Institut for Matematik og Datalogi September 19, 2012
Syddansk Universitet JBJ

DM?208 — Fall 2012 — Weekly Note 5

Handout material in Week 38
Korte and Vygen, Combinatorial Optimization 3rd edition Springer 2008, Chapter 13.

Stuff covered in week 38

e Non-bipartite Matching. PS Chapter 10.4-10.5 and SCH 5.1-5.2 (We will not cover
weighted non-bipartite matching. Still you should know that this problem is solvable
in polynomial time).

e We also (via the “guest lecture of Matthias Kriesell) covered the more general f-
factors, where we have a graph G = (V, E) and a specification f(v) < d(v) at every
vertex and we want to select a subset E’ of E so that these induce a spanning graph
F = (V,E') with dp(v) = f(v) for each v € V. Such an F'is called an f-factor of G.
In particular, when f(v) = k for all v € V' we call F a k-factor of G.

To see that this problem can be solved using a matching algorithm, lets create a new
graph H from G = (V, E) and f as follows: Replace each vertex v of G with two sets
A(v) and B(v) of vertices with |A(v)| = d(v) and |B(v)| = d(v) — f(v). The edges of
H are all edges between A(v), B(v) for all v € V' and for each edge uw € FE, put a
single edge between A(u) and A(w) such that each vertex of A(v), v € V belongs to
exactly one such edge. Now it is easy to show that H has a perfect matching if and
only if G has an f-factor.

This is a polynomial reduction (remind yourself why!) so we get a polynomial algo-
rithm for checking the existence of an f-factor in a given graph from the polynomial
algorithm for the maximum matching problem.

Lecture September 25, 2012:
NB, note that we will be in U26!

e Arc-disjoint branchings. This is BJG Section 9.5.

e Minimum cost branchings. This is based on pages 338-341 in the second edition of
BJG. These pages are available from the course page. Note that in the contracted
graph we work with the weight function ¢’. This is not written explicitly in
the section (although it is clear from the proof).

e If there is more time we will start on the exercises.

Lecture September 26, 2012:
I plan to spend at least 3 of the 4 “hours” on the lecture(s).

1



e Matroid intersection. This is based on PS section 12.5, SCH 10.4-10.5 and Korte and
Vygen sections 13.5-13.7

e Matroid Union (partition) This is based on PS section 12.5, SCH 10.4-10.5 and Korte
and Vygen sections 13.5-13.7

Problems and applications to discuss on September 25,2012:

e Prove that if a graph is 2-connected (that is, there are at least two internally disjoint
(s,t)-paths for every choice of distinct vertices s,t € V(G)), then for every vertex s
and edge uv of G there is a cycle C' which contains s and the edge uv.

e Show that a graph G has a strongly connected orientation (we replace each edge uv
by one of the arcs u — v,v — w) if and only if G is 2-edge-connected. Also describe
an algorithm to find such an orientation or a bad cut.

e Let G be a tree. How many new edges must be added to G to make it 2-edge-
connected? Try to construct an algorithm which adds as few edges as possible and
try to formulate a min-max result.

e Let G = (V, E) be a k-edge-connected graph and let H be a minimal set of new edges
such that G' = (V, EUH) is (k+ 1)-edge-connected. Prove that the edges of H form
a forest.

e Prove that every minimally k-edge-connected graph has at most k(n—1) edges. Hint:
recall what you learned about max-back forrests.

e Show that in the case when G is a bipartite graph we can solve the f-factor problem
by transforming the problem into a maximum flow problem.

e SCH5.1,54
e SCH 5.7 page 84.

e 2-processor scheduling: Suppose we are given a task consisting of 8 jobs a, b, ¢, d, e, f, g, h
with the following precedence relations, where we only list the one that do not follow
by transitivity (if  is before y and y before z, then automatically x is before z so we
don’t write it in the list):

{a<ca< fib<dc<ec<gd<f f<e f<g,f<h}

Find an optimal schedule for processing on 2 processors and prove that it is optimal.



