ϕ2(mL, φn)− ϕ2(mL, φ0)‖1,2 ≤
(
1 + L‖H−1

L ‖ · ‖R‖
2
2
)
‖φn − φ0‖2 + ‖φ′n − φ′0‖2,

from which the continuity follows.

We are now ready to prove the following theorem on the rate of convergence for
L2N based matching.

Theorem 4.6. Let L ∈ N and let π,Ψ ∈ W 1,2([−γ, γ]) be two probability densi-
ties. If mL = RLΨ we have

‖ϕ2(mL, π)−Ψ‖2 ≤
√
γ

L+ 1
‖π′ −Ψ′‖2.(36)

Proof. First assume that π,Ψ ∈ C2([−γ, γ]) and let πl,Ψl denote the lth Fourier
coefficients of π and Ψ, respectively, in the basis {Ql}l=0,1,... (which is the orthonor-
malization of (32)). Then, using expansion (28) and Parseval’s identity, we get

‖ϕ2(mL, π)−Ψ‖22 =
+∞∑
l=L+1

(Ψl − πl)2 ≤
+∞∑
l=L+1

l(l + 1)
(L+ 1)2 (Ψl − πl)2

≤ 1
(L+ 1)2

+∞∑
l=0

l(l + 1)(Ψl − πl)2.

Finally, employing (35) from Lemma 4.3, we obtain

‖ϕ2(mL, π)−Ψ‖22 ≤
1

γ(L+ 1)2

∫ γ

−γ

(
γ2 − x2) |Ψ′(x)− π′(x)|2 dx

≤ γ

(L+ 1)2 ‖Ψ
′ − π′‖22.

Now let π,Ψ ∈W 1,2([−γ, γ]) and take two sequences (πn)n, (Ψn)n ∈ C2([−γ, γ])
such that πn → π and Ψn → Ψ in W 1,2. Then ϕ2(mL, πn), ϕ2(mL,Ψn) are twice con-
tinuously differentiable for each n, and from Lemma 4.5 it follows that ϕ2(mL, πn)→
ϕ2(mL, π) and ϕ2(mL,Ψn)→ ϕ2(mL,Ψ) = Ψ in W 1,2. Hence, using the first part of
the proof together with mL = RLϕ2(mL,Ψn), we get

‖ϕ2(mL, π)−Ψ‖22 = lim
n→∞

‖ϕ2(mL, πn)− ϕ2(mL,Ψn)‖2

≤
√
γ

L+ 1
lim
n→∞

‖π′n − ϕ2(mL,Ψn)′‖2 =
√
γ

L+ 1
‖π′ −Ψ′‖2,

which finishes the proof of (36).

From Theorem 4.6 the following corollary follows and implies (17) from Prop-
erty 3.8. Recall our convention for notation from Remark 3.3.
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Corollary 4.7. Let X be a solution of (1) with a smooth density ρ. For every
t, t + ∆t ∈ I, with ∆t > 0, put π = ρ(t, ·), Ψ = ρ(t + ∆t, ·) and assume that
ϕ2(mL, π) ≥ 0, where mL = RLΨ. Then for every g ∈ C([−γ, γ]) we have∣∣Eg(ϕ2(mL, X(t))

)
− Eg

(
X(t+ ∆t)

)∣∣ ≤ C

L+ 1
∆t(37)

with C depending only on g, ρ, T , and γ.

Proof. Using formula (11) we obtain

∣∣Eg(ϕ2(mL, X(t))
)
− Eg

(
X(t+ ∆t)

)∣∣ ≤ ∫ γ

−γ
|g(y)||ϕ2(mL, π)−Ψ| dy

≤ 2γ · max
[−γ,γ]

|g| · ‖ϕ2(mL, π)−Ψ‖2.

According to Theorem 4.6, it is enough to estimate the L2N between the derivatives
of π and Ψ. Applying the mean value theorem, we get

|∂xρ(t+ ∆t, x)− ∂xρ(t, x)| ≤ max
[0,T ]×[−γ,γ]

|∂t∂xρ| ·∆t

for every x ∈ (−γ, γ). Hence

‖Ψ′ − π′‖22 =
∫ γ

−γ
|∂xρ(t+ ∆t, x)− ∂xρ(t, x)|2 dx ≤ 2γ · max

[0,T ]×[−γ,γ]
|∂t∂xρ|2 · (∆t)2.

Combining these estimates with Theorem 4.6 gives the result.

We provide a sufficient condition for the existence and smoothness of ρ in section 7
for the specific example of FENE dumbbells.

4.3. Matching with f-divergences. Let p ∈ [1,+∞) and let RL : Pp(G) →
RL be the restriction operator (14) generated by the functions R1, . . . , Rl ∈ Lp(G).
In this subsection, we consider matching operators that for a vector of macroscopic
state variables m ∈ ImRL and a prior distribution π ∈Pp(G) are defined as

PL(m, π) = argmin
ϕ∈R−1

L (m)
If (ϕ |π),(38)

where If ( · |π) is a divergence functional generated by f : [0,+∞)→ [0,+∞),

If (ϕ|π) =


∫
G

f

(
ϕ(x)
π(x)

)
π(x) dx if suppϕ ⊆ suppπ,

+∞ otherwise,

ϕ ∈Pp(G).(39)

Note that the condition suppϕ ⊆ suppπ is equivalent to requiring that the measure
µϕ corresponding to the density ϕ is absolutely continuous with respect to the measure
µπ corresponding to π, which we denote as µϕ � µπ.

We assume that f is not identically equal to zero, lower semicontinuous, convex,
and such that f(1) = 0. Let us denote by f+ the extension of f to the whole real
line such that f+(t) = +∞ for negative t. If we consider the probability measure
µπ (generated by π) and put φ = ϕ/π ∈ Lp(G,µπ) for each ϕ ∈ Pp(G) such that
µϕ � µπ, we see that (38) is equivalent to the primal (entropy) problem (EP )p in
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Lp(G,µπ) (see Appendix A) with vector m̃ = (1,m) ∈ RL+1. Recall that in (EP )p
we ensure that the optimal solution, if it exists, is a probability density by using
the extended restriction operator R̃L, with additional moment function R0 ≡ 1, and
a convex constraint to the cone Lp+(G,µπ).

If all assumptions of Theorem A.1 are satisfied, it follows from (72) that the
explicit formula for the matching operator defined by (38) is given by

PL(m, π) = (f∗+)′
(

L∑
l=0

λlRl

)
·π,(40)

where (f∗+)′ is the derivative of the convex conjugate f∗+ (defined in (69)) and the
multipliers λ0, . . . , λL satisfy the Lagrangian dual problem (cf. (73))

m̃− R̃L

(
(f∗+)′

( L∑
l=0

λlRl

))
= 0.(41)

The derivation of this dual problem is presented in Appendix A. The general result on
the existence of solution is given as Theorem A.1, which is a specialization of a result
from [4] to our setting. In particular, note that condition (71) requires additionally
the vector m to lie in the interior of the image of RL (cf. Remark 3.5)

We now consider two specific examples: the Kullback–Leibler divergence and the
L2 divergence. While we do not show rigorously that Property 3.8 holds for these
matching operators at this point, we will illustrate in section 7 that the numerical
behavior of these matchings is very similar to that of the L2N matching of subsec-
tion 4.2, while offering two significant advantages. First, f -divergence matching guar-
antees positivity of the resulting matched probability density. Second, f -divergence
matching leads to numerical methods that are easier to implement numerically for
ensembles of finite size.

