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Preface

This is a draft version. This volume is a supplement to Wolseys ”Integer Pro-
gramming” for the course Networks and Integer Programming (42113) at the
Department of Management Engineering at the Technical University of Den-
mark.

Whereas Wolsey does an excellent job of describing the intricacies and challenges
of general integer program and the techniques necessary to master the field,
he basically ignores the field on network optimization. We do not claim to
master this in total but we address the most important problems in network
optimization in relation to Wolseys text.

We have included two supplementary readings in form of a chapter on duality
and branch and bound. Finally an appendix contains a small introduction to
the interactive part of CPLEX.

Kgs. Lyngby, February 2009

Jesper Larsen Jens Clausen
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Chapter 1

Introduction

1.1 Graphs and Networks

Network models are build from two major building blocks: edges (sometimes
called arcs) and vertices (sometimes called nodes). Edges are lines connecting
two vertices. A graph is a structure that is composed of vertices and edges.
A directed graph (sometime denoted digraph) is a graph in which the edges
have been assigned an orientation – often shown by arrowheads on the lines.
Finally, a network is a (directed) graph in which the edges have an associated
flow. Table 1.1 gives a number of examples of the use of graphs.

Vertices Edges Flow
cities roads vehicles

switching centers telephone lines telephone calls
pipe junctions pipes water
rail junctions railway lines trains

Table 1.1: Simple examples of networks

A graph G = (V (G), E(G)) consists of a finite set of vertices V (G) and a set of
edges E(G) – for short denoted G = (V,E). Only where it is necessary we will
use the ”extended” form to describe a graph. E is a subset of {(v, w) : v, w ∈ V }.
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The number of vertices resp. edges in G is denoted n resp. m: |V (G)| = n and
|E(G)| = m.

Figure 1.1 shows a picture of a graph consisting of 9 vertices and 16 edges. In-
stead of a graphical representation is can be stated as G = (V,E), where V =
{1, 2, 3, 4, 5, 6, 7, 8, 9} and E = {(1, 2), (1, 3), (1, 4), (2, 5), (2, 6), (2, 7), (2, 8), (3, 4),
(3, 6), (4, 5), (4, 8), (5, 7), (5, 9), (6, 7), (6, 8), (8, 9)}.
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7

Figure 1.1: Graphical illustrations of graphs

An edge (i, j) ∈ E is incident with the vertices i and j. i and j are called
neighbors (or adjacent). In a complete (or fully connected) graph all
possible pairs of vertices are connected with an edge, i.e. E = {(i, j) : i, j ∈ V }.
We define V +(i) and V −(i) to be the set of edges out of i resp. into i, that is,
V +(i) = {(i, j) ∈ E : i ∈ V } and V −(i) = {(j, i) ∈ E : j ∈ V }.

A subgraph H of G has V (H) ⊂ V (G) and E(H) ⊂ E(G), where E(H) ⊂
{(i, j) : i, j ∈ V (H)}. When A ⊂ E, G \ A is given by V (G \ A) = V (G)
and E(G \ A) = E \ A. When B ⊂ V , G \ B (or G[V \ B]) is given by
V (G \ B) = V (G) \ B and E(G \ B) = E \ {(i, j) : i ∈ B ∨ j ∈ B}. G \ B
is also called the subgraph induced by V \ B. The subgraph H of G is
spanning if V (H) = V (G). An example of a subgraph in Figure 1.1 can be
V (H) = {1, 2, 3, 4} then the edges in the subgraphs are the edges of G where
both endpoints are in V (H) i.e. E(H) = {(1, 2), (1, 3), (1, 4), (3, 4)}.

A path P in G is a sequence v0, e1, v1, e2, ..., ek, vk, in which each vi is a vertex,
each ei an edge, and where ei = (vi−1, vi), I = 1, ..., k. P is called a path from v0

to vk or a (v0, vk)-path. The path is said to be closed if v0 = vk, edge-simple,
if all ei are different, and simple, if all vi are different. A chain is a simple
path. If we look at our graph in Figure 1.1 then 1, 4, 5, 9, 8 denotes a path, as
all vertices on the path are distinct it is a simple path (or chain). Furthermore
the path 1, 3, 6, 2, 7, 6, 2, 1 is a closed path.
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A circuit or cycle C is a path, which is closed and where v0, ..., vk−1 are all
different. A dicircuit is a circuit, in which all edges are forward. An example
of a circuit in Figure 1.1 is 1, 3, 6, 2, 1 or 2, 6, 8, 2.

A graph G is connected, if a path from i to j exists for all pairs (i, j) of vertices.
If G is connected, v ∈ V , and G \ v is not connected, v is called a cut-vertex.
A circuit-free graph G is called a forest; if G is also connected G is a tree.

Let us return to the concept of orientations on the edges. Formally a directed
graph or digraph, G = (V (G), E(G)) consists of a finite set of vertices V (G) and
a set of edges E(G) - often denoted G = (V,E). E is a subset of {(i, j) : i, j ∈ V }.
Each edge has a start-vertex (tail - t(i, j) = i) and an end-vertex (head -
h(i, j) = j). The number of vertices resp. edges in G is denoted n resp. m :
|V (G)| = n and |E(G)| = m.

A edge (i, j) ∈ E is incident with the vertices i and j, and j is called a
neighbor to i and they are called adjacent.

In a complete (or fully connected) graph all edges are “present”, i.e E =
{(i, j) : i, j ∈ V }. Any digraph has a underlying graph, which is found
by ignoring the direction of the edges. When graph-terminology is used for
digraphs, these relates to the underlying graph.

A path P in the digraph G is a sequence v0, e1, v1, e2, ..., ek, vk, in which each
vi is a vertex, each ei an edge, and where ei is either (vi−1, vi) or (vi, vi−1),
I = 1, ..., k. If ei is equal to (vi−1, vi), ei is called forward, otherwise ei is
backward. P is called a directed path, if all edges are forward.

A graph G can be strongly connected, which means that any vertex is reachable
from any other vertex. When talking about directed graphs it means that
directions of the edges should be obeyed.

1.2 Algorithms

1.2.1 Concepts

An algorithm is basically a recipe that in a deterministic way describes how to
accomplish a given task.

show some pseudo code, explain and give a couple of small examples.
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1.2.2 Depth-first search

1.2.3 Breadth-first search



Chapter 2

Teaching Duality in Linear

Programming – The

Multiplier Approach

Duality in LP is often introduced through the relation between LP problems
modelling different aspects of a planning problem. Though providing a good
motivation for the study of duality this approach does not support the general
understanding of the interplay between the primal and the dual problem with
respect to the variables and constraints.

This paper describes the multiplier approach to teaching duality: Replace the
primal LP-problem P with a relaxed problem by including in the objective
function the violation of each primal constraint multiplied by an associated
multiplier. The relaxed problem is trivial to solve, but the solution provides
only a bound for the solution of the primal problem. The new problem is hence
to choose the multipliers so that this bound is optimized. This is the dual
problem of P .

LP duality is described similarly in the work by A. M. Geoffrion on Lagrangean
Relaxation for Integer Programming. However, we suggest here that the ap-
proach is used not only in the technical parts of a method for integer program-
ming, but as a general tool in teaching LP.
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2.1 Introduction

Duality is one of the most fundamental concepts in connection with linear pro-
gramming and provides the basis for better understanding of LP models and
their results and for algorithm construction in linear and in integer program-
ming. Duality in LP is in most textbooks as e.g. [2, 7, 9] introduced using
examples building upon the relationship between the primal and the dual prob-
lem seen from an economical perspective. The primal problem may e.g. be a
blending problem:

Determine the contents of each of a set of available ingredients (e.g. fruit or
grain) in a final blend. Each ingredient contains varying amounts of vitamins
and minerals, and the final blend has to satisfy certain requirements regarding
the total contents of minerals and vitamins. The costs of units of the ingredients
are given, and the goal is to minimize the unit cost of the blend.

The dual problem here turns out to be a problem of prices: What is the maxi-
mum price one is willing to pay for “artificial” vitamins and minerals to substi-
tute the natural ones in the blend?

After such an introduction the general formulations and results are presented
including the statement and proof of the duality theorem:

Theorem 2.1 (Duality Theorem) If feasible solutions to both the primal and
the dual problem in a pair of dual LP problems exist, then there is an optimum
solution to both systems and the optimal values are equal.

Also accompanying theorems on unboundedness and infeasibility, and the Com-
plementary Slackness Theorem are presented in most textbooks.

While giving a good motivation for studying dual problems this approach has
an obvious shortcoming when it comes to explaining duality in general, i.e.
in situations, where no natural interpretation of the dual problem in terms of
primal parameters exists.

