| [blalcol=]o B a[p[c[o]a]p] T

S=s%2

Figure 32.10 The prefix function 7. (a) The pattern P = ababaca is aligned with a text T so
that the first ¢ = 5 characters match. Matching characters, shown shaded, are connected .by vertical
lines. (b) Using only our knowledge of the 5 matched characters, we can deduce that a shift of s + 1
is invalid, but that a shift of s’ = s + 2 is consistent with everything we know about the text al/’ld
therefore is potentially valid. (c) The.useful information for such deductions can be precompufgd _
Ly comparing the pattern with itself. Here, we see that the longest Preﬁx of P that is also a pr0p§r]
suffix of Ps is P3. This information is precomputed and represented in the array 17, s0 th.at n”['5] -
Given that ¢ characters have matched successfully at shift s, the next potentially valid shift is a

s’ =5+ (q —nlq).

Plil] |la|b|a
s PO L 2R lSl610]1

o'
o
Q
)

Pg a

P b c a : (8] =6
Py pieb oA 6] =4
P, Doasbvaib ca 4] =2
Py sga b.a b a b a'bi.c a n2]=0

Figure 32.11 An illustration of Lemma 32.5 for the pattern P = alkabababca and qg = 8.
(a) The 7 function for the given pattern. Since 7[8] = 6, 7[6] = 4, n[4] =2, and 7[2] = 0,
by iterating = we obtain 7*[8] = {6, 4, 2, 0}. (b) We slide the template containing the pattern P
to the right and note when some prefix P; of P matches up with some proper suffix of Pg; this
happens for k = 6, 4, 2, and 0. In the figure, the first row gives P, and the dotted vertical line is
drawn just after Pg. Successive rcws show all the shifts of P that cause some prefix Py of P to
match some suffix of Pg. Successfully matched characters are shown shaded. Vertical lines connect
aligned matching characters. Thus, {k : ¥ < g and P; O Py} = {6, 4,2, 0}. The lemma claims that
w*[ql =1k :k < g and Py 1 Py} forallq.

Chapter 32 String Matching

The Knuth-Morris-Pratt matching algorithm is given in pseudocode below as the
procedure KMP-MATCHER. It is mostly modeled after FINITE-AUTOMATON-
MATCHER, as we shall see. KMP-MATCHER calls the auxiliary procedure
COMPUTE-PREFIX-FUNCTION to compute 7.

KMP-MATCHER(T', P)
1 n < length[T]

2 m <« length[P]
3 <« COMPUTE-PREFIX-FUNCTION (P)
4 g<«0 > Number of characters matched.
5 fori«1ton > Scan the text from left to right.
6 dowhileg > Oand P[g + 1] # T[i]
7 do g « 7[q] D> Next character does not match.
8 if P[g + 1] = T'[i] : '
9 theng <« g +1 > Next character matches.

10 ifg=m > Is all of P matched?

11 then print “Pattern occurs with shift” ; — m

12 q < 7lq] > Look for the next match.

COMPUTE-PREFIX-FUNCTION(P)
1 m <« length[P]
2 mw[l] <0
3 k<0
4 forqg «2tom
5 do while £ > 0 and Pk + 1] # Plq]
6 do k « m[k]
7 if P[k + 1] = P[q]
8 thenk «— k+1
9 wlg] « k
0

10 return x

We begin with an analysis of the running times of these procedures. Proving the
procedures correct will be more complicated.

Running-time analysis

The running time of COMPUTE-PREFIX-FUNCTION is © (m), using the Ppo
method of amortized analysis (see Section 17.3). We associate a potentia
with the current state k of the algorithm. This potential has an initial val
by line 3. Line 6 decreases k whenever it is executed, since w[k] <

m[k] = O for all k, however, k can never become negative. The only 0
that affects & is line 8, which increases k by at most one during each