Kullback–Leibler divergence. Here, we take as a generating function

f(t) =
{
t ln t− t+ 1, t > 0,
1, t = 0,(42)

and consider the resulting divergence distance on P(G) (thus p = 1 in this case).
With this choice of f the resulting functional is (the term generated by −t+1 cancels
out)

If (ϕ|π) =
∫
G

ϕ(x)
π(x)

ln
(
ϕ(x)
π(x)

)
π(x) dx, µϕ � µπ,

which is called Kullback–Leibler divergence (KLD) or logarithmic relative entropy.
KLD is a common choice in the information-theoretic methods for the analysis of
stochastic models. For example, the entropy optimization principle is used to obtain
moment closures [35, 31], construct optimal coarse-grained dynamics [38, 30], and
approximate the spectral densities [27, 24]. Note that in contrast with some other
approaches, we focus on the convergence of the micro-macro acceleration method to
the true microscopic dynamics.

The dual of f+ is f∗+(s) = exp(s)−1, s ∈ R. Note that f satisfies the assumptions
in Theorem A.1. Hence, if the moment functions R1, . . . , Rl fulfill Assumption 3.1(a)
and (71) holds, the formula for matching (40) reads

PL(m, π) = exp

(
L∑
l=0

λlRl

)
·π(43)
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with λ0, . . . , λL the solution to the nonlinear system of integral equations (recall
R0 ≡ 1) 

eλ0

∫
G

Rl exp

(
L∑
k=1

λkRk

)
π dx = ml, l = 1, . . . , L,

λ0 = − ln
∫
G

exp

(
L∑
k=1

λkRk

)
π dx.

(44)

It is not possible to analytically solve (44) so we will use a Newton–Raphson procedure
to perform the optimization numerically; see Appendix B.

Remark 4.8 (reducing dimensions for KLD based matching). To keep the mass
of the matching equal to 1 we include the additional linear constraint with moment
function R0 and obtain 0th Lagrange multiplier λ0 in the dual problem. This implies
that we perform the optimization in L+1 dimensions and that the resulting numerical
solution has mass one only up to the tolerance of the Newton–Raphson procedure.
With KLD based matching we can express λ0 as a function of the other multipliers
(see (44)), thus reducing the dimensionality by one and keeping the mass of the nu-
merical solution (and in fact solutions corresponding to all steps of Newton–Raphson
iteration) equal to one up to machine precision. However, in this case we observed
that the convergence of the Newton–Raphson procedure is slower compared to L+ 1
dimensional optimization, so we decided not to use this approach.

L2 divergence. Our second example is based on the generating function

f(t) =
1
2

(t− 1)2, t ≥ 0.(45)

Hence, if ϕ, π ∈P2(G) and µϕ � µπ, the divergence distance under consideration is

If (ϕ |π) =
1
2

∫
G

(
ϕ(x)
π(x)

− 1
)2

π(x) dx,

which is called L2 divergence (L2D) or quadratic relative entropy. The dual of f+
in this case is f∗+(s) = 1/2 [max(0, s + 1)2 − 1]. Since f satisfies the assumptions in
Theorem A.1, under Assumption 3.1(a) and (71), the formula for matching (40) reads

PL(m, π) = max

(
0,

L∑
l=0

λlRl

)
· π,(46)

where λ0, . . . , λL solve

ml −
∫
G

Rl(x) max

(
0,

L∑
k=0

λkRk(x)

)
π(x) dx = 0, l = 0, . . . , L.(47)

We again need to find the solution to (47) numerically; see Appendix B for the
corresponding Newton–Raphson procedure.

5. Proof of the convergence result. Throughout this section we use the no-
tation of subsection 3.3 and suppose that all the assumptions of Theorem 3.10 hold.
The proof requires the following lemmas.
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Lemma 5.1. For every sufficiently large r there is a constant CL,r,T > 0 such that

E‖Xn‖2r ≤ CL,r,T (1 + ‖X0‖2r)

for all N,K and n = 1, . . . , N, k = 1, . . . ,K.

Proof. Fix n < N . According to the uniform boundedness of the moments for
the one-step microscopic discretization S (Assumption 2.5), for every sufficiently large
r > 0 there is a constant Cr,T > 0 such that E‖Xn,k‖2r ≤ Cr,TE‖Xn,0‖2r for all
k = 1, . . . ,K. Let us also take constants Ĉl,T , κ̂l,T from Lemma 2.6 and C̃l,T , κ̃l,T from
estimate (5), corresponding to the functions Rl, l = 1, . . . , L. For each r sufficiently
large it holds with CL,r,T = 2(Ĉl,T + C̃l,T )

Ĉl,T (1 + ‖z‖2κ̂l,T ) + C̃l,T (1 + ‖z‖2κ̃l,T ) ≤ CL,r,T (1 + ‖z‖2r)

for all z ∈ G and l = 1, . . . , L.
Let us now fix r large enough so that the discussion in the previous paragraph

applies. For every l ≤ L, using Lemma 2.6 and formula (5), we have∣∣ERl(Xn,K)− ERl(Xn,0)
∣∣ ≤ ∣∣ERl(Xn,K)− ERl(X(tn,K ; tn,0,Xn,0))

∣∣
+
∣∣ERl(X(tn,K ; tn,0,Xn,0))− ERl(Xn,0)

∣∣
≤ Ĉl,T (1 + E‖Xn,0‖2κ̂l,T )K(δt)p+1

+ C̃l,T (1 + E‖Xn,0‖2κ̃l,T )Kδt

≤ CL,r,T (1 + E‖Xn,0‖2r)Kδt,

(48)

where we estimated (δt)p ≤ T p and absorbed the factor T p into the constant CL,r,T .
Recall that Xn+1 = PL(mn+1,Xn,K), from the definition in Algorithm 1, and

Xn,K = PL(mn,K ,Xn,K), from the properties of matching. Thus employing the
continuity of matching (Property 3.7) and formula (18) (for the extrapolation) we
obtain

E‖Xn+1‖2r ≤
∣∣E‖Xn+1‖2r − E‖Xn,K‖2r

∣∣+ E‖Xn,K‖2r

≤ CL,r
∥∥mn+1 −mn,K

∥∥+ Cr,TE‖Xn,0‖2r

≤ CL,r
∆t
Kδt

∥∥mn,K −mn,0
∥∥+ Cr,TE‖Xn‖2r.

Since ‖mn,K −mn,0‖ ≤ L ·maxl≤L |ERl(Xn,K)− ERl(Xn,0)|, from (48) we get

E‖Xn+1‖2r ≤ LCL,rCL,r,T∆t(1 + E‖Xn‖2r) + Cr,TE‖Xn‖2r.

This recurrence implies by [53, Lem. 1.3] that E‖Xn+1‖2r ≤ eC(1 + E‖X0‖2r) for
a constant C depending only on r, L and T .

