
1.10 Application: Solving the 2-Satisfiability Problem 35

travelling salesman problem is NP-hard. For a wealth of information on
NP-hard optimization problems and their approximability properties, see
the book [33] by Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela
and Protasi.

From a complexity point of view, there is no significant difference between
a decision problem and its optimization analogue (if it exists). To illustrate
this statement, let us consider the problem of deciding whether a strong
digraph has a cycle of length at least k (here k is part of the input). The
optimization analogue is the problem of finding a cycle of maximum length
in a strong digraph. If we solve the optimization problem, we easily obtain a
solution to the decision problem: just check whether the length of the longest
cycle is at least k. On the other hand, using binary search one can find an
answer to the optimization problem by solving a number of decision problems.
In our example, we first check whether or not the digraph under consideration
has a cycle of length at least n/2. Then, solve the analogous problem with
n/4 (if D has no cycle of length at least n/2) or 3n/4 (if D has a cycle of
length at least n/2) instead of n/2, etc. So, we would need to solve O(log n)
decision problems, in order to obtain an answer to the optimization problem.

1.10 Application: Solving the 2-Satisfiability Problem

In this section we deal with a problem that is not a problem on digraphs, but
it has applications to several problems on graphs, in particular when we want
to decide whether a given undirected graph has an orientation with certain
properties. In Chapter 8 we will give examples of this. We will show how to
solve this problem efficiently using the algorithm for strong components of
digraphs from Chapter 4.

A boolean variable x is a variable that can assume only two values 0
and 1. The sum of boolean variables x1 + x2 + . . . + xk is defined to be 1 if
at least one of the xi’s is 1 and 0 otherwise. The negation x of a boolean
variable x is the variable that assumes the value 1 − x. Hence x = x. Let X
be a set of boolean variables. For every x ∈ X there are two literals, over x,
namely x itself and x. A clause C over a set of boolean variables X is a sum
of literals over the variables from X . The size of a clause is the number of
literals it contains. For example, if u, v, w are boolean variables with values
u = 0, v = 0 and w = 1, then C = (u + v + w) is a clause of size 3, its value
is 1 and the literals in C are u, v and w. An assignment of values to the set
of variables X of a boolean expression is called a truth assignment. If the
variables are x1, . . . , xk , then we denote a truth assignment by t = (t1, . . . , tk).
Here it is understood that xi will be assigned the value ti for i = 1, . . . , k.

The 2-satisfiability problem, also called 2-SAT, is the following prob-
lem. Let X = {x1, . . . , xk} be a set of boolean variables and let C1, . . . , Cr be
a collection of clauses, all of size 2, for which every literal is over X . Decide if
there exists a truth assignment t = (t1, . . . , tk) to the variables in X such that

36 1. Basic Terminology, Notation and Results

the value of every clause will be 1. This is equivalent to asking whether or
not the boolean expression F = C1 ∗ . . . ∗Cp can take the value 1. Depending
on whether this is possible or not, we say that F is satisfiable or unsat-

isfiable. Here ‘∗’ stands for boolean multiplication, that is, 1 ∗ 1 = 1,
1 ∗ 0 = 0 ∗ 1 = 0 ∗ 0 = 0. For a given truth assignment t = (t1, . . . , tk) and
literal q we denote by q(t) the value of q when we use the truth assignment
t (i.e. if q = x3 and t3 = 1, then q(t) = 1 − 1 = 0)

To illustrate the definitions, let X = {x1, x2, x3} and let C1 = (x1 + x3),
C2 = (x2 +x3), C3 = (x1 +x3) and C4 = (x2 +x3). Then it is not difficult to
check that F = C1 ∗ C2 ∗ C3 ∗ C4 is satisfiable and that taking x1 = 0, x2 =
1, x3 = 1 we obtain F = 1.

If we allow more than 2 literals per clause then we obtain the more general
problem Satisfiability (also called SAT) which is NP-complete, even if all
clauses have size 3, in which case it is also called 3-SAT (see e.g. page
359 in the book [600] by Papadimitriou and Steiglitz). (In his proof of the
existence of an NP-complete problem, Cook used the satisfiability problem
and showed how every other problem in NP can be reduced to this problem.)
Below we will show how to reduce 2-SAT to the problem of finding the strong
components in a certain digraph. We shall also show how to find a satisfying
truth assignment if one exists. This step is important in applications, such
as those in Chapter 8.

Let C1, . . . , Cr be clauses of size 2 such that the literals are taken among
the variables x1, . . . , xk and their negations and let F = C1 ∗ . . . ∗ Cr be
an instance of 2-SAT. Construct a digraph DF as follows. Let V (DF) =
{x1, . . . , xk, x1, . . . , xk} (i.e. DF has two vertices for each variable, one for
the variable and one for its negation). For every choice of p, q ∈ V (DF) such
that some Ci has the form Ci = (p + q), A(DF) contains an arc from p to q
and an arc from q to p (recall that x = x). See Figure 1.20 for examples of
a 2-SAT expressions and the corresponding digraphs. The first expression is
satisfiable, the second is not.

Lemma 1.10.1 If DF has a (p, q)-path, then it also has a (q, p)-path. In

particular, if p, q belong to the same strong component in DF , then p, q belong

to the same strong component in DF .

