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Abstract4

We prove that a number of natural problems concerning the existence of arc-disjoint directed5

and “undirected” (spanning) subdigraphs in a digraph are NP-complete. Among these are the6

following of which the first settles an open problem due to Thomassé (see e.g. [1, Problem 9.9.7]7

and [5, 4]) and the second settles an open problem posed in [5].8

• Given a directed graph D and a vertex s of D; does D contain an out-branching B
+
s

rooted9

at s such that the digraph remains connected (in the underlying sense) after removing all10

arcs of B+
s
?11

• Given a strongly connected directed graph D; does D contain a spanning strong subdigraph12

D
′ such that the digraph remains connected (in the underlying sense) after removing all arcs13

of D′?14

Keywords: Paths and cycles, branchings, spanning trees, NP-completeness, arc-disjoint subdi-15

graphs.16

1 Introduction17

Notation not given below is consistent with [1]. Paths and cycles are always directed unless otherwise18

specified. For a digraph D we denote by V(D) and A(D), respectively, the set of vertices and the19

set of arcs of D. An (s, t)-path in a digraph D is a directed path from the vertex s to the vertex t.20

A digraph D = (V,A) is strongly connected (or just strong) if there exists an (x, y)-path and a21

(y, x)-path in D for every choice of distinct vertices x, y of D, and D is k-arc-strong if D − X is22

strong for every subset X ⊆ A of size at most k− 1. The underlying graph of a digraph D, denoted23

UG(D), is obtained from D by suppressing the orientation of each arc and replacing multiple edges24

by one edge. A digraph D is connected if UG(D) is a connected graph. If D = (V,A) is a digraph25

and X ⊆ V then we use the notation D〈X〉 to denote the subdigraph of D induced by the vertices26

in X . We shall often use the shorthand notation i ∈ [m] for i ∈ {1, 2, . . . ,m}.27

An out-branching B+
s in a digraph D = (V,A) is a connected spanning subdigraph of D in which28

each vertex x 6= s has precisely one arc entering it and s has no arcs entering it. The vertex s is the29

root of B+
s . The structure of digraphs with arc-disjoint out-branchings from the same root is well30

understood due to the following important result by Edmonds.31

Theorem 1.1 (Edmonds) [9] A digraph D = (V,A) with a special vertex s has k-arc-disjoint out-32

branchings rooted at s if and only if there are k-arc-disjoint (s, v)-paths in D for every v ∈ V − s.33

Using flows in networks, it is easy to check whether a given digraph D with special vertex s has k34

arc-disjoint (s, v)-paths for every v ∈ V −s (see e.g. [1, Section 5.5]) and thus checking whether D has35

∗This work was done while the first author was on sabbatical at Team Mascotte, INRIA, Sophia Antipolis France
whose hospitality is gratefully acknowledged. Financial support from the Danish National Science research council
(FNU) (under grant no. 09-066741) is gratefully acknowledged.

†Department of Mathematics and Computer Science, University of Southern Denmark, Odense DK-5230, Denmark
(email: jbj@imada.sdu.dk).

‡Department of Computer Science, Royal Holloway, University of London, Egham Surrey TW20 0EX, United King-
dom (email: anders@cs.rhul.ac.uk).

1



has k arc-disjoint out-branchings from s can be done efficiently. Furthermore, the proof of Theorem1

1.1 by Lovász [11] implies that there is a polynomial algorithm for constructing a set of k arc-disjoint2

branchings when they exist (for details see [1, Section 9.3]). Similarly packing edge-disjoint spanning3

trees in undirected graphs is also well understood, namely there is a (more complicated) necessary4

and sufficient condition for the existence of k edge-disjoint spanning trees in a graph G.5

Theorem 1.2 (Tutte) [13] A graph G = (V,E) has k edge-disjoint spanning trees if and only if, for6

every partition F = {X1, X2, . . . , Xt} of V into non-empty sets, the number ǫF of edges intersecting7

two of these sets is at least k(t− 1).8

Furthermore, it is a celebrated result due to Edmonds that using any algorithm for matroid parti-9

tion, in polynomial time, one can check whether the condition above is satisfied and find k-edge-disjoint10

trees if it is. For details see e.g. [12].11

Motivated by the fact that both the existence of arc-disjoint out-branchings from the same root in12

a digraph and the existence of edge-disjoint spanning trees in a graph can be decided in polynomial13