General descriptions of duality are often handled by means of symmetrical dual
forms as introduced by von Neumann. Duality is introduced by stating that two
LP-problems are dual problems by definition. The classical duality theorems are
then introduced and proved. The dual of a given LP-problem can then be found
by transforming this to a problem of one of the two symmetrical types and
deriving it’s dual through the definition. Though perfectly clear from a formal
point of view this approach does not provide any understanding the interplay
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between signs of variables in one problem and type of constraints in the dual
problem. In [1, Appendix II], a presentation of general duality trying to provide
this understanding is given, but the presentation is rather complicated.

In the following another approach used by the author when reviewing duality in
courses on combinatorial optimization is suggested. The motivating idea is that
of problem relaxation: If a problem is difficult to solve, then find a family of easy
problems each resembling the original one in the sense that the solution provides
information in terms of bounds on the solution of our original problem. Now
find that problem among the easy ones, which provides the strongest bounds.

In the LP case we relax the primal problem into one with only non-negativity
constraints by including in the objective function the violation of each primal
constraint multiplied by an associated multiplier. For each choice of multipliers
respecting sign conditions derived from the primal constraints, the optimal value
of the relaxed problem is a lower bound (in case of primal minimization) on the
optimal primal value. The dual problem now turns out to be the problem of
maximizing this lower bound.

The advantages of this approach are 1) that the dual problem of any given
LP problem can be derived in a natural way without problem transformations
and definitions 2) that the primal/dual relationship between variables and con-
straints and the signs/types of these becomes very clear for all pairs of pri-
mal/dual problems and 3) that Lagrangean Relaxation in integer programming
now becomes a natural extension as described in [3, 4]. A similar approach is
sketched in [8, 5].

The reader is assumed to have a good knowledge of basic linear programming.
Hence, concepts as Simplex tableau, basic variables, reduced costs etc. will
be used without introduction. Also standard transformations between different
forms of LP problems are assumed to be known.

The paper is organized as follows: Section 2 contains an example of the ap-
proach sketched, Section 3 presents the general formulation of duality through
multipliers and the proof of the Duality Theorem, and Section 4 discusses the
pros and cons of the approach presented. The main contribution of the paper is
not theoretical but pedagogical: the derivation of the dual of a given problem
can be presented without problem transformations and definitions, which are
hard to motivate to people with no prior knowledge of duality.
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Fruit type F1 F2 F3 F4
Preservative R 2 3 0 5
Preservative Q 3 0 2 4
Cost pr. ton 13 6 4 12

Table 2.1: Contents of R and Q and price for different types of fruit

2.2 A blending example

The following example is adapted from [6]. The Pasta Basta company wants
to evaluate an ecological production versus a traditional one. One of their
products, the Pasta Basta lasagne, has to contain certain preservatives, R and
Q, in order to ensure durability. Artificially produced counterparts R’ and Q’
are usually used in the production – these are bought from a chemical company
PresChem, but are undesirable from the ecological point of view. R and Q can
alternatively be extracted from fresh fruit, and there are four types of fruit each
with their particular content (number of units) of R and Q in one ton of the
fruit. These contents and the cost of buying the fruit are specified in Table 2.1.

Pasta Basta has a market corresponding to daily needs of 7 units of R and 2 units
of Q. If the complete production is based on ecologically produced preservatives,
which types of fruit and which amounts should be bought in order to supply the
necessary preservatives in the cheapest way?

The problem is obviously an LP-problem:

(P )

min 13x1 +6x2 +4x3 +12x4

s.t. 2x1 +3x2 +5x4 = 7
3x1 +2x3 +4x4 = 2

x1, x2, x3, x4 ≥ 0

With x2 and x3 as initial basic variables the Simplex method solves the problem
with the tableau of Table 2.2 as result.

Natural questions when one knows one solution method for a given type of
problem are: Is there an easier way to solve such problems? Which LP problems
are trivial to solve? Regarding the latter, it is obvious that LP minimization
problems with no constraints but non-negativity of x1, · · · , xn are trivial to
solve:
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min c1x1 + · · ·+ cnxn

s.t. x1, · · · , xn ≥ 0

If at least one cost coefficient is negative the value of the objective function
is unbounded from below (in the following termed “equal to −∞”) with the
corresponding variable unbounded (termed “equal to∞”) and all other variables
equal to 0, otherwise it is 0 with all variables equal to 0.

The blending problem P of 2.2 is not of the form just described. However, such a
problem may easily be constructed from P : Measure the violation of each of the
original constraints by the difference between the right-hand and the left-hand
side:

7− (2x1 + 3x2 + 5x4)
2− (3x1 + 2x3 + 4x4)

Multiply these by penalty factors y1 and y2 and add them to the objective
function:

(PR(y1, y2)) min
x1,··· ,x4≥0







13x1 + 6x2 + 4x3 + 12x4

+ y1(7− 2x1 − 3x2 − 5x4)
+ y2(2− 3x1 − 2x3 − 4x4)







We have now constructed a family of relaxed problems, one for each value of
y1, y2, which are easy to solve. None of these seem to be the problem we actu-
ally want to solve, but the solution of each PR(y1, y2) gives some information
regarding the solution of P . It is a lower bound for any y1, y2, and the maximum
of these lower bound turns out to be equal to the optimal value of P . The idea
of replacing a difficult problem by an easier one, for which the optimal solution
provides a lower bound for the optimal solution of the original problem, is also
the key to understanding Branch-and-Bound methods in integer programming.

x1 x2 x3 x4

Red. Costs 15/2 0 3 0 -15
x2 -7/12 1 -5/6 0 3/2
x4 3/4 0 1/2 1 1/2

Table 2.2: Optimal Simplex tableau for problem LP



10 Teaching Duality in Linear Programming – The Multiplier Approach

Let opt(P ) and opt(PR(.)) denote the optimal values of P and PR(.) resp.
Now observe the following points:

1. ∀y1, y2 ∈ R: opt(PR(y1, y2) ≤ opt(P )

2. maxy1,y2∈R (opt(PR(y1, y2))) ≤ opt(P )

1) states that opt(PR(y1, y2) is a lower bound for opt(P ) for any choice of y1, y2

and follows from the fact that for any set of values for x1, · · · , x4 satisfying the
constraints of P , the values of P and PR are equal since the terms originating
in the violation of the constraints vanish. Hence opt(PR(y1, y2)) is found by
minimizing over a set containing all values of feasible solutions to P implying
1). Since 1) holds for all pairs y1, y2 it must also hold for the pair giving the
maximum value of opt(PR(.)), which is 2). In the next section we will prove
that

max
y1,y2∈R

(opt(PR(y1, y2))) = opt(P )

The best bound for our LP problem P is thus obtained by finding optimal
multipliers for the relaxed problem. We have here tacitly assumed that P has
an optimal solution, i.e. it is neither infeasible nor unbounded - we return to
that case in Section 2.3.

Turning back to the relaxed problem the claim was that it is easily solvable for
any given y1, y2 . We just collect terms to find the coefficients of x1, · · · , x4 in
PR(y1, y2)):

(PR(y1, y2)) min
x1,··· ,x4≥0























(13 −2y1 −3y2) x1

+ (6 −3y1 ) x2

+ (4 −2y2) x3

+ (12 −5y1 −4y2) x4

+ 7y1 +2y2























Since y1, y2 are fixed the term 7y1 + 2y2 in the objective function is a constant.
If any coefficient of a variable is less than 0 the value of PR is −∞. The lower
bound for opt(P ) provided by such a pair of y-values is of no value. Hence, we
concentrate on y-values for which this does not happen. These pairs are exactly
those assuring that each coefficient for x1, · · · , x4 is non-negative:
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(13 −2y1 −3y2) ≥ 0 ⇔ 2y1 +3y2 ≤ 13
(6 −3y1 ) ≥ 0 ⇔ 3y1 ≤ 6
(4 −2y2) ≥ 0 ⇔ 2y2 ≤ 4
(12 −5y1 −4y2) ≥ 0 ⇔ 5y1 +4y2 ≤ 12

If these constraints all hold the optimal solution to PR(y1, y2) has x1, · · · , x4 all
equal to 0 with a value of 7y1 + 2y2 which, since y1, y2 are finite, is larger than
−∞. Since we want to maximize the lower bound 7y1 + 2y2 on the objective
function value of P , we have to solve the following problem to find the optimal
multipliers:

(DP )

max 7y1 +2y2

s.t. 2y1 +3y2 ≤ 13
3y1 ≤ 6

2y2 ≤ 4
5y1 +4y2 ≤ 12

y1, y2 ∈ R

The problem DP resulting from our reformulation is exactly the dual problem of
P . It is again a linear programming problem, so nothing is gained with respect to
ease of solution – we have no reason to believe that DP is any easier to solve than
P . However, the above example indicates that linear programming problems
appear in pairs defined on the same data with one being a minimization and
the other a maximization problem, with variables of one problem corresponding
to constraints of the other, and with the type of constraints determining the
signs of the corresponding dual variables. Using the multiplier approach we
have derived the dual problem DP of our original problem P , and we have
through 1) and 2) proved the so-called Weak Duality Theorem – that opt(P ) is
greater than or equal to opt(DP ).