Lemma 5.2. There is a constant CEL,T such that for all N , K and n = 0, . . . , N ,
k = 0 . . . ,K

‖E
(
(RLX(tn,k; tn,Xn))Kk=0; ∆t, δt

)
−RLX(tn+1; tn,Xn)‖ ≤ CEL,T · (∆t)2.
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Proof. Put m̃n(s) = RLX(s; tn,Xn), s ∈ [tn, tn+1]. Assumption 2.2.a together
with the fact that Rl ∈ C4

P (G,R) implies m̃n ∈ C2([tn, tn+1],R). Thus from
Lemma 3.9 we obtain

‖E
(
(RLX(tn,k; tn,Xn))Kk=0; ∆t, δt

)
−RLX(tn+1; tn,Xn)‖

≤ max
s∈[tn,tn+1]

‖(m̃n)′′(s)‖ · (∆t)2

and from Lemma 5.1 we can find κL,T and CL,T large enough such that

max
s∈[tn,tn+1]

‖(m̃n)′′(s)‖ ≤ L · max
s∈[tn,tn+1]

max
l≤L

∣∣∂2
s ERl

(
X(s; tn,Xn)

)∣∣
≤ L ·max

l≤L
C̃l,T

(
1 + E‖Xn‖2κ̃l,T

)2 ≤ CL,T (1 + E‖X0‖2κL,T )2,

where C̃l,T , κ̃l,T are constants from Assumption 2.2.a (corresponding to Rl).

We now proceed to the proof of the theorem. We will bound the weak error
between random variable XN = XN

L , obtained from Algorithm 1, and the true solution
X(T ) = X(T ; t0,X0) of (1) in three steps. In the first part, we derive a recursion
for the error at time tn = tn,0, n = 1, . . . , N . In the second, we bound the local
truncation error. Finally, in the third part we gather the estimates to obtain (23).

Part 1. Let us fix g ∈ C2(p+1)
P (G,R) and L ∈ N. From Assumption 2.2.c we have

∣∣Eg(XN )− Eg(X(T ))
∣∣ ≤ N∑

n=1

∣∣Eg(X(T ; tn,Xn)
)
− Eg

(
X(T ; tn−1,Xn−1)

)∣∣
≤ Cg,T

N∑
n=1

∣∣Eg(Xn
)
− Eg

(
X(tn; tn−1,Xn−1)

)∣∣ .(49)

Here we used the identity X(T ; tn−1,Xn−1) = X(T ; tn,X(tn; tn−1,Xn−1)). The terms
in the last sum of (49) are exactly the errors produced by one step of the micro-macro
acceleration method when there is no initial error, i.e., they are the local truncation
errors.

Part 2. Let us now fix n ∈ {1, . . . , N} and estimate a single term in the right-
hand side of (49). Recall that Algorithm 1 first computes an intermediate solution
Xn−1,K by performing K steps of the microscopic scheme at times tn,k (k = 1, . . . ,K)
and starting from Xn−1 at time tn−1 = tn−1,0 (see (20)). Hence we split

Eg
(
Xn
)
− Eg

(
X(tn; tn−1,Xn−1)

)
= Eg

(
Xn
)
− Eg

(
X(tn; tn−1,K ,Xn−1,K)

)
+ Eg

(
X(tn; tn−1,K ,Xn−1,K)

)
− Eg

(
X(tn; tn−1,Xn−1)

)
,

(50)

and use Lemma 2.6 (with s = tn) and Lemma 5.1 together with Kδt ≤ ∆t to get∣∣Eg(X(tn; tn−1,K ,Xn−1,K)
)
− Eg

(
X(tn; tn−1,Xn−1)

)∣∣ ≤ CL,T∆t(δt)pS(51)
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with constant CL,T depending also on X0. To estimate the first summand in (50) we
further decompose

Eg
(
Xn
)
− Eg

(
X(tn; tn−1,K ,Xn−1,K)

)
= Eg

(
Xn
)
− Eg

(
PL(m̃n,Xn−1,K)

)
+ Eg

(
PL(m̃n,Xn−1,K)

)
− Eg

(
X(tn; tn−1,K ,Xn−1,K)

)
,

where m̃n = RLX(tn; tn−1,K ,Xn−1,K). Using (17) in Property 3.8, the second term
can be estimated as follows:∣∣Eg(PL(m̃n,Xn−1,K)

)
− Eg

(
X(tn; tn−1,K ,Xn−1,K)

)∣∣ ≤ CL∆t,(52)

where CL depends on g and CL → 0 as L → +∞. To estimate the first term recall
that Xn = PL(mn,Xn−1,K), where mn is obtained via the extrapolation step (21).
We can use the continuity of the matching operator (Property 3.7) to get∣∣Eg(Xn

)
− Eg

(
PL(m̃n,Xn−1,K)

)∣∣ ≤ ĈL ‖mn − m̃n‖

≤ ĈL
∥∥mn − E

(
(RLX(tn−1,k; tn−1,Xn−1))Kk=0, δt,∆t

)∥∥
+ ĈL

∥∥E ((RLX(tn−1,k; tn−1,Xn−1))Kk=0, δt,∆t
)
− m̃n

∥∥ .(53)

Next we apply the continuity of extrapolation, equation (19), together with Lemma 2.6
(with functions Rl and s = tn−1,K) to the first term on the right-hand side to obtain∥∥mn − E

(
(RLX(tn−1,k; tn−1,Xn−1))Kk=0, δt,∆t

)∥∥
≤ ∆t
Kδt

∥∥RLXn−1,K −RLX(tn−1,K ; tn−1,Xn−1)
∥∥

≤ CL,T (1 + E‖Xn−1‖κL,T )∆t(δt)pS ≤ CL,T∆t(δt)pS ,

(54)

where in the last inequality we used Lemma 5.1. For the second term of (53) we have

(55)
∥∥E ((RLX(tn−1,k; tn−1,Xn−1))Kk=0, δt,∆t

)
− m̃n

∥∥
≤
∥∥E ((RLX(tn−1,k; tn−1,Xn−1))Kk=0, δt,∆t

)
−RLX(tn; tn−1,Xn−1)

∥∥
+
∥∥RLX(tn; tn−1,Xn−1))− m̃n

∥∥ .
Lemma 5.2 establishes the estimate on the first term on the right-hand side of (55);
for the second term we can once more use Lemma 2.6 (with functions Rl and s = tn)
together with Lemma 5.1 to get∥∥RLX(tn; tn−1,Xn−1)− m̃n

∥∥ ≤ CL,TK(δt)pS+1 ≤ CL,T∆t(δt)pS .

Combining all these estimates, we obtain∣∣Eg(Xn
)
− Eg

(
X(tn; tn−1,Xn−1)

)∣∣ ≤ CL∆t+ 3CL,T∆t(δt)pS + CEL,T (∆t)2.(56)

Part 3. Using (49) and (56), we get∣∣E [g(XN )− g(X(T ))
]∣∣ ≤ Cg,TN∆t(CL + 3CL,T (δt)pS + CEL,T∆t)

≤ Cg,TT (CL + 2CL,T (δt)pS + CEL,T∆t),

where we used the estimate N∆t ≤ T . To conclude the proof note that Cg,T does not
depend on L, so we can simply absorb the factor Cg,TT into the other constants to
obtain (23).
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6. Numerical implementation of matching. The numerical matching con-
sists of a procedure that computes the estimate of the Lagrange multipliers parame-
terizing the PDF of the matching operator (derived in section 4). In subsection 6.1,
we detail the exact formulas used for the various types of matchings in consideration.
Here, we assume that the vector of target moments is given, as well as a weighted
ensemble of particles from the prior distribution. A complication arises due to the
presence of noise, a consequence of the finite size of the ensemble. In subsection 6.2, we
present the resampling strategy used to avoid the degeneracy of weights, and in sub-
section 6.3 we describe the technique to adapt the macroscopic time step of our micro-
macro acceleration method according to the performance of the numerical matching.