time and that both problems have good (polynomially verifiable) characterizations, Thomassé posed14

the following problem around 2005, a positive solution to which would be a first step for providing15

a link between Theorems 1.1 and 1.2. The problem is well known in the community and has been16

published on the Egres open problem list for several years1.17

Problem 1.3 (Thomassé) Find a good characterization of directed graphs D whose underlying undi-18

rected graph UG(D) has two edge-disjoint spanning trees such that one of these is an out-branching19

rooted at a given vertex in D.20

Clearly the existence of such spanning trees is equivalent to the existence of an out-branching rooted21

at the given vertex s such that removing the arcs of this branching leaves a connected digraph. In the22

case where we replace “out-branching” by “a path with specified end vertices s, t” and “connected”23

by “existence of a path in the underlying graph between s and t” the problem is NP-complete as was24

shown recently by the first author and Kriesell.25

Theorem 1.4 [4] It is NP-complete to decide for a given digraph and specified vertices s, t of D26

whether D contains a directed (s, t)-path P such that UG(D −A(P )) contains a path from s to t.27

The proof of Theorem 1.4 does not generalize to the case of directed spanning trees. Furthermore,28

the fact that in Problem 1.3 we want spanning subdigraphs and that one of these does not have to29

respect the orientation of the arcs could indicate that there might be a nice characterization or at30

least a polynomial algorithm for testing the existence of a non-separating out-branching. However,31

we are going to prove the following which implies that such a characterization does not exist unless32

P = NP . Our proof technique does not apply to the problem of Theorem 1.4 because we strongly use33

the fact that at least one of the two arc-disjoint digraphs we are looking for is a spanning subdigraph.34

Theorem 1.5 It is NP-complete to decide for a given digraph D = (V,A) and a vertex s ∈ V whether35

D contains an out-branching B+
s such that UG(D −A(B+

s )) is connected.36

We shall also prove that a number of related problems are NP-complete. In particular we prove37

the following. A digraph is k-regular if every vertex has precisely k-arcs out of it and k-arcs into it.38

Theorem 1.6 It is NP-complete to decide whether a 2-regular digraph D contains a spanning strong39

subdigraph D′ such that UG(D −A(D′)) is connected.40

This result may be considered slightly surprising, given that if a positive solution exists, then the41

number of arcs in D′ and D −A(D′) is either n and n, or n+ 1 and n− 1, where n is the number of42

vertices of the given digraph, that is, either D′ is a hamiltonian cycle or it has just one more arc than43

a hamiltonian cycle.44

1It currently appears on the Egres open problem page: URL http://lemon.cs.elte.hu/egres/open/Category:Trees and branchings
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Figure 1: The clause gadget H(r).

2 Main proofs1

We shall use reductions from 3-CNF satisfiability (3-SAT) and Not-All-Equal 3-SAT (NAE-3-SAT).2

Recall that a boolean formula is in 3-conjunctive normal form, or 3-CNF, if it is expressed as an AND3

of clauses, each of which is an OR of exactly 3 distinct literals. In this paper, by 3-SAT we mean the4

problem of deciding whether a boolean 3-CNF formula F is satisfiable (that is whether there exist5

a truth assignment t to the variables of F such each clause of F has at least one true literal). By6

NAE-3-SAT we we mean the problem of deciding whether a boolean 3-CNF formula F has a truth7

assignment such that for each clause there is at least one literal which is true and at least one literal8

which is false. Note that this is equivalent to saying that both F and its negation (obtained by9

negating all literals in the clauses of F) can be satisfied by the same truth assignment t. It is well10

known that both 3-SAT and NAE-3-SAT are NP-complete problems (see e.g. [10, page 259]).11

Proof of Theorem 1.5: The reduction used here uses the same type of variable gadget as the12

one used in the proof of Theorem 1 of [8]2. We shall show how to reduce 3-SAT to the problem of13

Theorem 1.5. LetH(r) be the digraph (the clause gadget) on 7 vertices {ar,1, ar,2, ar,3, br,1, br,2, br,3, cr}14

and arcs ar,ibr,i, br,iar,i, crar,i, crbr,i, i = 1, 2, 3 (see Figure 1). Let W [u, v, p, q] be the digraph (the15

variable gadget) with vertices {u, v, y1, y2, . . . yp, z1, z2, . . . zq} and the arcs of the two (u, v)-paths16

uy1y2 . . . ypv, uz1z2 . . . zqv. Note that we allow min{p, q} = 0 but p+ q ≥ 1 must hold.17