Proof: This follows easily by induction on the length of a shortest (p, q)-
path, using the fact that (x, y) ∈ A(DF) if and only if (y, x) ∈ A(DF). ut

Lemma 1.10.2 If DF contains a path from p to q, then, for every satisfying

truth assignment t, p(t) = 1 implies q(t) = 1.

Proof: Observe that F contains a clause of the form (a+ b) and every clause
takes the value 1 under any satisfying truth assignment. Thus, by the fact
that t is a satisfying truth assignment and by the definition of DF , we have
that for every arc (a, b) ∈ A(DF), a(t) = 1 implies b(t) = 1. Now the claim
follows easily by induction on the length of the shortest (p, q)-path in DF . ut

1.10 Application: Solving the 2-Satisfiability Problem 37

x2

x1

(a)

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

(b)

Figure 1.20 The digraph DF is shown for two instances of 2-SAT. In (a) F =
(x1 + x3) ∗ (x2 + x3) ∗ (x1 + x3) ∗ (x2 + x3) and in (b) F = (x1 + x2) ∗ (x1 + x2) ∗
(x2 + x3) ∗ (x2 + x3)

The following is an easy corollary of Lemma 1.10.1 and Lemma 1.10.2.

Corollary 1.10.3 If t is a satisfying truth assignment, then for every strong

component D′ of DF and every choice of distinct vertices p, q ∈ V (D′) we

have p(t) = q(t). Furthermore we also have p(t) = q(t). ut

Lemma 1.10.4 F is satisfiable if and only if for every i = 1, 2, . . . , k, no

strong component of DF contains both the variable xi and its negation xi.

Proof: Suppose t is a satisfying truth assignment for F and that there is
some variable xi such that xi and xi are in the same strong component in DF .
Without loss of generality xi(t) = 1 and now it follows from Lemma 1.10.2
and the fact that DF contains a path from xi to xi that we also have xi(t) = 1
which is impossible. Hence if F is satisfiable, then for every i = 1, 2, . . . , k,
no strong component of DF contains both the variable xi and its negation
xi.

Now suppose that for every i = 1, 2, . . . , k, no strong component of DF

contains both the variable xi and its negation xi. We will show that F is
satisfiable by constructing a satisfying truth assignment for F .

Let D1, . . . , Ds denote some acyclic ordering of the strong components of
DF (i.e. there is no arc from Dj to Di if i < j). Recall that by Proposition
1.4.3, such an ordering exists. We claim that the following algorithm will
determine a satisfying truth assignment for F : first mark all vertices ‘unas-
signed’ (meaning truth value still pending). Then going backwards starting
from Ds and ending with D1 we proceed as follows. If there is any vertex
v ∈ V (Di) such that v has already been assigned a value, then assign all

38 1. Basic Terminology, Notation and Results

vertices in Di the value 0 and otherwise assign all vertices in Di the value
1. Observe that this means that, for every variable xi, we will always assign
the value 1 to whichever of xi, xi belongs to the strong component with the
highest index. To see this, let p denote whichever of xi, xi belongs to the
strong component of highest index j. Let i < j be chosen such that p ∈ Di.
Suppose we assign the value 0 to p. This means that at the time we con-
sidered p, there was some q ∈ Dj such that q ∈ Df for some f > j. But then
p ∈ Df , by Lemma 1.10.1, contradicting the fact that i < f .

Clearly all vertices in V (F) will be assigned a value, and by our previous
argument this is consistent with a truth assignment for the variables of F .
Hence it suffices to prove that each clause has value 1 under the assignment.
Suppose some clause Cf = (p + q) attains the value 0 under our assignment.
By our observation above, the reason we did not assign the value 1 to p
was that at the time we considered p we had already given the value 1 to p
and p belonged to a component Dj with a higher index than the component
Di containing p. Thus the existence of the arc (p, q) ∈ A(DF) implies that
q ∈ Dh for some h ≥ j. Applying the analogous argument to q we conclude
that q is in some component Dg with g > h. But then, using the existence
of the arc (q, p), we get that i ≥ g > h ≥ j > i, a contradiction. This shows
that we have indeed found a correct truth assignment for F and hence the
proof is complete. ut

In Chapter 4 we will see that for any digraph D one can find the strong
components of D and an acyclic ordering of these in O(n+m) time. Since the
number of arcs in DF is twice the number of clauses in DF and the number
of vertices in DF is twice the number of variables in DF , it is not difficult
to see that the algorithm outlined above can be performed in time O(k + r)
and hence we have the following result.

Theorem 1.10.5 The problem 2-SAT is solvable in linear time with respect

to the number of clauses. ut

The approach we adopted is outlined briefly in Exercise 15.6 of the book
[600] by Papadimitriou and Steiglitz, see also the paper [230] by Even, Itai
and Shamir.

It is interesting to note that if, instead of asking whether F is satisfiable,
we ask whether there exists some truth assignment such that at least ` clauses
will get the value 1, then this problem, which is called MAX-2-SAT, is NP-
complete as shown by Garey, Johnson and Stockmeyer [304] (here ` is part
of the input for the problem).

1.11 Exercises

1.1. Let X and Y be finite sets. Show that |X ∪ Y | + |X ∩ Y | = |X| + |Y |.

1.2. Let X and Y be finite sets. Show that |X ∪ Y |2 + |X ∩ Y |2 ≥ |X|2 + |Y |2.