6.1. Computation of Lagrange multipliers. Let m ∈ RL be a given vector
of target moments corresponding to a restriction operator RL generated by functions
R1, . . . , RL. Assume also that we have a weighted ensemble X π = (Xj , wj)Jj=1 sam-
pled from a prior distribution π absolutely continuous with respect to a Borel measure
µ on G ⊂ R (see subsection 4.1), where Xj is the jth particle and wj is its normal-
ized weight (all wj are nonnegative and sum to 1). To be more precise, we suppose
that each Xj = X(ωj) is a realization of a random variable X with law µ, and the
weights are obtained by taking wj = w(Xj)/

∑J
i=1 w(Xi), where w is a density given

by π = w ·µ. Then, the importance sampling theorem together with the Monte Carlo
method from subsection 2.1.3 yields the consistency of the approximation

E[g(Y )] =
E[g(X)w(X)]

E[w(X)]
≈

J∑
j=1

g(Xj)wj(57)

for any test function g and any random variable Y distributed according to π.
The matching operator is implemented by computing the appropriate Lagrange

multipliers λ̂m,π, which solve the corresponding dual optimization problem, and re-
sults in a new weight wj(λ̂m,π) for each particle. The reweighting strategy is based
on the explicit formulas for the matchings presented in section 4. These distributions
belong to the parametrized family w(λ) · π, where λ is any vector of Lagrange multi-
pliers and w(λ) = w(λ, ·) is a weighting function dependent on the type of matching;
see (29) for L2N and (40) for f -divergence based matching. Hence, if we now consider
Y distributed according to w(λ) · π, applying twice formula (57) shows that

J∑
j=1

g(Xj)w(λ, Xj)wj =
J∑
j=1

g(Xj)wj(λ)(58)

approximates E[g(Y )], where we define wj(λ) = w(λ, Xj)wj . Accordingly, we con-
sider (Xj , wj(λ))Jj=1 to sample w(λ) · π and we use the weighted averages (58), with
appropriate g, to compute the integrals in the formulas for the dual objective func-
tion, its gradient, and Hessian. Note that for the solution λ̂m,π, the resulting weights
wj(λ̂m,π) will already be normalized when we use the extended restriction operator
R̃L from subsection 4.1.

Remark 6.1 (on matching with empirical distributions). Every weighted ensemble
(Xj , wj)Jj=1 from π gives rise to an empirical distribution πJ =

∑J
j=1 wjδXj , where δXj

is the Dirac mass at Xj . Thus, in this case, we have µ =
∑J
j=1 δXj/J . The equivalent

strategy of approximating PL(m, π) is to compute the matching νJ = PL(m, πJ).
Indeed, as all measures absolutely continuous with respect to πJ are empirical and
differ only by the weights, and we know that the matching, if it exists, reads w(λ) ·πJ ,
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for a particular λ, we easily obtain that vJ =
∑J
j=1 wj(λ)δXj is also a weighted

empirical distribution. To find λ we use the dual method that amounts to solving

ml =
J∑
j=1

Rl(Xj)wj(λ), l = 0, . . . , L.

This is the same problem we obtain by the Monte Carlo estimates for the Newton–
Raphson procedure for π (see Appendix B) with the weighted ensemble (Xj , wj)Jj=1.

We now give the specific formulas for the three matching operators discussed
so far.

Example 6.2. In the case of matching with L2N, the Newton-Raphson procedure
reduces to the appropriate least squares problem, as described in subsection 4.2.
Hence, according to formula (29), the approximate Lagrange multipliers are computed
as the numerical solution to the linear system of equations

Hλ = (0,m− m̂(π)),

where H is an L+ 1×L+ 1 (Hessian) matrix with entries given by (30) and m̂(π) is
the Monte Carlo estimate of the moment vector of the prior

m̂(π)l =
J∑
j=1

Rl(Xj)wj , l = 1, . . . , L.

We can compute the new weights associated with the matched sample as (see (29))

wj(λ) = wj ·

(∑L
l=0 λlRl(Xj)
π(Xj)

+ 1

)
.

However, we are facing two problems here. First, the nonnegativity of these weights
is guaranteed only when the assumptions of Lemma 4.1 hold. Second, we need to
evaluate the prior distribution at all particle values Xj . Since we generally do not
have a closed formula for π, this requires some density estimation (based on, e.g.,
histograms or kernel densities; see [64]) and can therefore be done only approximately,
potentially introducing additional statistical error and/or bias and increasing the time
of computation. These complications do not arise with weights of the KLD and L2D
based matchings (discussed in the next two examples), which makes them better fit
the complete method.

Remark 6.3 (averages for L2N based matching). For the numerical illustration
in subsection 7.1, we employ formula (29) directly and represent the average of a
function of interest g : G→ R, with respect to the L2N numerical matching, as

ḡ =
L∑
l=0

(λ̂m,π)l
∫
G

g(x)Rl(x) dx+
∫
G

g(x)π(x) dx.(59)

To compute the estimate ĝ, we evaluate L deterministic integrals in the sum numeri-
cally and estimate the last integral using importance sampling with prior
ensemble X π.

For the matchings based on f -divergences, the approximate Lagrange multipli-
ers are obtained via Newton–Raphson iteration applied to (41), with the additional
constraint

∫
G
R0(x)φ(x) dx = 1, where R0 ≡ 1.
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Example 6.4. For the matching based on KLD, one step of the Newton–Raphson
iteration is given as

λnew = λold −
(
∇̂2D(λold)

)−1
∇̂D(λold),

where (see Appendix B) the Monte Carlo estimates of the gradient and Hessian of
the objective function D at point λ ∈ RL+1 are for k, l = 0, . . . , L given by

∇̂D(λ)l = ml −
J∑
j=1

Rl(Xj)wj(λ),

∇̂2D(λ)k,l = −
J∑
j=1

Rk(Xj)Rl(Xj)wj(λ),

with weights (see (43))

wj(λ) = wj · exp

(
L∑
l=0

λlRl(Xj)

)
, j = 1, . . . , J.

Example 6.5. For matching based on L2D the Lagrange multipliers, according to
Appendix B, are computed as

λnew =
(
∇̂2D(λold)

)−1 (
m− m̂(λold)

)
,

where, with the (nonnegative) weights (see (46))

wj(λ) = wj ·max

{
0,

L∑
l=0

λlRl(Xj) + 1

}
, j = 1, . . . , J,

and with sgn(0) = 0 and sgn(c) = 1 for c > 0, the Hessian estimate is given by

∇̂2D(λ)k,l = −
J∑
n=1

Rk(Xj)Rl(Xj)wj sgn(wj(λ)), k, l = 0, . . . , L.

Here m̂(λ) is the Monte Carlo estimate of the moment vector corresponding to the
prior density π restricted to the set {x :

∑L
l=1 λlRl(x) + 1 ≥ 0}, i.e.,

m̂(λ)l =
J∑
j=1

Rl(Xj)wj sgn(wj(λ)),

for l = 0, . . . , L.

To sum up, as estimator for the matching PL(m, π) we use the vector λ̂m,π =
λ̂(m,X π) of L+ 1 Lagrange multipliers obtained from the Newton–Raphson proce-
dure. The iteration is stopped when the gradient of the objective function becomes
smaller than a fixed value. This vector depends deterministically on the (stochastic)
ensemble X π we use to discretize the prior distribution and on the (stochastic) vector
m of target moments.
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6.2. Resampling. The numerical matching associates new weights with the par-
ticles in the ensemble corresponding to the prior distribution. However, as the vari-
ance of new weights tends to increase, this may result in a degeneracy of the matched
ensemble—the weights of a few particles may become very large, while the others
become small—leading to large statistical errors in the estimates. To measure degen-
eracy we will use the divergence (relative entropy) between the new weights wj(λ̂m,π)
and the uniform weights, all equal to 1/J (cf. [50, Chap. 6.1.2.1]), computed as

J∑
j=1

wj(λ̂m,π) ln
(
Jwj(λ̂m,π)

)
∈ [0, ln(J)] for KLD based matching,

1
J

J∑
j=1

(
Jwj(λ̂m,π)− 1

)2
∈
[
0,

(J − 1)2

J

]
for L2D based matching.