Let F be an instance of 3-SAT with variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm. We may18

assume that each variable x occurs at least once either in the negated form or non-negated in F . For19

each variable x the ordering of the clauses C1, C2, . . . , Cm induces an ordering of the occurrences of20

the literal x and the literal x̄ in these. With each variable xi we associate a copy of W [ui, vi, pi, qi]21

where the literal xi occurs pi times and the literal x̄i occurs qi times in the clauses of F . Identify22

end vertices of these digraphs by setting vi = ui+1 for i = 1, 2, . . . , n − 1. Let s = u1 and t = vn.23

Next, for each clause Cj we take a copy Hj = H(j) of the clause gadget and identify the vertices24

aj,1, aj,2, aj,3 of Hj with vertices in the chain we build above as follows: assume Cj contains literals25

involving the variables xi, xk, xl. If Cj contains the literal xi and this is the r’th copy of the literal xi26

(in the order of the clauses that use literal xi), then we identify aj,1 with yi,r and if Cj contains the27

literal x̄i and this is the k’th occurrence of literal x̄i, then we identify aj,1 with zi,k. We make similar28

identifications for aj,2, aj,3. Finally we add all the arcs tcj for j ∈ [m]. This concludes the description29

of the digraph DF with special vertices s, t. Let D′ be the subdigraph induced by the union of all30

the vertices from W [ui, vi, pi, qi], i ∈ [n]. Recall that by the identifications above D′ contains all the31

vertices aj,r, j ∈ [m], r ∈ [3]. See Figure 2 for an example.32

Claim 1 D′ contains an (s, t)-path P which avoids at least one vertex from {aj,1, aj,2, aj,3} for each33

j ∈ [m] if and only if F is satisfiable.34

Proof of Claim 1: Suppose P is an (s, t)-path which avoids at least one vertex from {aj,1, aj,2, aj,3}35

for each j ∈ [m]. By construction, for each variable xi, P traverses either the subpath Qi =36

2which again uses ideas from another proof.
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c1 c3

c2

t
a1,1

a1,2 a1,3s

Figure 2: A schematic picture of DF where F has variables x1, x2, x3, x4 and clauses C1 = (x̄1 ∨ x2 ∨
x3), C2 = (x1 ∨ x2 ∨ x4), C3 = (x̄1 ∨ x̄2 ∨ x̄3). For convenience only some vertices are labelled and the
2-cycles of the type aj,ibj,iaj,i are shown as one undirected edge.

uiyi,1yi,2 . . . yi,pi
vi or the subpath Pi = uizi,1zi,2 . . . zi,qivi. Now define a truth assignment by set-1

ting xi false when P traverses Qi and true if P traverses Pi for i ∈ [n]. This is a satisfying truth2

assignment for F since for any clause Cj at least one literal is avoided by P and hence becomes true by3

the assignment (the literals traversed become false and those not traversed become true). Conversely,4

given a truth assignment for F we can form P by routing it through all the false literals in the chain5

of variable gadgets. ⋄6

7

Claim 2 DF has an out-branching B+
s such that DF −A(B+

s ) is connected if and only if D′ contains8

an (s, t)-path P which avoids at least one vertex from {aj,1, aj,2, aj,3} for each j ∈ [m].9

Proof of Claim 2: Suppose first that there exists B+
s such that D−A(B+

s ) is connected. It follows10

from the structure of DF that the (s, t)-path P in B+
s lies entirely inside D′ and since tcj is the only11

arc entering cj , all arcs of the form tcj , j ∈ [m] are in B+
s . Now it follows that P cannot contain all of12

{aj,1, aj,2, aj,3} for some clause Cj because that would disconnect the vertices ofHj from the remaining13

vertices in D − A(B+
s ). Conversely, suppose that D′ contains an (s, t)-path P which avoids at least14

one vertex from {aj,1, aj,2, aj,3} for each j ∈ [m]. Then we form an out-branching B+
s by adding the15

following arcs to P : all arcs of the form tcj, j ∈ [m] and for each clause Cj , j ∈ [m] and r ∈ [3] if16