In the next section we will discuss the construction in general, the proof of the
Duality Theorem as stated in the introduction, and the question of unbound-
edness/infeasibility of the primal problem. We end this section by deriving DP
as frequently done in textbooks on linear programming.

The company PresChem selling the artificially produced counterparts R’ and
Q’ to Pasta Basta at prices r and q is considering to increase these as much as
possible well knowing that many consumers of Pasta Basta lasagne do not care
about ecology but about prices. These customers want as cheap a product as
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possible, and Pasta Basta must also produce a cheaper product to maintain its
market share.

If the complete production of lasagne is based on P’ and Q’, the profit of
PresChem is 7r + 2q. Of course r and q cannot be so large that it is cheaper
for Pasta Basta to extract the necessary amount of R and Q from fruit. For
example, at the cost of 13, Pasta Basta can extract 2 units of R and 3 units of
Q from one ton of F1. Hence

2r + 3q ≤ 13

The other three types of fruit give rise to similar constraints. The prices r and q
are normally regarded to be non-negative, but the very unlikely possibility exists
that it may pay off to offer Pasta Basta money for each unit of one preservative
used in the production provided that the price of the other is large enough.
Therefore the prices are allowed to take also negative values. The optimization
problem of PresChem is thus exactly DP .

2.3 General formulation of dual LP problems

2.3.1 Proof of the Duality Theorem

The typical formulation of an LP problem with n nonnegative variables and m
equality constraints is

min cx

Ax = b

x ≥ 0

where c is an 1 × n matrix, A is an m × n matrix and b is an n × 1 matrix of
reals. The process just described can be depicted as follows:
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min cx
Ax = b

x ≥ 0







7→

maxy∈Rm{minx∈Rn

+
{cx + y(b−Ax)}} 7→

maxy∈Rm{minx∈Rn

+
{(c− yA)x + yb}} 7→







max yb
yA ≤ c

y free

The proof of the Duality Theorem proceeds in the traditional way: We find a
set of multipliers which satisfy the dual constraints and gives a dual objective
function value equal to the optimal primal value.

Assuming that P and DP have feasible solutions implies that P can be neither
infeasible nor unbounded. Hence an optimal basis B and a corresponding opti-
mal basic solution xB for P exists. The vector yB = cBB−1 is called the dual
solution or the set of Simplex multipliers corresponding to B. The vector
satisfies that if the reduced costs of the Simplex tableau is calculated using yB
as π in the general formula

c̄ = c− πA

then c̄i equals 0 for all basic variables and c̄j is non-negative for all non-basic
variables. Hence,

yBA ≤ c

holds showing that yB is a feasible dual solution. The value of this solution is
cBB

−1b, which is exactly the same as the primal objective value obtained by
assigning to the basic variables xB the values defined by the updated right-hand
side B−1b multiplied by the vector of basic costs cB.

The case in which the problem P has no optimal solution is for all types of
primal and dual problems dealt with as follows. Consider first the situation
where the objective function is unbounded on the feasible region of the problem.
Then any set of multipliers must give rise to a dual solution with value −∞
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(resp. +∞ for a maximization problem) since this is the only “lower bound”
(“upper bound”) allowing for an unbounded primal objective function. Hence,
no set of multipliers satisfy the dual constraints, and the dual feasible set is
empty. If maximizing (resp. minimizing) over an empty set returns the value
−∞ (resp.+∞), the desired relation between the primal and dual problem with
respect to objective function value holds – the optimum values are equal.

Finally, if no primal solution exist we minimize over an empty set - an operation
returning the value +∞. In this case the dual problem is either unbounded or
infeasible.

2.3.2 Other types of dual problem pairs

Other possibilities of combinations of constraint types and variable signs of
course exist. One frequently occurring type of LP problem is a maximization
problem in non-negative variables with less than or equal constraints. The
construction of the dual problem is outlined below:

max cx
Ax ≤ b

x ≥ 0







7→

miny∈Rm

+
{maxx∈Rn

+
{cx + y(b−Ax)}} 7→

miny∈Rm

+
{maxx∈Rn

+
{(c− yA)x + yb}} 7→







min yb
yA ≥ c

y ≥ 0

Note here that the multipliers are restricted to being non-negative, thereby
ensuring that for any feasible solution, x̂1, · · · , x̂n, to the original problem, the
relaxed objective function will have a value greater than or equal to that of the
original objective function since b−Ax̂ and hence y(b−Ax̂) will be non-negative.
Therefore the relaxed objective function will be pointwise larger than or equal
to the original one on the feasible set of the primal problem, which ensures
that an upper bound results for all choices of multipliers. The set of multipliers
minimizing this bound must now be determined.

Showing that a set of multipliers exists such that the optimal value of the re-
laxed problem equals the optimal value of the original problem is slightly more
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complicated than in the previous case. The reason is that the value of the re-
laxed objective function no longer is equal to the value of the original one for
each feasible point, it is larger than or equal to this.

A standard way is to formulate an LP problem P ′ equivalent to the given prob-
lem P by adding a slack variable to each of the inequalities thereby obtaining
a problem with equality constraints:

max cx
Ax ≤ b

x ≥ 0







=







max cx +0s
Ax +Is = b

x, s ≥ 0

Note now that if we derive the dual problem for P ′ using multipliers we end up
with the dual problem of P : Due to the equality constraints, the multipliers are
now allowed to take both positive and negative values. The constraints on the
multipliers imposed by the identity matrix corresponding to the slack variables
are, however,

yI ≥ 0

i.e. exactly the non-negativity constraints imposed on the multipliers by the
inequality constraints of P . The proof just given now applies for P ′ and DP ′,
and the non-negativity of the optimal multipliers yB are ensured through the
sign of the reduced costs in optimum since these now satisfy

c̄ = (c 0)− yB(A I) ≤ 0 ⇔ yBA ≥ c ∧ yB ≥ 0

Since P ′ and P are equivalent the theorem holds for P and DP as well.

The interplay between the types of primal constraints and the signs of the dual
variables is one of the issues of duality, which often creates severe difficulties in
the teaching situation. Using the common approach to teaching duality, often
no explanation of the interplay is provided. We have previously illustrated this
interplay in a number of situations. For the sake of completeness we now state
all cases corresponding to a primal minimization problem – the case of primal
maximization can be dealt with likewise.

First note that the relaxed primal problems provide lower bounds, which we
want to maximize. Hence the relaxed objective function should be pointwise
less than or equal to the original one on the feasible set, and the dual problem
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is a maximization problem. Regarding the signs of the dual variables we get the
following for the three possible types of primal constraints (Ai. denotes the i’th
row of the matrix A):

Ai.x ≤ bi For a feasible x, bi−Ai.x is larger than or equal to 0, and yi(bi−Ai.x)
should be non-positive. Hence, yi should be non-positive as well.

Ai.x ≥ bi For a feasible x, bi−Ai.x is less than or equal to 0, and yi(bi−Ai.x)
should be non-positive. Hence, yi should be non-negative.

Ai.x = bi For a feasible x, bi −Ai.x is equal to 0, and yi(bi −Ai.x) should be
non-positive. Hence, no sign constraints should be imposed on yi.

Regarding the types of the dual constraints, which we previously have not ex-
plicitly discussed, these are determined by the sign of the coefficients to the
variables in the relaxed primal problem in combination with the sign of the
variables themselves. The coefficient of xj is (c − yA)j . Again we have three
cases:

xj ≥ 0 To avoid unboundedness of the relaxed problem (c − yA)j must be
greater than or equal to 0, i.e. the j’th dual constraint will be (yA)j ≤ cj .

xj ≤ 0 In order not to allow unboundedness of the relaxed problem (c− yA)j

must be less than or equal to 0, i.e. the j’th dual constraint will be
(yA)j ≥ cj .

xj free In order not to allow unboundedness of the relaxed problem (c−yA)j

must be equal to 0 since no sign constraints on xj are present, i.e. the j’th
dual constraint will be (yA)j = cj .