When the divergence of the new weights is larger than a chosen threshold α, we
initiate a resampling algorithm (see [50, Chap. 6.1.2.2]) that generates so-called
branching numbers—random integers nj , j = 1, . . . , J , representing the particle du-
plication count—such that they sum to J and satisfy the unbiasedness condition
E(nj | {w1(λ̂m,π), . . . , w1(λ̂m,π)}) = Jwj(λ̂m,π). Thus, after resampling, we obtain
a new ensemble of particles (X̃j)Jj=1 with uniform weights 1/J , in which there are
exactly nj particles equal to Xj . In this paper, we employ the stratified resampling
strategy [32, 19, 23] that generates random numbers

uk =
(k − 1) + ũk

J
, ũk ∼ U [0, 1),

and takes nj = #{uk : uk ∈ [
∑j−1
i=1 wi(λ̂m,π),

∑j
i=1 wi(λ̂m,π))}.

6.3. Matching failure and adaptive time stepping. During the simulation
the distributions may evolve, for some period of time, on time scales that are similar
to those of the macroscopic functions of interest. In that case, when taking a large
macroscopic time step, the extrapolated macroscopic state differs significantly from
the last available one and can even fall outside of the domain of the matching operator
(cf. Remark 3.5). Numerical matching of the prior ensemble with such macroscopic
state results in a large number of Newton–Raphson iterations or even the lack of
convergence. This “failure” in the matching indicates the need to decrease the ex-
trapolation time step. Consequently, we set a maximal number of Newton–Raphson
iterations (as described in subsection 6.1) and consider the matching to fail if the
optimization procedure does not reach the desired tolerance within the given number
of iterations. In our experiments, we set the maximal number of Newton–Raphson
steps to five.

Based on this observation, we propose the following criterion to adaptively deter-
mine the macroscopic step size ∆t in the micro-macro acceleration algorithm. If the
matching fails, we reject the step and try again with a time step

∆tnew = max(α∆t,Kδt), α < 1,

whereas, when matching succeeds, we accept the step and propose

∆tnew = min(α∆t,∆tmax), α > 1,

for the next step. If the macroscopic step size ∆tnew = Kδt, there is no extrapolation
and matching becomes trivial (the identity operator). When this happens, the crite-
rion will ensure that larger time steps are tried after the next burst of microscopic
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simulation. In the numerical experiments we use α = 0.5 and α = 1.2. This choice
results in rapid decrease when matching fails and gradual increase when it succeeds.

7. Numerical experiments: FENE dumbbells. For the numerical illustra-
tion, we consider the most elementary nonlinear kinetic model of a dilute polymer
solution—the FENE dumbbell model—where the polymer chain is represented by
two beads linked by a spring. In this case, we describe the state of the polymer
configuration at time t ≥ 0 with the end-to-end (random) vector X(t) ∈ Rd that con-
nects both beads. As the dumbbells move through the solvent, the beads experience
Brownian motion, Stokes drag, and the spring force that reads

F : B(
√
b)→ Rd, x 7→ F(x) =

b

b− ‖x‖2
x,(60)

where B(
√
b) = {x ∈ Rd : ‖x‖2 < b}, with b > 0 a nondimensional parameter that is

related to the maximal polymer length. Note that F = ∇U(‖ · ‖), where

U(r) = − b
4

ln
(

1− r2

b

)
, r ∈ [0,

√
b),(61)

is the FENE spring potential.
The Newtonian contribution of the solvent, modeled with the incompressible

Navier–Stokes system, is coupled to the polymer configuration through the stress
tensor

τ =
1

We
(E [X⊗ F(X)]− Id),(62)

where We > 0 is the Weissenberg number. We refer to [48] for the derivation of the
full system and the definition of the nondimensional number We. The calculation
of polymer stress poses the most demanding task in the simulation of the coupled
system, since we need to simulate an ensemble of polymer configurations in each
mesh point of the spatial and temporal discretization. In the presence of a large time-
scale separation between the (fast) evolution of individual end-to-end vectors X and
the (slow) evolution of the stress tensor (62), the cost of this Monte Carlo simulation
may quickly become prohibitive.

In this section, we consider only the simulation of the microscopic model, leaving
the coupling with the Navier–Stokes equations for future work. Thus, we assume
that the velocity gradient of the solvent is given by the time-dependent matrix-valued
function κ ∈ C(I,Rd×d). In this case the evolution of dumbbells is modeled using the
SDE

dX(t) =
(
κ(t)X(t)− 1

2We
F(X(t))

)
dt+

1√
We

dW(t), t ∈ I = [0, T ],(63)

supplemented with the initial condition

X(0) = X0 a.s. with P(‖X0‖2 < b) = 1.(64)

In [36, 37] the authors established the existence of the unique global solution to (63)–
(64) in two space dimensions (d = 2) when the velocity gradient κ is unidirectional and
of particular form κ(·) = (κ1(·), 0)T . The trajectorial uniqueness is valid only when
b ≥ 2 and is guaranteed by the fact that the solution almost surely does not reach the
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boundary of B(
√
b). Thus, in this case, Assumption 2.1 is fulfilled with G = B(

√
b).

Moreover, due to the compactness of G, the class of polynomially bounded observables
reduces to the space of bounded continuous functions. Since the FENE model has
additive noise with constant intensity 1/

√
We > 0, Assumption 2.2 follows from the

elliptic regularity theory [66, Chap. 3]. Note also that, as ellipticity is a local property
of SDEs [66, Chap. 5], the singularity of the drift does not play a role in this context.

In the proof of Corollary 4.7, we rely on the existence and regularity of the densi-
ties of SDE (1). For FENE SDE (63), the corresponding Fokker–Planck equation (9)
reads

∂tρ = −divx

(
ρ
[
κ Id− 1

2We
F
])

+
1

2We
∆xρ on (0, T )×B(

√
b).(65)

In [52, 34] the authors provide requirements on the initial condition ρ0 that ensure
the well-posedness of the system (65)–(10) and regularity of its solutions, which is
appropriate for our analysis. In particular, Theorem 1.2 in [34] implies that if κ ∈
C∞(I), ρ0 ∈ C∞(B), and

∂αx (ρ0e
U ) = 0 at ∂B for all α ∈ Nd0,

there exists a unique smooth solution to (65)–(10).
For the discretization in time we will use the explicit Euler–Maruyama scheme

(8), combined with an accept-reject (truncation) strategy, that takes the specific form

X̃k+1 = Xk +
(
κ(tk)Xk − 1

2We
F(Xk)

)
δt+

1√
We

√
δtξk,(66)

where we added a tilde on X̃k+1 to emphasize that this is an intermediate result. An
accept-reject strategy is necessary because (66) might take the spring length out of
the domain of definition, resulting in a random variable X̃k+1 for which P(‖X̃k+1‖2 ≥
b) > 0. To avoid this, X̃k+1 is rejected if ‖X̃k+1‖ > α

√
b, with 0 < α ≤ 1, and ac-

cepted otherwise. Upon rejection, we repeat the step (66) using a different Brownian
increment ξk. On the one hand, the parameter α should be chosen carefully in order
to maintain consistency; in particular α needs to tend to 1 as δt tends to zero. On the
other hand, with a finite time step extensions very close to

√
b produce a large displace-

ment in the next step and many rejections as a consequence. Therefore, the FENE
model is an example of a stiff stochastic system, where the limitation on the size of the
time step in the numerical scheme comes from the boundedness of the configuration
space. In the numerical experiments, following [55, sect. 4.3.2], we choose α = 1−

√
δt.