P contains the vertex aj,r we add the arc aj,rbj,r and otherwise we add the arcs cjbj,r, bj,raj,r. This17

clearly gives an out-branching B+
s of DF . It remains to show that D∗ = DF − A(B+

s ) is connected.18

First observe that D∗〈V (D′)〉 contains either all arcs of the subpath uiyi,1yi,2 . . . yi,pi
vi or all arcs19

of the subpath uizi,1zi,2 . . . zi,qivi for each i ∈ [n] and hence it contains an (s, t)-path which passes20

through all the vertices u1, u2, . . . , un, t. By the description of P above, for each clause Cj , j ∈ [m]21

and r ∈ [3], if P contains the vertex aj,r then D∗ contains the arcs cjbj,r, cjaj,r and if P does not22

contain the vertex aj,r then D∗ contains the arcs cjaj,r, aj,rbj,r. Now it is easy to see that D∗ is23

connected and spanning. ⋄24

25
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Theorem 1.5 now follows by combining Claims 1 and 2. ⋄1

2

In the proof of Theorem 1.6 we shall use the following result due to the second author (the result3

is mentioned in [1, Section 13.10] and in [7]). Since a proof has never appeared in print before and the4

proof of this result plays an important role in the proof below, we include a proof here for completeness5

(the proof is a refinement of the proof of Theorem 6.1.3 in [1]).6

We recall from [1] that a k-path factor of a digraph H is a collection of k vertex disjoint paths7

that cover all vertices of V (H)8

Theorem 2.1 It is NP-complete to decide whether a 2-regular digraph D contains a pair of arc-9

disjoint hamiltonian cycles.10

z1 − z6

y1 − y6

x1 − x6

Figure 3: The gadget H(x, y, z). The vertices are ordered from the left to the right and labelled as
indicated in the left part of the Figure [1, Figure 6.1].

Proof: We will reduce the Not-All-Equal 3-SAT (NAE-3-SAT) problem to the problem of deciding11

whether a 2-regular digraph has two arc-disjoint hamiltonian cycles. Consider the following digraph12

H(x, y, z)13

14

V (H(x, y, z)) = {xi, yi, zi : i = 1, 2, 3, 4, 5, 6},

A(H(x, y, z)) = {xiyi, yizi, zixi : i = 1, 2, 3, 4, 5, 6}∪

{xjxj+1, yjyj+1, zjzj+1 : j = 1, 2, 3, 4, 5}

(see Figure 3). It is easy to verify that the digraph H(x, y, z) has the following properties:15

16

(i) There is a unique hamiltonian path P of H(x, y, z) starting at x1 (y1, z1, respectively) and this17

terminates at x6 (y6, z6, respectively). Furthermore, when P denotes this hamiltonian path from x118

to x6 then H(x, y, z) − A(P ) has a unique 2-path factor R ∪ S and R is a (y1, y6)-path and S is a19

(z1, z6)-path. Similarly, when P is a hamiltonian path from y1 to y6 or from z1 to z6.20

(ii) Let P ∪ Q be a 2-path factor of H(x, y, z) such that the path P starts at x1 and the path21

Q starts at y1 and both paths end in the set {x6, y6, z6}. Then P terminates at x6 and Q at y6.22

Furthermore, H(x, y, z) − A(P ) − A(Q) is a hamiltonian path starting at z1 and terminating at z6.23

Similarly for the pairs x1, z1 and y1, z1.24

(iii) Let P ∪Q∪R be a 3-path factor of H(x, y, z) such that the paths P,Q and R start at x1, y125

and z1, respectively and all three paths end in the set {x6, y6, z6}. Then P,Q and R terminate at x6,26

y6 and z6, respectively. Furthermore, after removing the arcs of P ∪Q∪R we obtain 6 vertex disjoint27

3-cycles with no arcs between them.28

29

That (iii) holds is obvious. To see that property (i) holds it suffices to check that the unique30

hamiltonian path starting in x1 in H(x, y, z) is x1y1z1z2x2y2y3z3x3x4y4z4z5x5y5y6z6x6 and that31

after deleting these arcs the unique 2-path factor of the remaining digraph consists of the paths32

y1y2z2z3z4x4x5x6y6 and z1x1x2x3y3y4y5z5z6. We leave to the reader to verify the (ii) holds (again33

the paths are unique and easy to construct).34
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v1

v̄2

v3

v1

v2

v3

v̄1

v2

v̄3

u1 w1

u2

w2

u3
w3

H1 H2
H3

Figure 4: An illustration of the digraph DI for the formula I = (v1∨ v̄2∨v3)(v1∨v2∨v3)(v̄1∨v2∨ v̄3).
For convenience only the six important vertices of each Hi is shown and in the middle column of each
Hi we show the 3 literals in the order they appear in Ci. Thus the top literal corresponds to the two
top vertices etc.