2.3.3 The Dual Problem for Equivalent Primal Problems

In the previous section it was pointed out that the two equivalent problems

max cx
Ax ≤ b

x ≥ 0







=







max cx +0s
Ax +Is = b

x, s ≥ 0

give rise to exactly the same dual problem. This is true in general. Suppose
P is any given minimization problem in variables, which may be non-negative,
non-positive or free. Let P ′ be a minimization problem in standard form, i.e a
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problem in non-negative variables with equality constraints, constructed from P
by means of addition of slack variables to ≤-constraints, subtraction of surplus
variables from ≥-constraints, and change of variables. Then the dual problems
of P and P ′ are equal.

We have commented upon the addition of slack variables to ≤-constraints in the
preceding section. The subtraction of slack variables are dealt with similarly. A
constraint

ai1x1 + · · ·+ ainxn ≥ bi ⇔ (bi − ai1x1 − · · · − ainxn) ≤ 0

gives rise to a multiplier, which must be non-negative in order for the relaxed
objective function to provide a lower bound for the original one on the feasible
set. If a slack variable is subtracted from the left-hand side of the inequality
constraint to obtain an equation

ai1x1 + · · ·+ ainxn − si = bi ⇔ (bi − ai1x1 − · · · − ainxn) + si = 0

the multiplier must now be allowed to vary over R. A new constraint in the
dual problem, however, is introduced by the column of the slack variable, cf.
Section 2.2:

−yi ≤ 0⇔ yi ≥ 0,

thereby reintroducing the sign constraint for yi.

If a non-positive variable xj is substituted by x
′

j of opposite sign, all signs in
the corresponding column of the Simplex tableau change. For minimization
purposes however, a positive sign of the coefficient of a non-positive variable is
beneficial, whereas a negative sign of the coefficient of a non-negative variable
is preferred. The sign change of the column in combination with the change
in preferred sign of the objective function coefficient leaves the dual constraint
unchanged.

Finally, if a free variable xj is substituted by the difference between two non-

negative variables x
′

j and x
′′

j two equal columns of opposite sign are introduced.
These give rise to two dual constraints, which when taken together result in the
same dual equality constraint as obtained directly.

The proof of the Duality Theorem for all types of dual pairs P and DP of LP
problems may hence be given as follows: Transform P into a standard problem
P ′ in the well known fashion. P ′ also has DP as its dual problem. Since the
Duality Theorem holds for P ′ and DP as shown previously and P ′ is equivalent
to P , the theorem also holds for P and DP .



18 Teaching Duality in Linear Programming – The Multiplier Approach

2.4 Discussion: Pros and Cons of the Approach

The main advantages of teaching duality based on multipliers are in my opinion

• the independence of the problem modeled by the primal model and the
introduction of the dual problem, i.e. that no story has go with the dual
problem,

• the possibility to avoid problem transformation and “duality by definition”
in the introduction of general duality in linear programming,

• the clarification of the interplay between the sign of variables and the type
of the corresponding constraints in the dual pair of problems,

• the early introduction of the idea of getting information about the opti-
mum of an optimization problem through bounding using the solution of
an easier problem,

• the possibility of introducing partial dualization by including only some
constraint violations in the objective function, and

• the resemblance with duality in non-linear programming, cf. [3].

The only disadvantage in my view is one listed also as an advantage:

• the independence of the introduction of the dual problem and the problem
modelled by the primal model

since this may make the initial motivation weaker. I do not advocate that du-
ality should be taught based solely on the multiplier approach, but rather that
it is used as a supplement to the traditional presentation (or vice versa). In
my experience, it offers a valuable supplement, which can be used to avoid the
situation of frustrated students searching for an intuitive interpretation of the
dual problem in cases, where such an interpretation is not natural. The deci-
sion on whether to give the traditional presentation of duality or the multiplier
approach first of course depends on the particular audience.
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Part I

Network Optimization





Chapter 3

The Minimum Spanning Tree

Problem

The minimum spanning tree problem is one of the oldest and most basic graph
problems in computer science and Operations Research. Its history dates back to
Boruvka’s algorithm developed in 1926 and still today it is an actively researched
problem. Boruvka, a Czech mathematician was investigating techniques to se-
cure an efficient electrical coverage of Bohemia.

Let an undirected graph G = (V,E) be given. Each of the edges are assigned a
cost (or weight or length) w, that is, we have a cost function w : E → R. The
network will be denoted G = (V,E,w). We will generally assume the cost to be
non-negative, but as we will see it is more a matter of convenience.

Let us recall that a tree is a connected graph with no cycles, and that a spanning
tree is a subgraph in G that is a tree and includes all vertices of G i.e. V .

The minimum spanning tree (MST) problem calls for finding a spanning
tree whose total cost is minimum. The total cost is measured as the sum of the
costs of all the edges in the tree. Figure 3.1 shows an MST in a graph G. Note
that a network can have many MST’s.
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(c) Not a spanning tree as
the subgraph contains a cycle
〈2, 3, 5, 2〉
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(d) A spanning tree with a
value of 18
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(e) A minimum spanning tree
with a value of 12

Figure 3.1: Examples illustrating the concept of spanning and minimum span-
ning tree.
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We will denoted edges in the spanning tree as tree edges and those edges not
part of the spanning tree as nontree edges.

The minimum spanning tree problem arises in a wide number of applications
both as a “stand alone” problem but also as subproblem in more complex prob-
lems.

As an example consider a telecommunication company planning to lay cables to
a new neighborhood. In its operations it is constrained to only lay cables along
certain connections represented by the edges. At the same time a network that
reaches all houses must be build (ie. a spanning tree). For each edge a cost of
digging down the cables have been computed. The MST gives us the cheapest
solution that connects all houses.

At some few occasions you might meet the maximum spanning tree problem
(or as Wolsey calls it the “maximum weight problem”). Solving the maximum
spanning tree problem, where we wish to maximize the total cost of the con-
stituent edges, can be solved by multiplying all costs with −1 and the solve the
minimum spanning problem.

3.1 Optimality conditions

A central concept in understanding and proving the validity of the algorithms
for the MST is the concept of a cut in an undirected graph. A cut C = {X,X ′}
is a partition of the set of vertices into two subsets. For X ⊂ V , denote the set
of arcs crossing the cut δX = {(u, v) ∈ E : u ∈ X, v ∈ V \X}. The notion of a
cut is shown in Figure 3.2. Edges that have one endpoint in the set X and the
other in the endpoint X ′ is said to cross the cut.

We say that a cut respects a set A of edges if no edge in A crosses the cut.

Let us use the definition of a cut to establish a mathematical model for the
problem.

We define a binary variable xij for each edge (i, j). Let

xij =

{

1 if (i, j) is in the subgraph
0 otherwise

For a spanning tree of n vertices we need n − 1 edges. Furthermore, for each
possible cut C at least one of the edges crossing the cut must be in the solution
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X

X’

Figure 3.2: The cut C defined by the partitioning X ⊂ V and X ′ = V \ X is
shown for a graph G. The edges crossing the cut {X,X ′} are shown in bold.

– otherwise the subgraph defined by the solution is not connected. Therefore
we get the following model:

The Cut-set formulation of the MST

min
∑

e∈E

wexe

s.t.
∑

e∈E

xe = n− 1

∑

e∈δ(S)

xe ≥ 1, ∅ ⊂ S ⊂ V

xe ∈ {0, 1}

Sub tour elimination formulation of the MST

min
∑

e∈E

wexe

s.t.
∑

e∈E

xe = n− 1

∑

e∈γ(S)

xe ≤ |S| − 1, ∅ ⊂ S ⊂ V

xe ∈ {0, 1}

where γ(S) = {(i, j) : i ∈ S, j ∈ S}.

Note that with the definition of a cut if we delete any tree edge (i, j) from a
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spanning tree it will partition the vertex set V into two subsets. Furthermore
if we insert an edge (i, j) into a spanning tree we will create exactly one cycle.
Finally, for any pair of vertices i and j, the path from i to j in the spanning
tree will be uniquely defined (see Figure 3.3).
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Figure 3.3: Adding the edge (1, 4) to the spanning tree forms a unique cycle
〈1, 4, 5, 2, 1〉

In this chapter we will look at two algorithms for solving the minimum spanning
tree problem. Although different they both use the greedy principle in building
an optimal solution. The greedy principle advocates making the choice that is
best at the moment, and although it in general is not guaranteed to provide
optimal solutions it does in this case. In many textbooks on algorithms you will
also see the algorithms for the minimum spanning tree problem being used as
it is a classical application of the greedy principle.