Remark 7.1 (on truncation and other strategies). The introduction of the cut-off
factor α ∈ (0, 1) results in a truncation of the random variable,

Xk+1 = X̃k+1
∣∣B(α

√
b).(67)

Here, for any random variable Y with distribution pY and a Borel set C ⊆ Rd
with pY(C) > 0, the random variable Y|C has truncated distribution pY( · |C). In
particular, if Y has density f , the random variable Y|C has density equal to f/pY(C)
on C and 0 otherwise. Besides this simple strategy to preserve the admissible set,
other methods exist to devise schemes that more naturally eliminate the unphysical
moves. In this direction, let us mention only the implicit schemes [42, Chap. 12], in
particular [55, sect. 4.3.2] for FENE, and methods based on the discretization of the
generator of SDE [5].
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Remark 7.2 (matching for FENE dumbbells). Lemma 4.1 allows us to define, in
particular, the L2 matching operator for prior densities π which correspond to the
truncated random variables obtained in (66)–(67). In fact, let π ∈ L2(G) and for
α ≥ 0 let us denote Gα = {x ∈ G : ‖x− η‖ > α for all η ∈ ∂G}. Assume that π has
support in Gα and that π > c a.e. on Gα for some c > 0. Then, for every m ∈ RL
close enough to RLπ we can define the matching operator as

PL(m, π) =
{
ϕ2(m, π|Gα) on Gα,

0 on G\Gα.
(68)

7.1. Properties of numerical matching. We consider the FENE dumbbell
model (63) in one space dimension (thus d = 1 and we do not use bold symbols), with
constant velocity gradient κ(·) ≡ 2, Weissenberg number We = 1, and maximal spring
length γ =

√
b = 7. We discretize in time with the accept-reject Euler–Maruyama

scheme (66)–(67) with time step δt = 2 · 10−4. The probability space is sampled
by J = 105 independent particles. The initial condition at time t0 = 0 is always
the invariant distribution of the same FENE dumbbell model but with zero velocity
gradient, i.e., the probability distribution proportional to exp(2WeU), where U is the
FENE spring potential (61). We plot the evolution of stress and the PDFs in Figure 2.
In this model, we initially have a gradual spread of the PDF. From t ≈ 1.0, a sharp
peak develops close to the maximum polymer length γ. The change in the stress is
particularly fast between t = 0.5 and t = 2.5, and later it slows down while the PDF
approaches equilibrium (see also [39]).

In the matching, as macroscopic state vector m ∈ RL, we consider the first L
normalized even raw moments, corresponding to the restriction operator RL gener-
ated by the functions Rl(x) = (x/γ)2l for x ∈ (−γ, γ) and l = 1, . . . , L. Note that
Assumption 3.1 is then satisfied. The Newton–Raphson iteration is stopped when
the gradient of an appropriate objective function is smaller than 10−9. To obtain the
empirical PDFs corresponding to the ensembles calculated during the simulation, we
use kernel density estimation with Gaussian kernels [64].
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Fig. 2. Evolution of polymer stress and the profile of empirical PDFs in the FENE dumbbell
model with constant velocity gradient κ = 2.0 and maximal polymer length γ = 7.0. The dashed
horizontal line denotes the stress in equilibrium.
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Fig. 3. Empirical PDFs of L2N (top left), KLD (bottom left), and LR2D (bottom right) based
matchings with L moments. The matchings are performed with moments of the target distribution
at time t∗ = 1.1 and prior distribution at time tπ = 1.0, both taken from microscopic simulation.
Computation details are given in section 7.1.1.

7.1.1. Empirical PDFs. In a first experiment, we visually inspect the empirical
PDFs obtained from the algorithm for the numerical matching discussed in subsec-
tion 6.1. To this end, we carry out the full microscopic simulation up to time t∗ = 1.1,
and we record the corresponding target ensemble Y ∗ and the vector m∗L of its first
L positive even raw moments, with L = 3, 5, 7. As a prior X π, we use the ensemble
corresponding to the microscopic simulation at time tπ = 1.0. Next, we perform the
numerical matching with (m∗L,X

π) and record the vectors λ̂m∗L,π for all considered
values of L. We compare the empirical PDFs of matchings with the ones obtained
from prior and target ensembles in Figure 3. We focus on the region where the peak
of the density in FENE model forms (see Figure 2).

For L2N based matching, the densities were obtained as the sum of the empirical
PDF of π, based on the ensemble X π, and the functions

(
λ̂m∗L,π

)T (R0, R1, . . . , RL),
where R0 ≡ 1; see (59). We use formula (68) with α = maxj{|Xπ

j |}. The figure
visually suggests that increasing the number of moments used for matching makes
the approximation of the target PDF more accurate. Moreover, in this example the
assumptions of Lemma 4.1 are not satisfied and the matched density based on L2N
can be negative (L = 5, 7), even though it is positive for the matching with smaller
number of moments (L = 3).

The results for the two types of divergence based matchings are presented on
the bottom. Here we compute the weights wj(λ̂m∗L,π), j = 1, . . . , J , as described in
subsection 6.1, and use the resampling algorithm from subsection 6.2 combined with
kernel density estimation to obtain all empirical PDFs. We see that the target density
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Fig. 4. Average relative error of lth moment of L2N (left) and KLD, L2D (right) based matching
with L moments as a function of l for 100 i.i.d. runs of the experiment with matching time step
∆t = 0.1. Computation details are given in section 7.1.2.

is approximated more accurately than for L2N based matching even with a small num-
ber of moments. The density curves are all similar and are almost indistinguishable
on the plot.

7.1.2. Error dependence on the number of moments. In the next experi-
ment, we also simulate up to time t∗ = 1.1 and perform the matching with the moment
vector m∗L, corresponding to the first L even raw moments of the target ensemble at
t∗ with L = 3, 5, 7 and the prior taken from the simulation at time tπ = 1.0; thus the
matching time step ∆t is 0.1 = 500 · δt. We compute the relative difference between
the lth normalized even raw moment m∗l of the target and the corresponding moment
ml of the matched ensemble: |m∗l −ml|/m∗l , for l = 1, . . . , 20. We present the aver-
aged results of 100 independent and identically distributed (i.i.d.) experiments with
L2N based matching in the left plot of Figure 4 and for both KLD and L2D based
matchings in the right plot of Figure 4.

First, note that for l ≤ L, the relative difference in the moments is below the tol-
erance of the Newton–Raphson procedure, indicating that, as expected, it converged.
Second, for l > L, the relative error decreases with increasing L. Thus, for the match-
ings considered here, the error of the moments also decreases for moments that are
not constrained during matching.