We are going to use H(x, y, z) as a building block in a bigger digraph below and since we will1

only connect the vertices x1, x6, y1, y6, z1, z6 to other parts of the digraph, we will use the names2

x, x′, y, y′, z, z′ for these below and denote the subdigraph by H(x, x′, y, y′, z, z′).3

Consider an instance I of NAE-3-SAT with variables v1, . . . , vk and clauses C1, . . . , Cp. Since4

we require that every clause contains both true and false literals in any satisfying truth assignment,5

we may assume that every variable and its negation appear in I as literals (otherwise we can add6

negated copies of some of the clauses). Construct a digraph DI as follows: start from a disjoint union7

U = H1 ∪H2 ∪ . . .∪Hp, where Hj = H(aj , a
′
j, bj , b

′
j, cj , c

′
j) and aj , bj, cj are the literals in Cj , j ∈ [p].8

For every variable v the ordering of C1, . . . , Cp induces an ordering Cv,1, . . . , Cv,pv
of the clauses9

containing the literal v and an ordering Cv̄,1, . . . , Cv̄,qv̄ of the clauses containing the literal v̄. Based10

on this ordering we join the vertices of different pairs among H1, H2, . . . , Hp as follows (where we11

denote the clause gadget corresponding to the clause Cv,r by Hv,r): For each variable v and r ≤ pv−112

we add an arc α→β from Hv,r to Hv,r+1 where α equals one of the vertices a′v,r, b
′
v,r, c

′
v,r depending13

on whether the first, second or third literal in Cv,r is equal to v and β equals one of the vertices14

av,r+1, bv,r+1, cv,r+1 depending on whether the first, second or third literal in Cv,r+1 is equal to v.15

Similarly, for each variable v and r ≤ qv̄ − 1 we add an arc α→β from Hv̄,r to Hv̄,r+1 where α equals16

one of the vertices a′v̄,r, b
′
v̄,r, c

′
v̄,r depending on whether the first, second or third literal in Cv,r is equal17

to v̄ and β equals one of the vertices av̄,r+1, bv̄,r+1, cv̄,r+1 depending on whether the first, second or18

third literal in Cv̄,r+1 is equal to v̄. See Figure 4.19

Next we add 2k new vertices u1, w1, u2, w2, . . . , uk, wk where the vertices ui, wi correspond to the20

variable vi, for i ∈ [k]. Each vertex ui dominates one vertex in each of Hvi,1 and Hv̄i,1, namely one21

of the vertices avi,1, bvi,1, cvi,1 depending on whether vi is the first, second or third literal in Cvi,122

and one of the vertices av̄i,1, bv̄i,1, cv̄i,1 depending on whether v̄i is the first, second or third literal in23

Cv̄i,1. Each vertex wi is dominated by one vertex from each of Hvi,pvi
and Hv̄i,qv̄i

, namely one of the24

vertices a′vi,pvi
, b′vi,pvi

, c′vi,pvi
depending on whether vi is the first, second or third literal in Cvi,pvi

and25

one of the vertices av̄i,qv̄i , bv̄i,qv̄i , cv̄i,qv̄i depending on whether v̄i is the first, second or third literal in26

Cv̄i,qv̄i
. Finally, we add the arcs wiui−1, wiui+1 for every i ∈ [k], where u0 = uk, uk+1 = u1.27

It is easy to verify that D is 2-regular.28

Suppose I is a ’yes’ instance of NAE-3-SAT and consider a satisfying truth assignment t. Note29

that the complementary truth assignment t̄ (where we set a variable true if and only if it is false in30

t) is also a satisfying truth assignment for I. We will show how to construct arc-disjoint hamiltonian31

cycles C,C′ of DI based on the values of the variables in t. For each variable vj such that vj is true32

6



in t we let C contain the arc wjuj+1, the arc from uj to Hvj ,1, the arc from Hvj ,pvj
to wj and all1

the arcs from Hvj ,r to Hvj ,r+1, r = 1, 2, . . . , pvj − 1 that were described above corresponding to the2

occurrences of vj in the clauses Cvj ,1, . . . , Cvj ,pvj
. For each variable vf such that vf is false in t we let3

