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Handout material in Week 38
Korte and Vygen, Combinatorial Optimization 3rd edition Springer 2008, Chapter 13.

Stuff covered in week 38

• Non-bipartite Matching. PS Chapter 10.4-10.5 and SCH 5.1-5.2 (We will not cover
weighted non-bipartite matching. Still you should know that this problem is solvable
in polynomial time).

• We also (via the “guest lecture of Matthias Kriesell) covered the more general f -
factors, where we have a graph G = (V,E) and a specification f(v) ≤ d(v) at every
vertex and we want to select a subset E ′ of E so that these induce a spanning graph
F = (V,E ′) with dF (v) = f(v) for each v ∈ V . Such an F is called an f -factor of G.
In particular, when f(v) ≡ k for all v ∈ V we call F a k-factor of G.

To see that this problem can be solved using a matching algorithm, lets create a new
graph H from G = (V,E) and f as follows: Replace each vertex v of G with two sets
A(v) and B(v) of vertices with |A(v)| = d(v) and |B(v)| = d(v)− f(v). The edges of
H are all edges between A(v), B(v) for all v ∈ V and for each edge uw ∈ E, put a
single edge between A(u) and A(w) such that each vertex of A(v), v ∈ V belongs to
exactly one such edge. Now it is easy to show that H has a perfect matching if and
only if G has an f -factor.
This is a polynomial reduction (remind yourself why!) so we get a polynomial algo-
rithm for checking the existence of an f -factor in a given graph from the polynomial
algorithm for the maximum matching problem.

Lecture September 25, 2012:
NB, note that we will be in U26!

• Arc-disjoint branchings. This is BJG Section 9.5.

• Minimum cost branchings. This is based on pages 338-341 in the second edition of
BJG. These pages are available from the course page. Note that in the contracted
graph we work with the weight function c′. This is not written explicitly in
the section (although it is clear from the proof).

• If there is more time we will start on the exercises.

Lecture September 26, 2012:
I plan to spend at least 3 of the 4 “hours” on the lecture(s).
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• Matroid intersection. This is based on PS section 12.5, SCH 10.4-10.5 and Korte and
Vygen sections 13.5-13.7

• Matroid Union (partition) This is based on PS section 12.5, SCH 10.4-10.5 and Korte
and Vygen sections 13.5-13.7

Problems and applications to discuss on September 25,2012:

• Prove that if a graph is 2-connected (that is, there are at least two internally disjoint
(s, t)-paths for every choice of distinct vertices s, t ∈ V (G)), then for every vertex s
and edge uv of G there is a cycle C which contains s and the edge uv.

• Show that a graph G has a strongly connected orientation (we replace each edge uv
by one of the arcs u→ v, v → u) if and only if G is 2-edge-connected. Also describe
an algorithm to find such an orientation or a bad cut.

• Let G be a tree. How many new edges must be added to G to make it 2-edge-
connected? Try to construct an algorithm which adds as few edges as possible and
try to formulate a min-max result.

• Let G = (V,E) be a k-edge-connected graph and let H be a minimal set of new edges
such that G′ = (V,E ∪H) is (k+ 1)-edge-connected. Prove that the edges of H form
a forest.

• Prove that every minimally k-edge-connected graph has at most k(n−1) edges. Hint:
recall what you learned about max-back forrests.

• Show that in the case when G is a bipartite graph we can solve the f -factor problem
by transforming the problem into a maximum flow problem.

• SCH 5.1, 5.4

• SCH 5.7 page 84.

• 2-processor scheduling: Suppose we are given a task consisting of 8 jobs a, b, c, d, e, f, g, h
with the following precedence relations, where we only list the one that do not follow
by transitivity (if x is before y and y before z, then automatically x is before z so we
don’t write it in the list):

{a < c, a < f, b < d, c < e, c < g, d < f, f < e, f < g, f < h}

Find an optimal schedule for processing on 2 processors and prove that it is optimal.
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