7.1.3. Error dependence on the matching time step. In the next experi-
ment, as previously, we simulate up to time t∗ = 1.1. We record the prior ensemble
X π at time tπ = 1.0 and a number of target ensembles for times t = tπ + ∆t, with
∆t ∈ [5 · δt, 500 · δt], where δt = 2 · 10−4 is the microscopic time step. We perform
matchings with moment vectors mL(t), corresponding to the first L = 3, 5, 7 normal-
ized even raw moments of the target ensemble at time t, and the prior. We compute
the stress tensor τ̂p(t) of the matching at time t and record the relative difference
|τp(t)− τ̂p(t)|/τp(t), where τp(t) is the stress tensor of the corresponding target.

The averaged results of this experiment for 100 i.i.d. runs are presented in Figure 5.
We indeed see the linear increase of the matching error as the function of ∆t. Notice
also that, as already observed in two previous experiments, the matching error
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Fig. 5. Average relative difference in stress as a function of L2N (left) and KLD, L2D (right)
based matching time step for 100 i.i.d. runs of the experiment. Computation details are given in
section 7.1.3.

decreases with increasing L. From these two figures we can also see that the two
divergence based matchings give the same accuracy for modest ∆t and are signifi-
cantly better than L2N based matching.

7.1.4. Dependence of Newton–Raphson iteration on the matching time
step. In the last experiment, we compare the performance of the optimization pro-
cedure for the divergence based matchings. To this end, we record the number of
iterations of the Newton–Raphson procedure needed in the previous experiment for
each matching time step. We compute the average over all runs of the experiment.

For KLD based matching, the average number of iterations increases with in-
creasing matching time step ∆t and ranges between 2 and 4 in the considered range
of time steps. Moreover, the number of iterations increases monotonically with in-
creasing number of moments used. For L2D based matching we didn’t observe any
such dependence on ∆t or the number of moments in this regime. The optimization
procedure converges almost always within only one iteration.

7.2. Performance of micro-macro acceleration algorithm. In this sub-
section, we provide numerical results for the full micro-macro acceleration method
(Algorithm 1) by performing a simulation of the microscopic FENE dumbbell model
with a time-dependent periodic velocity gradient κ. Hence, we consider (63) in
one space dimension with Weissenberg number We = 1 and maximal spring length
γ =
√
b = 7. As the velocity field we choose

κ(t) = 2 ·
(
1.1 + sin(πt)

)
.

For the microscopic simulation, we discretize in time using the accept-reject Euler–
Maruyama scheme (66)–(67), with time step δt = 2 · 10−4, and in probability space
with J = 104 initial i.i.d. particles sampled from the invariant distribution of (63)
for κ ≡ 0. During the extrapolation, based on the projective forward Euler method
(see subsection 3.2), we use the first L normalized even raw moments, corresponding
to the restriction operator RL generated by the functions Rl(x) = (x/γ)2l for x ∈
(−γ, γ) and l = 1, . . . , L. In all cases we perform K = 1 microscopic steps before
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Fig. 6. Evolution of the average stress, its absolute error with respect to the reference simula-
tion, and the standard deviation for micro-macro simulation, with L normalized even raw moments
and KLD based matching. Results based on 50 i.i.d. runs of the experiment.

extrapolation. To restart the microscopic simulation, we use KLD based numerical
matching combined with the resampling strategy (described in subsection 6.2). We
set the degeneracy threshold α = ln(J)/10 and check the entropy of the weights
each 10 macroscopic time steps. We also use the adaptive time stepping described in
subsection 6.3.

7.2.1. Error dependence on the number of moments. In the first experi-
ment, we use ∆tmax = 0.001 = 5.0 · δt and vary the number L of macroscopic state
variables. We simulate up to time T = 6. The results of 50 i.i.d. runs of this experi-
ment with L = 2, 3, 4 are presented in Figure 6. We make two observations.

First, the deterministic error decreases with increasing L, whereas this tendency
is not present in the sample standard deviation. The large variability of the standard
deviation, especially for L = 4, stems from the ill-posedness of the Hessian matrices
used in the Newton–Raphson procedure. Second, we see that the error of the micro-
macro acceleration algorithm with respect to the reference simulation decreases as
a function of time and vanishes when the simulation reaches a periodic regime in
the third cycle. This behavior can be attributed to the fact that the macroscopic
behavior of the system on long time scales is determined by only a few macroscopic
state variables.

7.2.2. Error dependence on the macroscopic time step. In the second ex-
periment, we fix L = 3 and vary ∆tmax. Figure 7 shows the results for 50 independent
runs. While the deterministic error grows with increasing ∆tmax, the adaptive time
stepping prevents it from becoming too large and thus we do not see a significant
difference between ∆tmax = 3.5 · δt and 5.0 · δt. The right-hand plots illustrate the
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Fig. 7. Evolution of the average stress, its absolute error with respect to the reference simula-
tion, and the standard deviation for micro-macro simulation, with 3 normalized even raw moments
and KLD based matching. Results based on 50 i.i.d. runs of the experiment.

decrease of the error and sample standard deviation as a function of time. However,
for small time steps the variability can still be significant at later times (bottom right
plot) due to a large number of matchings that need to be performed and that require
solving ill-posed problems. Large ∆tmax reduces this number, especially for larger
times where we observed that extrapolation works the best.

To examine the performance of the method for larger numbers of macroscopic
time steps we plot in Figure 8 the relation between the mean error and the percent
of extrapolation in the time range. On the y-axis we present the ratio of the average
value over time of the error in stress to the average value over time of stress in a full
microscopic simulation. On the x-axis we plot the ratio of the time domain covered
with extrapolation, computed as

∑
(∆ti −Kδt) with sum over all macroscopic steps

in the simulation, to the total time range T = 6. For a given ∆tmax, if all macroscopic
time steps were equal to ∆tmax, the percent of extrapolation would be (m − 1)/m,
where m = ∆t/δt. For m = 1.5, 2.0, 2.5, 3.0 the x-coordinates of corresponding points
on the plot are close to this maximum, meaning the simulation was performed with
the maximal extrapolation step for almost all times. For higher ratios m, we can
see the effects of the adaptive time stepping that makes the points clump together in
the top right corner of the figure, but we still increase the time domain covered with
extrapolation.

8. Conclusions and outlook. We presented and analyzed a micro-macro ac-
celeration technique for the Monte Carlo simulation of SDEs, in which short bursts of
simulation using an ensemble of microscopic SDE realizations are combined with an
extrapolation of an estimated macroscopic state forward in time. The method wraps
around the microscopic simulation, reducing the human time needed to implement
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Fig. 8. Ratio of time-averaged error in stress to time-averaged reference stress versus percent
of extrapolation time for different values of macroscopic time step in the micro-macro simulation
with 3 normalized even raw moments. Results based on 50 i.i.d. runs of the experiment.

the algorithm, and is designed for problems where the required time step for each
realization of the SDE is small compared to the time scales on which the function of
interest evolves.

We proved (rigorously) that the proposed procedure converges in the absence of
statistical error provided the matching operator satisfies a number of natural condi-
tions. We introduced matching operators based on various distances and divergences
between probability distributions. In the case of the L2N, we demonstrated that the
resulting operator satisfies the conditions of the convergence theorem. Moreover, we
illustrated the behavior of the method numerically, also for matching operators based
on f -divergences. While this study focuses mainly on the issue of convergence, we
already obtained a speedup of approximately factor 5 in a numerical example with
moderate stiffness only.