C contain the arc wfuf+1, the arc from uf to Hv̄f ,1, the arc from Hv̄f ,qv̄f
to wf and all the arcs from4

Hv̄f ,r to Hv̄f ,r+1, r = 1, 2, . . . , qv̄f − 1 that were described above corresponding to the occurrences5

of v̄f in the clauses Cv̄f ,1, . . . , Cv̄f ,qv̄f
. Similarly (except we use arcs from wj to uj−1 for all j ∈ [k],6

where indices are taken modulo k) we define C′ from the truth assignment t̄.7

Since every clause is satisfied by t, the cycle C uses vertices from each digraph in the disjoint union8

H1 ∪ H2 ∪ . . . ∪ Hp. By the properties (i) and (ii) of H(x, y, z) above, if s (1 ≤ s ≤ 2) literals are9

satisfied in a clause Cj by t, all vertices of the corresponding digraph Hj can be used in C due to10

the existence of an appropriate s-path factor in Hj . Thus, C is indeed hamiltonian. Similarly C′ is a11

hamiltonian cycle and it is arc-disjoint from C by the way we constructed it.12

Suppose now that DI has a pair of arc-disjoint hamiltonian cycles C,C′. It follows from (iii) above13

that none of the cycles C,C′ passes through any Hj more than two times. Hence if we set vi true if14

C uses the arc from ui to Hvi,1 and false otherwise, then we obtain a truth assignment t such that15

both t and t̄ satisfy all clauses of I (a literal will be set to true if and only if C uses the arcs of DI16

that correspond to this literal). ⋄17

18

v1

v2

v3

v4

v5

v6

Figure 5: A 2-regular digraph Q with no hamiltonian cycle.

Lemma 2.2 The digraph Q in Figure 5 has the following properties.19

(i) Q has no hamiltonian cycle.20

(ii) Q contains the strong spanning subdigraph induced by the arcs {v1v2, v2v3, v3v4, v4v5, v5v1, v2v6, v6v1}21

which is arc-disjoint from the connected spanning subgraph of UG(D) formed by the arcs22

{v1v6, v6v5, v5v4, v4v3, v3v2}.23

(iii) There is no strong spanning subdigraph Q′ of Q such that Q − A(Q′) is connected and both of24

the arcs v4v3, v4v5 are in Q′.25

Proof: We leave it to the reader to make the easy check that Q has no hamiltonian cycle. That26

(ii) holds is easy to verify so it only remains to prove (iii). Let Q′ be any strong spanning subdigraph27

of Q which contains both of the arcs v4v3, v4v5 and assume that Q − A(Q′) is connected. Then28

precisely one of the arcs v3v4, v5v4 is in Q′. Note that, by (i), Q′ must contain 7 arcs and Q−A(Q′)29

must be a spanning tree of Q. Therefore all vertices in Q′ except one have out-degree one and all30

vertices in Q′ except one have in-degree one. Suppose first that Q′ contains v3v4. Then v3v2 6∈ A(Q′)31

and v1v2 ∈ A(Q′), which implies that v1v6 6∈ A(Q′) and v2v6 ∈ A(Q′). Therefore v2v3 6∈ A(Q′) and32

Q−A(Q′) contains both v2v3 and v3v2 a contradiction to Q −A(Q′) being a spanning tree of Q.33

So Q′ contains v5v4 but not v3v4. Analogously to above we note that v5v1 6∈ A(Q′) and thus34

v6v1 ∈ A(Q′), which implies that v6v5 6∈ A(Q′). As v3v4 6∈ A(Q′) we note that v3v2 ∈ A(Q′). As35

Q−A(Q′) is connected Q′ cannot contain the arc v2v3 but then {v1, v2, v6} has out-degree 0 in Q′, a36
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contradiction. ⋄1

2

Proof of Theorem 1.6:3

4

Consider an instance I of Not-All-Equal 3-SAT (NAE-3-SAT) with variables v1, . . . , vk and clauses5