The greedy strategy shared by both our algorithms can be described by the
following “generic” algorithm, which grows the minimum spanning tree one
edge at a time. The algorithm maintains a set A with the following condition:

Prior to each iteration, A is a subset of edges of some minimum
spanning tree.

At each iteration we determine an edge (i, j) that can be added to A without
breaking the condition stated above. So that if A is a subset of edges of some
minimum spanning tree before the iteration then A∪{(i, j)} is a subset of edges
of some minimum spanning tree before the next iteration.

An edge with this property will be denoted a safe edge. So we get the following
selection rule for a “generic” algorithm.
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Algorithm 1: The Selection rule

select a cut in G that does not contain any selected edges1

determine a safe edge of the cut-set and select it2

if there are more than one safe edge select a random one of these3

So how do we use the selection rule?

• The selection rule is used n − 1 times as there are n − 1 edges in a tree
with n vertices. Each iteration will select exactly one edge.

• Initially none of the edges in the graph are selected. During the process
one edge at a time will be selected and when the methods stops the selected
edges form a MST for the given graph G.

Now the interesting question is, of course, how do find these safe edges? First,
a safe edge must exist. The condition defines that there exists a spanning tree
T such that A ⊆ T . As A must be a proper subset of T there must be an edge
(i, j) ∈ T such that (i, j) 6∈ A. The edge (i, j) is therefore a safe edge.

In order to come up with a rule for recognizing safe edges we need to define a
light edge. A light edge crossing a cut is an edge with the minimum weight
of any edge crossing the cut. Note that there can be more than one light edge
crossing a cut. Now we can state our rule for recognizing safe edges.

Theorem 3.1 Let G = (V,E,w) be a connected, undirected graph (V,E) with
a weight function w : E → R. Let A be a subset of E that is part of some
minimum spanning tree for G. Let {S, S̄} be any cut of G that respects A, and
let (i, j) be a light edge crossing the cut {S, S̄}. Then, edge (i, j) is safe for A.

Proof: Let T be a minimum spanning tree that includes A. If T contains the
light edge (i, j) we are done, so lets assume that this is not the case.

Now the general idea of the proof is to construct another minimum spanning
tree T ′ that includes A ∪ {(i, j)} by using a cut-and-paste technique. This will
then prove that (i, j) is a safe edge.

If we look at the graph T ∪ {(i, j)} it contains a cycle (see Figure 3.4). Let us
call this cycle p. Since i and j are on opposite sides of the cut {S, S̄}, there is
at least one edge in T on the path p that also crosses the cut. Let (k, l) be such
an edge. As the cut respects A (k, l) cannot be in A. Furthermore as (k, l) is
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Figure 3.4: The edges in the minimum spanning tree T is shown, but not the
edges in G. The edges already in A are drawn extra fat, and (i, j) is a light edge
crossing the cut {S, S′ = S̄}. The edge (k, l) is an edge on the unique path p
from i to j in T . A minimum spanning tree T ′ that contains (i, j) is formed by
removing the edge (k, l) from T and adding (i, j).
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on the unique path in T from i to j T would decompose into two components
if we remove (k, l).

Adding (i, j) reconnects the two components thus forming a new spanning tree
T ′ = T \ {(k, l)} ∪ {(i, j)}. The question is whether T ′ is a spanning tree?

Since (i, j) is a light edge (that was one of the initial reasons for picking it)
crossing the cut {S, S̄} and (k, l) also crosses the cut

wij ≤ wkl

And therefore
wT ′ = wT − wkl + wij

≤ wT

and as T is a minimum spanning tree we have wT ≤ wT ′ . So T ′ must also be a
minimum spanning tree.

What we miss is just to prove that (i, j) is actually a safe edge for A. As A ⊆ T
and (k, l) 6∈ A then A ⊆ T ′, so A ∪ {(i, j)} ⊆ T ′. Consequently, since T ′ is a
minimum spanning tree, (i, j) is safe for A.△

Now we can look at how an execution of the generic algorithm would look like.
The selection rule tells us to pick a cut respecting A and then choose an edge
of minimum weight in this cut.

Figure 3.5 illustrates the execution of the generic algorithm. Initially no edges
are selected. We can consider any cut we would like. Let us use the cut X = {6}
and X ′ = V \X (a). The cheapest edge crossing the cut is (4, 6). It is is added
to the solution. We can now pick any cut not containing the edge (4, 8). We
consider the cut X = {1, 4, 6} (b). Cheapest edge crossing the cut is (4, 5)
which is added to the solution. Next we consider the cut X = {2} (c). Here the
cheapest edge crossing the cut is (2, 3) which is added to the solution. Now let
us consider the cut X = {1, 2, 3} (d). The edge (3, 5) is now identified as the
cheapest and is added to the solution. The next cut we consider is X = {1} (e).
This will add (1, 4) to the solution, which has become a spanning tree. We can
not find any cuts that does not contain edges in the tree crossing the cut (f).

More conceptually A defines a graph GA = (V,A). GA is a forest, and each
of the connected components of GA is a tree. When the algorithm begins A is
empty and the forests contains n trees, one for each vertex. Moreover, any safe
edge (i, j) for A connects distinct components of GA, since A∪ {(i, j)} must be
acyclic.

The two algorithms in section 3.2 and 3.3 use the following corollary to our
theorem.



3.1 Optimality conditions 31

(a) Starting graph

1 2

3

4 5

6

4

4

1

2
3

6

3

2

(b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4

1 2

3

4 5

6

4

4

1

2

3

6

3

2

(f) Step 5

Figure 3.5: The execution of the generic algorithm on our sample graph.

Corollary 3.2 Let G = (V,E,w) be a connected, undirected graph with weight
function w : E → R. Let A be a subset of E that is included in some minimum
spanning tree for G, and let C = (VC , EC) be a component in the forest GA =
(V,A). If (i, j) is a light edge connecting C to some other component in GA,
then (i, j) is safe for A.
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Proof: The cut {VC , V̄C} respects A, and (i, j) is a light edge for this cut.
Therefore (i, j) is safe for A. △
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3.2 Kruskal’s Algorithm

The condition of theorem 3.1 is a natural basis for the first of the algorithms
for the MST that will be presented.

We build the minimum spanning tree from scratch by adding one edge at a
time. First we sort all edges in nondecreasing order of their cost. They are
then stored in a list called L. Furthermore, we define a set F that will contain
the edges that have been chose to be part of the minimum spanning tree being
constructed. Initially F will therefore be empty. Now we examine the edges one
at a time in the order they appear in L and check whether adding each edge
to the current set F will create a cycle. If it creates a cycle then one of the
edges on the cycle cannot be part or the minimum spanning tree and as we are
checking the edges in nondecreasing order, the currently considered is the one
with the largest cost. We therefore discard it. Otherwise the edge is added to
F . We terminate when |F | = n− 1. At termination, the edges in F constitute
a minimum spanning tree T . This algorithm is known as Kruskal’s algorithm.
Pseudo-code for the algorithm is presented in Algorithm 2.

The argument for correctness follows from that if an edge is added, it is the first
edge added across some cut, and due to the non-decreasing weight property, it
is a minimum weight edge across that cut. That is, it is a light edge but then it
is also a safe edge.

Algorithm 2: Kruskal’s algorithm

Data: Input parameters
Result: The set F containing the edges in the MST

F ← ∅1

L ← edges sorted by nondecreasing weight2

for each (u, v) ∈ L do3

if a path from u to v in F does not exist then4

F ← F ∪ (u, v)5

Running Kruskal’s algorithm on the example of Figure 3.1 results in the steps
depicted in Figure 3.6. First the edges are sorted in non-decreasing order: (2, 3),
(4, 6), (3, 5), (2, 5), (4, 5), (1, 4), (1, 2), (5, 6). First the edge (2, 3) is selected (b).
Then edge (4, 6) is selected (c), and afterwards the edge (3, 5) is selected (d).
The edge (2, 5) is discarded as it would create a cycle (2 → 3 → 5 → 2) (e).
Instead (4, 5) is selected (1, 4) is selected (f). Had the order between (1, 4) and
(1, 2) been different we would have chosen differently. As 5 edges are selected
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for a graph with 6 vertices we are done.
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Figure 3.6: The execution of Kruskal’s algorithm on our sample graph.
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The time complexity of Kruskal’s algorithm consists of the time complexity of
first sorting the edges in non-decreasing order and then checking whether we
produce a cycle or not. Sorting can most efficiently be done in O(m log m) =
O(m log n2) = O(m log n) which is achieved by eg. Merge Sort (see e.g. [1]).