In future work, we will perform a more detailed study of the matching operators
based on f -divergences and investigate stability and propagation of statistical error on
long time scales. We expect reaching further computational gain in multiscale models
with fluctuations occurring at different scales, such as slow-fast systems, by looking at
the moments of the slow variables only (see also the discussion in subsection 3.3). From
an algorithmic point of view, this work raises questions on the adaptive/automatic
selection of all method parameters (number of moments to extrapolate, macroscopic
time step, number of SDE realizations) to ensure a reliable computation with minimal
computational cost. Also, a numerical comparison with other approaches, such as
implicit approximations, could be envisaged.

Appendix A. Convex optimization with integral functionals. Our diver-
gence matching operators are defined using an optimization problem with an integral
operator given by the convex function f : [0,+∞)→ (−∞,+∞]. The effective domain
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of f is defined as eff dom f = {t ∈ R : f(t) < +∞}. Let m̃ ∈ RL+1 and consider the
following primal (entropy) problem in Lp(G,µ)

(EP )p


inf If (φ) =

∫
G

f(φ(x)) dµ(x)

subject to R̃Lφ = m̃,

φ ∈ Lp+(G,µ),

where R̃L : Lp(G,µ)→ RL+1 is a linear operator generated by functionsRl ∈ Lq(G,µ),
l = 0, . . . , L (cf. (24)). The mapping If is a well-defined convex functional on Lp(G,µ)
with values in (−∞,+∞] as long as f is a lower semicontinuous proper convex function
(see [58, Lem. 1 and Thm. 1]). We say that (EP )p is consistent if there exists a func-
tion φ ∈ Lp+(G,µ) such that R̃Lφ = m̃ and If (φ) < +∞. To compute the primal
optimal we consider the corresponding unconstrained (at least formally) Lagrangian
dual problem

(DEP )p


sup D(λ) = m̃Tλ−

∫
G

f∗+

(
R̃TLλ(x)

)
dµ(x)

subject to λ ∈ RL+1.

Here the function f+, defined as being equal to f on [0,+∞) and to +∞ on (−∞, 0),
encodes the nonnegativity constraint from the primal problem. The (convex) conju-
gate f∗+ : R→ R is given by

f∗+(s) = sup
t≥0
{s · t− f(t)}.(69)

The transpose R̃TL : RL+1 → Lq(G,µ) of R̃L, defined with relation 〈R̃TLλ, φ〉 =
(R̃Lφ)T ·λ, satisfies

R̃TLλ =
L∑
l=0

λlRl, λ ∈ RL+1.(70)

We call D the dual objective function and each solution λ ∈ RL+1 to (DEP )p is
referred to as dual optimal.

Let us state here the main result we use to analyze the matching operators in
section 4. This theorem is a particular case of [4, Thm. 4.8.]. Recall that a finite
set of measurable functions on G is called pseudo-Haar if the functions are linearly
independent on every nonnull subset of G. For example, a finite collection of analytic
and linearly independent functions on G is pseudo-Haar [4, Prop. 2.8].

Theorem A.1. Let 1 ≤ p < +∞ and suppose that the integrand f : R → (−∞,
+∞] is lower semicontinuous and strictly convex on eff dom f ⊃ [0,+∞) and is su-
perlinear at +∞, i.e., limt→+∞ f(t)/t = +∞. If, in addition, the moment functions
Rl, l = 1, . . . , L, are pseudo-Haar and for m̃ = (m0, . . . ,mL) ∈ RL+1 it holds that

m̃ ∈ int R̃L
(
Lp+(G,µ)

)
,(71)

the primal problem (EP )p is consistent, the primal and dual optimal values are the
same, the dual optimal value is attained, and the unique primal solution is given by

φ = (f∗+)′
(

L∑
l=0

λlRl

)
,(72)

where λ = (λ0, . . . , λL) ∈ RL+1 is the dual optimal.
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See also [4, Thm. 2.9.] for the explanation how the pseudo-Haar property of
moment functions is useful to ensure the consistency of the primal problem. Since
f is lower semicontinuous and superlinear at +∞, the mapping t 7→ st − f(t) is, for
each s, upper semicontinuous and bounded from above on [0,+∞). This implies that
the supremum in (69) is attained, thus f∗+(s) < +∞ for all s, and in consequence
eff dom f∗+ = R. Moreover, assumptions (1) and (2) guarantee that the conjugate
function f∗+ is differentiable on the interior of its domain, (see [4, Thm. 4.6.]), so the
right-hand side of (72) is well-defined.

As a consequence of (72), we get the formula for the gradient of the dual objective
function in (DEP )p

∇D(λ) =
[
m̃− R̃L

(
(f∗+)′

(
R̃TLλ

))]T
, λ ∈ RL+1.(73)

Hence, due to concavity of D, the dual optimal λ can be calculated as the unique
vector that satisfies ∇D(λ) = 0.

Appendix B. Newton–Raphson procedures for matching.
Kullback–Leibler. We now present the derivation of the Newton–Raphson method

to solve the system (44). From (73) we already know the gradient of the dual optimal
function, which in this case is given by

∇D(λ)l = ml −
∫
G

Rl(x) exp

(
L∑
i=0

λiRi(x)

)
π(x) dx, l = 0, . . . , L.(74)

Hence the k, l component of the Hessian is

∇2D(λ)k,l = −∂λk
∫
G

Rl(x) exp

(
L∑
i=0

λiRi(x)

)
π(x) dx

= −
∫
G

Rk(x)Rl(x) exp

(
L∑
i=0

λiRi(x)

)
π(x) dx

(75)

for k, l = 0, . . . , L. Since the function λk 7→ Rl(x) exp
(∑L

i=0 λiRi(x)
)

is for fixed
x ∈ G continuously differentiable, and for every δ > 0 the function

x 7→ sup
Θ∈[−δ,δ]

|Rk(x)Rl(x)| exp

(
L∑
i=0

λiRi(x) + Θ

)

is integrable with respect to π dx, the interchangeability of integration and differen-
tiation in (75) is justified by [20, Thm. A.5.2.]. To sum up, the Newton–Raphson
iteration to determine the approximation of dual optimal λ ∈ RL+1 for the matching
with KLD, i.e., solving (44), is

λnew = λold −
(
∇2D(λold)

)−1
∇D(λold),(76)

where the gradient and the Hessian of the objective function are given by (74) and
(75), respectively.
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L2 divergence. We now present the derivation of the Newton–Raphson method
to solve the system (47). Note that we can write∫
G

Rl(x) max

(
0,

L∑
k=0

λkRk(x)

)
π(x) dx =

∫
[λTR≥0]

Rl(x)

(
L∑
k=0

λkRk(x)

)
π(x) dx

=
L∑
k=0

λk

∫
[λTR≥0]

Rl(x)Rk(x)π(x) dx,

where [λTR ≥ 0] = {x ∈ Rd :
∑L
k=0 λkRk(x) ≥ 0}. Similar reasoning as in the

previous section reveals that the Hessian of the dual objective function is

∇2D(λ)k,l = −
∫

[λTR≥0]
Rl(x)Rk(x)π(x) dx, k, l = 0, . . . , L;(77)

thus the gradient is given by

∇D(λ) = (1,m) +∇2D(λ)λ.(78)

The relation between gradient and Hessian of the objective function D in (78) sim-
plifies the Newton–Raphson iteration, originally given as in (76), to

λnew =
(
∇2D(λold)

)−1
(1,m).(79)
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[59] A. Rößler, Rooted tree analysis for order conditions of stochastic Runge–Kutta methods for
the weak approximation of stochastic differential equations, Stoch. Anal. Appl., 24 (2006),
pp. 97–134, https://doi.org/10.1080/07362990500397699.
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