C1, . . . , Cp such that every variable and its negation appear in I as literals and let DI be the digraph6

constructed as in the proof of Theorem 2.1.7

We form a new digraph W from DI and a copy of Q as follows: fix a vertex x ∈ V (DI) and delete8

the two arcs xy, xz to its two out-neighbours in DI . Delete the two arcs v4v3, v4v5 from Q and add9

the arcs xv3, xv5, v4y, v4z. Clearly W is a 2-regular digraph. We claim that W has a spanning strong10

subdigraph D′ such that W −A(D′) is connected if and only if I is satisfiable and by the proof above11

we know that this happens if and only if DI has two arc-disjoint hamiltonian cycles. Suppose first12

that H1, H2 are arc-disjoint hamiltonian cycles of DI . Without loss of generality H1 contains the arc13

xy. Thus we obtain a strong spanning subdigraph D′ of W such that W − A(D′) is connected by14

replacing the arc xy by the arcs {v1v2, v2v3, v3v4, v4y, xv5, v5v1, v2v6, v6v1} and the arc xz (which is15

in H2) by the arcs xv3, v4z.16

Conversely, suppose thatW has a spanning strong subdigraphD′ such thatW−A(D′) is connected.17

First observe that when we replace back the arcs {xy, xz, v4v3, v4v5} for the arcs {xv3, xv5, v4y, v4z}18

D′ splits up into disjoint strong spanning subdigraphs R of Q and S of DI , respectively. This implies19

that D′ uses exactly one of the arcs xv3, xv5. If both of these arcs are in D′ then the fact that20

W − A(D′) is connected implies that Q −A(R) must be connected, contradicting Lemma 2.2(iii). It21

follows from the fact that Q has no hamiltonian cycle that R uses 7 arcs and since W has 2(n+6) arcs22

and n + 6 vertices we get that S is a hamiltonian cycle of DI . Therefore D′ cannot contain both of23

the arcs v4y, v4z. Furthermore, it follows from (iii) in the proof of Theorem 2.1 that S cannot traverse24

any Hj more than twice since if it did then W −A(D′) could not be connected as DI −A(D′) would25

contain many vertex disjoint 3-cycles and we have only two arcs coming from {v1, v2, v3, v4, v5, v6} to26

connect these. Thus we can use S to define a satisfying truth assignment for I just as we did in the27

proof above. ⋄28

29

3 Further results and related open problems30

In the digraph DF used in the proof of Theorem 1.5 the vertex s is a source (has in-degree 0) and31

hence is the only vertex from which an out-branching can start in DF . Thus the proof of Theorem32

1.5 shows that the following holds.33

Theorem 3.1 It is NP-complete to decide for a given digraph D whether D contains some vertex s34

and an out-branching B+
s such that D −A(B+

s ) is connected. ⋄35

36

It is easy to check that the proof of Theorem 1.5 still works if we add the arc ts in which case the37

digraph DF becomes strongly connected. Hence we have shown the following.38

Theorem 3.2 It is NP-complete to decide for a given strongly connected digraph D and a specified39

vertex s of D whether D contains an out-branching B+
s such that D −A(B+

s ) is connected. ⋄40

41

Clearly, by Theorem 1.1, every 2-arc-strong digraph has an out-branching B+
s such that D−A(B+

s )42

is connected for every choice of the root s. On the other hand, there exist strong digraphs D with43

UG(D) arbitrarily highly edge-connected and a vertex s which can reach all other vertices by a directed44

path and yet D has no out-branching B+
s s.t. D − A(B+

s ) is connected. To see this take a directed45

path P = u1u2u3...uk and add all arcs uiuj where j < i and both i and j are even or both odd. This46

has no good out-branching from s because every B+
s will use all arcs on P .47

Theorem 3.3 The following problems are all NP-complete48
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(i) Given a digraph D and s, t ∈ V (D); does D have an (s, t)-path P such that D − A(P ) is1

connected?2

(ii) Given a digraph D and s, t ∈ V (D); does UG(D) have an (s, t)-path P such that D − A(P )3

contains an out-branching rooted in s?4

(iii) Given a strong digraph D; does D contain a cycle C such that D −A(C) is connected?5

(iv) Given a strong digraph D; does D contain a cycle C such that D −A(C) is strong?6

(v) Given a strong digraph D; does UG(D) contain a cycle W such that D − A(W ) is strongly7

connected?8

Proof: Let F be an instance of 3-SAT with variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm, let9