The time to detect a cycle depends on the method used for this step. A naive
implementation would look like this. The set F is a any stage of the execution
of the algorithm a forest. In step 3 in the execution of our example F contains
three trees, namely 〈1〉, 〈2, 3, 5〉 and 〈4, 6〉. The subsets defining the trees in the
forest will be denoted F1, F2, . . . , Ff . These can be stored as singly linked lists.
When we want to examine whether inserting (k, l) will create a cycle or not,
we scan through these linked lists and check whether both the vertices k and l
belongs to the same linked list. If that is the case adding (k, l) would produce a
cycle. Otherwise we add edge (k, l) and thereby merge the two lists containing
k and l into one list. This data structure requires O(n) time for each edge we
examine. So the overall time complexity will be O(mn)

A better performance can be achieved using more advanced data structures. In
this way we can get a time complexity of O(m + n log n) plus the time it takes
to sort the edges, all in all O(m log n).

3.3 Prim’s algorithm

The idea of the Prim’s algorithm is to grow the minimum spanning tree from
a single vertex. We arbitrarily select a vertex as the starting point. Then we
iteratively add one edge at a time. We maintain a tree spanning a subset of
vertices S and add a nearest neighbour to S. This is done by finding an edge
(i, j) of minimum cost with i ∈ S and j ∈ S̄, that is, finding an edge of minimum
cost crossing the cut {S, S̄}. The algorithm terminates when S = V .

An initial look at the time complexity before we state the algorithm in pseudo-
code suggests that we select a minimum cost edge n− 1 times, and in order to
find the minimum cost edge in each iteration we must search through all the
m edges, giving in total the cost O(mn). Hence, the bottleneck becomes the
identification of the minimum cost edge.

If we for each vertex adds two pieces of information we can improve the time
complexity:

1. li represents the minimum cost of an edge connecting i and some vertices
in S, and
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2. pi that identifies the other endpoint of a minimum cost edge incident with
vertex i.

If we maintain these values, we can easily find the minimum cost of an edge in
the cut. We simply compute arg min{li : i ∈ S̄}. The label pi identifies the edge
(pi, i) as the minimum cost edge over the cut {S, S̄}, and therefore it should be
added in the current iteration.

In order to maintain updated information in the labels we must update the
values of a label as it is moved from S̄ to S. This reduces the time complexity
of the identification from O(m) to O(n). Thus the total time complexity for
Prim’s algorithm will be O(n2) (see algorithm 3).

Algorithm 3: Prim’s algorithm

Data: A graph G = (V,E) with n vertices and m edges. A source vertex
is denoted r. For each edge (i, j) ∈ E an edge weight wij is given.

Result: An n-vector p the predecessor vertex for i in the minimum
spanning tree.

Q← V1

pr ← 0, lr ← 02

pi ← nil, li ←∞ for i ∈ V \ {r}3

while Q 6= ∅ do4

i← arg minj∈Q{lj}5

Q← Q \ {i}6

for (i, j) ∈ E where j ∈ Q do7

if wij < lj then8

pj ← i9

lj ← wij10

Time complexity depends on the exact data structures, however, the basic im-
plementations with list representation results in a running time of O(n2)

A more advanced implementation make use of the heap data structure. The
“classical” binary heap would give us a time complexity of O(m log n). Further
information can be found in section 3.4.

Figure 3.7 show the execution of Prim’s algorithm on our example graph. Ini-
tially we choose 1 to be the vertex we expand from. Each vertex will get a label
of +∞ except vertex 1 that will get the value 0. So initially vertex 1 is included
in S and the labels of vertex 4 are updated to 4 (due to the edge (1, 4)) and the
label of vertex 2 is also updated to 4 (due to the edge (1, 2)) (a). Now vertex 4
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Figure 3.7: The execution of Prims’s algorithm on our sample graph. We have
choosen vertex 1 to be the initial vertex in the tree. A vertex without a ”dis-
tance” symbolizes a distance of +∞.
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is selected for inclusion into S. The choice between 2 and 4 is actually arbitraty
as both vertices have a label of value 4 (the lowest value of all labels) (b). The
selection of vertex 4 updates the values of vertex 5 and 6 to 3 resp. 2. In the
next step we select vertex 6 and enter it into set S thereby adding the edge
(4, 6) to our solution (c). Next we select vertex 5 which leads to an update of
the label of vertex 3 but also vertex 2 (the value is lowered from 4 to 3) (d). We
then select vertex 3 and update the value of label 2 (e) before finally selecting
vertex 2. Now S = V and the algorithm terminates.

3.4 Supplementary Notes

For more information of sorting and also data structures for an efficient imple-
mentation of the algorithms described in this chapter see [1].

For a description of how the better time complexity can be established for
Kruskal’s algorithm we refer to [2].

There exist different versions of heap data structures with different theoretical
and practical properties (Table 3.1 shows some worst case running times for
Prim’s algorithm depending on the selected data structure). An initial discus-
sion on the subject related to MST can be found in [2].

heap type running time
Binary heap O(m log n)
d-heap O(m logd n)) with d = max{2, m

n
}

Fibonacci heap O(m + n log n)
Johnson’s data structure O(m log log C)

Table 3.1: Running time of Prim’s algorithm depending on the implemented
data structure

Further information on the heap data structure can be found in [1].

3.5 Exercises

1. Construct the minimum spanning tree for the graph in Figure 3.8. Try to
use both Kruskals algorithm and Prims algorithm.

2. An alternative algorithm: Consider the following algorithm for finding
a MST H in a connected graph G = (V,E,w): At each step, consider for
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Figure 3.8: Find the minimum spanning tree for the graph using both Kruskals
and Prims algorithm

each edge e whether the graph remains connected if it is removed or not.
Out of the edges that can be removed without disconnecting the graph
choose the one with the maximum edge cost and delete e from H. Stop if
no edge can be removed without disconnecting the graph.

Show that the algorithm finds an MST of G.

Apply the algorithm to the example of exercise 1.

3. The MiniMax Spanning Tree problem - MMST: Suppose that
rather than identifying a MST wrt. the sum of the edge costs, we want
to minimize the maximum cost of any edge in the tree. The problem is
called the MiniMax Spanning Tree problem.

Prove that every MST is also an MMST. Does the converse hold?

4. The Second-best Minimum Spanning Tree - SBMST: Let G =
(V,E,w) be an undirected, connected graph with cost function w. Suppose
that all edge costs are distinct, and assume that |E| ≥ |V |.

A Second-best Minimum Spanning Tree is defined as follows: Let T
be the set of all spanning trees of graph G, and let T ′ be a MST of G.
Then a second-best minimum spanning tree is a spanning tree T ′′ ∈ T
such that w(T ′′) = minT∈T −{T ′}{w(T )}.

(a) Let T be a MST of G. Prove that there exists edges (i, j) ∈ T and
(k, l) 6∈ T such that T ′ = T − {(i, j)} ∪ {(k, l)} is a second-best
minimum spanning tree of G.
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Hints: (1) Assume that T ′ differs from T by more than two edges,
and derive a contradiction. (2) If we take an edge (k, l) 6∈ T and
insert it in T we make a cycle. What can we say about the cost of
the (k, l) edge in relation to the other edges?

(b) Give an algorithm to compute the second-best minimum spanning
tree of G. What is the time complexity of the algorithm?

5. Cycle detection for Kruskals algorithm. Given an undirected graph.
Describe an O(m + n) time algorithm that detects whether there exists a
cycle in the graph.

6. The end-node problem. ([3]). Suppose that you are given a graph
G = (V,E) and weights w on the edges. In addition you are also give a
particular vertex v ∈ V . You are asked to find the minimum spanning tree
such that v is not an end-node. Explain briefly how to modifya minimum
spaning tree algorithm to solve the same problem efficiently.
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Chapter 4

The Shortest Path Problem

One of the classical problems in Computer Science and Operations Research is
the problem of finding the shortest path between two points. The problem can
in a natural way be extended to the problem of finding the shortest path from
one point to all other points.

There are many applications of the shortest path problem. It is used in route
planning services at different webpages (in Denmark examples are www.krak.dk
and www.dgs.dk) and in GPS units. It is also used in www.rejseplanen.dk,
which generates itineraries based on public transportation in Denmark (here
shortest is with respect to time).

