
Institut for Matematik og Datalogi
Syddansk Universitet

September 5, 2012
JBJ

DM208 – Fall 2012 – Weekly Note 3

Stuff covered in week 36
We gave three different proofs of Menger’s theorem (one of them introducing the very im-
portant topic of submodularity) and showed a technique based on max-back orderings for
computing the edge-connectivity of an undirected graph without using any flow computa-
tions. In the exercise part we covered the problems on matroids and greedy algorithms as
well as Problem 3 (c)-(e) from the 2011 exam. See notes on matroids at the end of this
note.

Lecture September 11, 2012:
The primal-dual algorithm. PS Chapter 5. We will also discuss Sections 11.1 and 11.2 in
PS. This is similar to BJG 3.12. See also hand out notes by Bang-Jensen and Toft (handed
out at the lecture on August 29).

Lecture September 12, 2012:
Primal-dual algorithms for min-cost flow. PS Chapter 7.

Problems and applications to discuss in the exercise part on September 12,2012:

• Explain how to find (efficiently!) a minimum edge-cut in a graph G = (V,E) using
max back orderings (that is, how do find find a cut with λ(G) edges?).

• SCH application 1.4.

• Suppose you are given a connected undirected graph G = (V,E) with costs on the
edges and your task is to give an algorithm which finds a minimum cost set of E ′ ⊂ E
edges whose removal disconnects the graph (that is G−E ′ is not connected). Explain
how to do this in polynomial time (hint: use flows).

• SCH exercise 3.2. Hint for (a): consider a maximal matching or apply Hall’s theorem.

• SCH Exercise 4.1.

• BJG Exercises 3.33, 3.34 and 3.35.

• SCH application 4.1 be ready to discuss this in the class.

• SCH exercises 3.18, 3.19.
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Notes on matroids

Recall that a base of a matroid M = (S,F) is a maximal independent set of F .

Theorem 0.1 (Base axioms) The set B bases of a matroid M = (S,F) with F 6= ∅
satisfy the following axioms:

(B1) B 6= ∅

(B2) |B1| = |B2| for all B1, B2 ∈ B.

(B3) If B1, B2 ∈ B and x ∈ B1 then there exists y ∈ B2 such that B1 − x+ y ∈ B.

Proof: It is clear that the bases of M satisfy (B1) and (B2) and (B3) is a special case of
the exchange axiom (consider B1 − x and B2). �
.

The base axioms also define the set of all matroids of a set.

Proposition 0.2 Let S be a set and let B ⊆ 2S be a collection of subsets of S which
satisfies (B1)-(B3). Define FB = {X ⊆ S|∃B ∈ B : X ⊆ B}. Then MB = (S,FB) is a
matorid.

Proof: Clearly MB is s subset system so we just need to show that the exchange axiom
holds for FB. Let X, Y ∈ FB with |Y | = |X|+1 and let BX , BY be elements of B such that
X ⊆ BX and Y ⊆ BY . Applying (B3) repeatedly we can delete the elements of BX−X one
by one while adding a new element from BY −BX each time. Since |BX−X| = |BY −Y |+1
at some point in this process we have a base B′X containing X such that the only element
of BY −B′X that we can add to B′X−w, w 6∈ X, is an element y ∈ Y −X. Now B′X−w+y
contains X + y so X + y ∈ FB, showing that Y −X contains an element y such that X + y
is independent. �

Definition 0.3 (dual matroid) Let M = (S,F) be a matroid with base set B and rank
r(S) < |S|. Define F∗ = {X|∃B ∈ B : X ∩ B = ∅}. Then M∗ = (S,F∗) is a matroid
called the dual matroid of M .

Proof: Let B∗ be the set of bases of F∗. We show that B∗ satisfies the base axioms and
then it follows from Proposition 0.2 that M∗ is a matroid. By definition of F∗, all maximal
independent subsets of S have the same size and since r(S) < |S| we have B∗ 6= ∅ so it
only remains to prove that (B3) holds. Let B∗1 , B

∗
2 ∈ B∗ and let x ∈ B∗1 −B∗2 be arbitrary.

Note that (S − B∗1) ∩ (S − B∗2) + x is a subset of S − B∗2 and hence is independent in
F . Apply the exchange axiom (in M) to the independent sets (S − B∗1) ∩ (S − B∗2) + x
and S − B∗1 until we have a new base Z of M . This will satisfy Z = (S − B∗1) + x − z
where z ∈ (S − B∗1) ∩ B∗2 ⊂ B∗2 so we have shown that we can find z ∈ B∗2 such that
B∗1 − x+ z ∈ B∗. �
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