D∗

F
be the digraph that we build as in the proof of Theorem 1.5, except that instead of using H(j)10

as the clause gadget for Cj we use a directed 6-cycle aj,1dj,1aj,2dj,2aj,3dj,3aj,1 as clause gadget and11

where the vertices aj,1, aj,2, aj,3 are identified with vertices of the variable gadgets as we did in the12

proof of Theorem 1.5. Define D′ as we did in the proof of Theorem 1.5. To prove that problem (i) is13

NP-complete, it suffices to note that if P is an (s, t)-path in D∗

F
such that D∗

F
−A(P ) is connected,14

then P does not use any arc from any of the clause gadgets. Now it is easy to see that D∗

F
contains15

such a path if and only if D′ contains a path which avoids at least one vertex from {aj,1, aj,2, aj,3}16

for each j ∈ [m] and we are done by Claim 1. If Q is path between s and t in UG(D∗

F
) such that17

D∗

F
− A(Q) contains an out-branching, then Q does not use any arc from any of the clause gadgets.18

Again this and Claim 1 easily implies that (ii) is NP-complete. To prove that (iii) is NP-complete we19

consider the digraph D∗ that we obtain from D∗

F
by adding the arc ts. Then the argument above for20

(i) shows that D∗ has a cycle C such that D−A(C) is connected if and only if F is satisfiable so (iii)21

is NP-complete. To prove that (iv) and (v) are NP-complete we consider D∗∗ which we obtain from22

D∗ by adding a new vertex t′ and the arcs tt′, t′s. By the choice of clause gadget, a cycle C such that23

D∗∗ − A(C) is strong is a cycle formed by an (s, t)-path P in D′ and the arc ts with the property24

that P avoids at least one vertex from each of the sets {aj,1, aj,2, aj,3} and now we can apply Claim 125

to see that (iv) is NP-complete. Finally, observe that UG(D∗∗) has a cycle W such that D − A(W )26

is strongly connected if and only if W is formed by an (s, t)-path P in D′ and the arc ts with the27

property that P avoids at least one vertex from each of the sets {aj,1, aj,2, aj,3} and again we can use28

Claim 1. ⋄29

30

It was shown in [3] that there is a polynomial algorithm to check whether the underlying digraph31

UG(D) of a given strong digraph D contains two vertex disjoint cycles C,C′ such that C is also a32

cycle in D. On the other hand it was shown in [6] that the same problem becomes NP-complete if we33

do not require that D is strong.34

In [7] the authors posed the following conjecture and proved it for semicomplete digraphs where35

N = 3 is necessary and sufficient (a digraph is semicomplete if it has no non-adjacent vertices).36

Recently [2] the conjecture was also confirmed for locally semicomplete digraphs and again N = 3 is37

best possible for this much larger class of digraphs. A digraph is locally semicomplete if and only if38

the in-neighbourhood and the out-neighbourhood of every vertex induces a semicomplete digraph.39

Conjecture 3.4 [7] There exist a natural number N such that every N -arc-strong D contains two40

arc-disjoint spanning strong subdigraphs.41

A (much) weaker version of this is the following.42

Conjecture 3.5 [5] There exist a natural number K such that every K-arc-strong digraph D has a43

strong spanning subdigraph D′ such that UG(D −A(D′)) is connected.44

References45

[1] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications, 2nd Edition.46

Springer-Verlag, London, 2009.47

9



[2] J. Bang-Jensen and J. Huang. Decomposing locally semicomplete digraphs into strong spanning1

subdigraphs. J. Combin. Theory, Ser B, to appear.2

[3] J. Bang-Jensen and M. Kriesell. On the problem of finding disjoint cycles and dicycles in a3

digraph. Combinatorica, to appear.4

[4] J. Bang-Jensen and M. Kriesell. Disjoint directed and undirected paths and cycles in digraphs.5

Theoretical Computer Science, 410:5138–5144, 2009.6

[5] J. Bang-Jensen and M. Kriesell. Disjoint sub(di)graphs in digraphs. Electronic Notes in Discrete7

Mathematics, 34:179–183, 2009.8

[6] J. Bang-Jensen, M. Kriesell, A. Madalloni, and S. Simonsen. Vertex-disjoint directed and undi-9

rected cycles in general digraphs. submitted, 2011.10

[7] J. Bang-Jensen and A. Yeo. Decomposing k-arc-strong tournaments into strong spanning subdi-11

graphs. Combinatorica, 24(3):331–349, 2004.12
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