Given a lengthed directed graph G = (V,E). Each of the edges are assigned
a weight (or length or cost) w, which can be positive as well as negative. The
overall network is then denoted as G = (V,E,w). Finally a starting point,
denoted the root or source r is given. We now want to find the shortest paths
from r to all other vertices in V \ {r}. We will later in section 8.1 look at the
situation where we want to calculate the shortest path between any given pair
of vertices. Let us for convenience assume that all lengths are integer.

Note that if we have a negative length cycle in our graph then it does not make
sense to ask for the shortest path in the graph (at least not for all vertices).
Consider Figure 4.1. This graph contains a negative length cycle (〈2, 5, 3, 2〉).
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Although the shortest paths from r = 1 to 7, 8 and 9 are well defined it means
that the shortest paths for the vertices 2, 3, 4, 5, 6 can be made arbitrary short
by using the negative length cycle several times. Therefore the shortest paths
from 1 to each of the vertices are undefined.
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Figure 4.1: An example of a graph G = (V,E,w) with root node 1 with a
negative length cycle 〈2, 5, 3, 2〉

Like with the minimum spanning tree problem efficient algorithms exist for
the problem, but before we indulge in these methods let us try to establish a
mathematical model for the problem.

Let vertex r be the root. For vertex r n−1 paths have to leave r. For any other
vertex v, the number of paths entering the vertex must be exactly 1 larger than
the number of paths leaving the vertex, as the path from 1 to v ends here. Let
xe denote the number of paths using each edge e ∈ E. This gives the following
mathematical model:

min
∑

e∈E

wexe (4.1)

s.t.
∑

e∈V −(r)

xe −
∑

e∈V +(r)

xe = −(n− 1) (4.2)

∑

e∈V −(i)

xe −
∑

e∈V +(i)

xe = 1 i ∈ V \ r (4.3)

xe ∈ Z+ e ∈ E (4.4)
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Let P = 〈v1, v2, . . . , vk〉 be a path from v1 to vk. A subpath Pij of P is then
defined as Pij = 〈pi, pi+1, . . . , pj〉. Now if P is a shortest path from v1 to vk

then any subpath Pij of P will be a shortest path from vi to vj . If not it would
contradict the assumption that P is a shortest path.

Furthermore the subgraph defined by the shortest paths from r to all other
vertices is a tree rooted at r. Therefore the problem of finding the shortest
paths from r to all other nodes is sometimes refereed to as the Shortest Path
Tree Problem. This means that the predecessor the each vertex is uniquely
defined. Furthermore, if G is assumed to be strongly connected the tree is a
spanning tree.

In order to come up with an algorithm for the shortest path problem we define
potentials and feasible potentials.

Consider a vector of size n, that is, one entry for each vertex in the network
y = y1, . . . , yn. This is called a potential. Furthermore, if y satisfies that

1. yr = 0 and

2. yi + wij ≥ yj for all (i, j) ∈ E

then y is called a feasible potential.

Not surprisingly, yj can be interpreted as the length of a path from r to j.
yi + wij is also the length of a path from r to j. It is a path from r to i and
then finally using the arc (i, j). So if yj is equal to the length of a shortest path
from r to j then yj ≤ yi + wij . If the potential is feasible for a shortest path
problem then we have an optimal solution.

4.1 The Bellman-Ford Algorithm

One way to use the definition of potentials in an algorithm is to come up with
an initial setting of the potentials and then to check if there exists an edge (i, j)
where yi + wij < yj . If that is not the case the potential is feasible and the
solution is therefore optimal. On the other hand if there is an edge (i, j) where
yi + wij < yj then potential is not feasible and the solution is therefore not
optimal – there exists a path from r to j via i that is shorter than the one
we currently have. This can be repaired by setting yj equal to yi + wij . Now
this error is fixed and we can again check if the potential is now feasible. We
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r

i

j

Figure 4.2: As the potential in node i reflects the possible length of a path from
r to i and so for node j, the sum yi + wij also represents the length of a path
from node r to j and therefore it makes sense to compare the two values. The
dashed lines represents a path composed of at least one arc.

keep doing this until the potential is feasible. This is Fords algorithm for the
shortest path problem as shown more formally in algorithm 4. The operation
of checking and updating yj is in many text books known as “correcting” or
“relaxing” (i, j).

As the potentials always have to be an upper bound on the length of the shortest
path we can use yr = 0 and yi = +∞ for i ∈ V \ {r} as initial values.

Algorithm 4: Ford’s algorithm

Data: A distance matrix W for a digraph G = (V,E). If the edge
(i, j) ∈ E the wij equals the distance from i to j, otherwise
wij = +∞

Result: Two n-vectors, y and p, containing the length of the shortest
path from 1 to i resp. the predecessor vertex for i on the path
for each vertex in {1, ..., n}

yr ← 0, yi ←∞ for all other i1

pr ← 0, pi ← Nil for all other i2

while an edge exists (i, j) ∈ E such that yj > yi + wij do3

yj ← yi + wij4

pj ← i5

Note that no particular sequence is required. This is a problem if the instance
contains a negative length circuit. It will not be possible to detect the negative
length cycle and therefore the algorithm will never terminate, so for Fords algo-
rithm we need to be aware of negative length circuits, as these may lead to an
infinite computation. A simple solution that quickly resolves the deficiency of
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Fords algorithm is to use the same sequence for the edges in each iteration. We
can be even less restrictive. The extension from Ford’s algorithm to Bellman-
Ford’s algorithm is to go through all edges and relax the necessary ones before
we go through the edges again.

Algorithm 5: Bellman-Ford Algorithm

Data: A distance matrix W for a digraph G = (V,E) with n vertices. If
the edge (i, j) ∈ E the wij equals the distance from i to j,
otherwise wij = +∞

Result: Two n-vectors, y and p, containing the length of the shortest
path from r to i resp. the predecessor vertex for i

yr ← 0; yi ←∞ for i ∈ V \ {r}1

pr ← 0; pi ← Nil for i ∈ V \ {r}2

k ← 03

while k < n and ¬(y feasible) do4

k ← k + 15

foreach (i, j) ∈ E do /* correct (i, j) */6

if yj > yi + wij then7

yj ← yi + wij8

pj ← i9

Note that in step 6 in the algorithm we run through all edges in the iteration.

The time complexity can be calculated fairly easy by looking at the worst case
performance of the individual steps of the algorithm. The initialization (1-2) is
O(n). Next the outer loop in step 3 is executed n−1 times each time forcing the
inner loop in step 4 to consider each edge once. Each individual inspection and
prospective update can be executed in constance time. So step 4 takes O(m)
and this is done n− 1 times so all in all we get O(nm).

Proposition 4.1 (Correctness of Bellman-Ford’s Algorithm) Given a connected,
directed graph G = (V,E,w) with a cost function w : E → R and a root r The
Bellman-Ford’s algorithm produces a shortest path tree T .

Proof: The proof is based on induction. The induction hypothesis is: In itera-
tion k, if the shortest path P from r to i has ≤ k edges, then yi is the length of
P .

For the base case k = 0 the induction hypothesis is trivially fulfilled as yr = 0 =
shortest path from r to r.
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For the inductive step, we now assume that for any shortest path from r to i
with less than k edges yi is the length of the path, ie. the length of the shortest
path. In the k’th iteration we will perform a correct on all edges.

Given that the shortest path from r to l consist of k edges Pl = 〈r, v1, v2, . . . , vk−1, l〉
due to our induction hypothesis we know the shortest path from r to v1, v2, . . . , vk−1.
In the k’th iteration we perform a correct operation on all edges we specifically
also correct the edge (vk−1, l). This will establish the shortest path from r to l
and therefore yvi

= shortest path from r to l.

If all distances are non-negative, a shortest path containing at most (n − 1)
edges exists for each i ∈ V . If negative edge lengths are present, the algorithm
still works. If a negative length circuit exists, this can be discovered by an extra
iteration in the main loop. If any y values are changed in the n’th iteration it
indicates that at least one shorter path has been established. But with as the
graph contains n vertices a simple path can at most contain n − 1 edges, and
therefore no changes should be made in the n’th iteration. △

4.2 Shortest Path in Acyclic graphs

Before we continue with the general case let us make a small detour and look at
the special case of an acyclic graph. In case the graph is acyclic we can solve the
Shortest Path problem faster. Recall that an acyclic graph is a directed graph
without (directed) cycles.

In order to be able to reduce the running time we need to sort the vertices that
we will check in a specific order. A topological sorting of the vertices is a
numbering N : V 7→ {1, ..., n} such that for any (v, w) ∈ V : N(v) < N(w).

10
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4
14 -2

3
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4

1

Figure 4.3: An acyclic graph

The topological sorting of the vertices of the graph in Figure 4.3 is 1, 2, 5, 4, 6, 3.
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As vertex 1 is the only vertex with only outgoing edges it will consequently
be the first edge in the sorted sequence of vertices. If we look at vertex 5, it is
placed after vertices 1 and 2 as it has two incoming edge from those two vertices.

Algorithm 6: Shortest path for acyclic graph

Data: A topological sorting of v1, ..., vn

y1 ← 0, yv ←∞1

p1 ← 0, pv ← Nil for all other v2

for i← 1 to n− 1 do3

foreach j ∈ V +(vi) with yj > yvi
+ wvij do4

yj ← yvi
+ wvij5

pj ← vi6

Let us assume we have done the topological sorting. In algorithm 6 each edge
is considered only once in the main loop due to the topological sorting. Hence,
the time complexity is O(m).
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Figure 4.4: The execution of the acyclic algorithm on our sample graph.
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A topological sorting of the vertices in an acyclic graph can be achieved by the
algorithm below. Note that if the source vertex is not equal to the first vertex
in the topological sorting it means that some vertex cannot be reached from the
source vertex and will remained labeled with distance +∞.

Algorithm 7: Topological sorting

Data: An acyclic digraph G = (V,E)
Result: A numbering N of the vertices in V so for each edge (i, j) ∈ E it

holds that Nv < Nw

start with all edges being unmarked1

Nv ← 0 for all v ∈ V2

i← 13

while i ≤ n do4

find v with all incoming edges marked5

if no such v exists then6

STOP7

Nv ← i8

i← i + 19

mark all (v, w) ∈ E10

Now with the time complexity of O(m) the overall time complexity of finding
the shortest path in an acyclic graph becomes O(m).

4.3 Dijkstra’s Algorithm

Now let us return to a general (lengthed) directed graph. We can improve
the time complexity of the Bellman-Ford algorithm if we assume that all edge
lengths are non-negative. This assumption makes sense in many situations;
for example, if the lengths are road distances, travel times, or travelling costs.
Even though we could still use Bellman-Ford’s algorithm Dijkstra’s algorithm –
named after its inventor, the Dutch computer scientist Edgar Dijkstra – utilizes
the fact that the edges have non-negative lengths to get a better running time.
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Algorithm 8: Dijkstra’s algorithm

Data: A digraph G = (V,E) with n vertices and m edges. A source
vertex is denoted r. For each edge (i, j) ∈ E an edge weight wij is
given. Note: wij ≥ 0.

Result: Two n-vectors, y and p, containing the length of the shortest
path from r to i resp. the predecessor vertex for i on the path
for each vertex in {1, ..., n}.

S ← {r}, U ← ∅1

pr ← 0, yr ← 02

pi ← Nil, yi ←∞ for i ∈ V \ {r}3

while S 6= ∅ do4

i← arg minj∈S{yj}5

for j ∈ V \ U ∧ (i, j) ∈ E do6

if yj > yi + wij then7

yj ← yi + wij8

pj ← i9

S ← S \ {i}; U ← U ∪ {i};10

An example of the execution of Dijkstras algorithm is shown in Figure 4.5.
Initially all potentials are set to +∞ except the potential for the source vertex
that is set to 0. First the source vertex will be selected and we relax all outgoing
edges of vertex 1, that is, the edges (1, 2) and (1, 3). This results in updating y2

and y3 to 1 resp. 2. In the second step vertex 2 is selected, thereby determining
edge (1, 2) as part of the shortest path solution. All outgoing edges are inspected
and we relax (2, 7) but not (2, 3) as it is more expensive to get to vertex 3 via
vertex 2. In step 3 vertex 3 is selected making edge (1, 3) path of the solution.
In step 4 vertex 4 is chosen. This adds (3, 4) to the shortest path tree and finally
in step 5 we add vertex 5 and thereby (4, 5) to the solution.
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Figure 4.5: The execution of Dijkstra’s algorithm on a small example directed
graph. Vertex 1 is source vertex. A vertex without a ”distance” symbolizes a
distance of ∞
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Note that this algorithm is very similar to Prim’s algorithm for the MST (see
section 3.3). The only difference to Prim’s algorithm is in fact the update step
in the inner loop, and this step takes – like in the MST algorithm – O(1) time.
Hence the complexity of the algorithm is O(n2) if a list representation of the y
vector is used, and a complexity of O(mlogn) can be obtained if the heap data
structure is used instead.

Theorem 4.2 (Correctness of Dijkstras Algorithm) Given a connected, directed
graph G = (V,E,w) with length function w : E → R+ and a root node r. The
Dijkstra algorithm will produce a shortest path tree T rooted at r.

Proof: The proof is made by induction. The induction hypothesis is that before
an iteration it holds that for each vertex i in U , the shortest path from the source
vertex r to i has been found and is of length yi, and for each vertex i not in U ,
yi is the shortest path from r to i with all vertices except i belonging to U .

As U = ∅ this is obviously true initially. Also after the first iteration where
U = {r} the assumption is true. (check for yourself)

Let v be the element with the smallest y value selected in the inner loop of
iteration k, that is, yv ≤ yu for all u ∈ S. Now yv is the length of a path Q from
r to v passing only through vertices in U (see Figure 4.6).

Suppose that this is not the shortest path from r to v – then another path R
from r to v is shorter.

R

Q
v

wu

r

Figure 4.6: Proof of the correctness of the Dijkstra algorithm

Consider path R. R starts in r, which is in U . Since v is not in P , R has at
least one edge from a vertex in P to a vertex not in P . Let (u,w) be the first



4.4 Relation to Duality Theory 55

edge of this type. The vertex w is a candidate for vertex choice in the inner loop
in the current iteration, but was discarded as v was picked. Hence yw ≥ yv. All
edge lengths are assumed to be non-negative, therefore the length of the part of
R from w to v is non-negative, and hence the total length of R is at least the
length of Q. This is a contradiction – hence Q is a shortest path from r to v.
Furthermore, the update step in the inner loop ensures that after the current
iteration it again holds for u not in P (which is now the “old” P augmented
with v) that yu is the shortest path from from r to u with all vertices except u
belonging to P . △

4.4 Relation to Duality Theory

From our approach solving the Shortest Path Problem using potentials it is not
evident that there is a connection to our mathematical model (4.1) - (4.4). It
would seem like the model and our solution approaches are independent ways
of looking at the problem. In fact, they have a great deal in common, and in
this section we will elaborate more on that.

A classical result (dating back to the mid 50’s) is that the vertex-edge incidence
matrix of a directed graph is totally unimodular. This means that the deter-
minant of each square submatrix is equal to 0, 1 or −1. Since right-hand sides
are integers it implies that all positive variables in any basic feasible solution to
such problems automatically take integer values.

This means that the integer requirement in our model (4.4) can be relaxed to

xe ≥ 0 e ∈ E. (4.5)

Now our shortest path problem is actually an LP problem.

Let us now construct the dual. Let yi be the dual variable for constraint i. The
dual to the shortest path problem then becomes:

max −(n− 1)yr +
∑

i6=r yi (4.6)

s.t. yj − yi ≤ wij (i, j) ∈ E (4.7)

yi free (4.8)
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Let us look at the primal and dual problem of the instance in Figure 4.7 with
r = 1. The dual variables y1, y2, . . . , y5 are associated with the five vertices in
the graph. The primal and dual problems are conveniently set up in Table 4.1.

1

4

7

 1

2

3

5

4

1

6

5

4

Figure 4.7: An example

Edges (1, 2) (1, 4) (2, 5) (4, 2) (4, 3) (5, 3) (5, 4) rel RHS
Variables x12 x14 x25 x42 x43 x53 x54

y1 −1 −1 = −4
y2 1 −1 1 = 1
y3 1 1 = 1
y4 1 −1 −1 1 = 1
y5 1 −1 −1 = 1

relation ≤ ≤ ≤ ≤ ≤ ≤ ≤
wij 4 7 6 1 4 5 1

Table 4.1: Derivation of primal and dual LP problem

For this instance the dual objective can be read from the RHS column and the
columns of the primal (one for each edge) constitute the constraints, so we get:

max −4y1 + y2 + y3 + y4 + y5 (4.9)

s.t. y2 − y1 ≤ 4 (4.10)

y4 − y1 ≤ 7 (4.11)

...
... (4.12)

y4 − y5 ≤ 1 (4.13)

y1, y2, . . . , y5 free (4.14)
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It can easily be shown that the dual problem is determined up to an arbitrary
constant. We can therefore fix one of the dual variables, and here we naturally
choose to fix yr = 0.

Central in LP theory is that all simplex-type algorithms for LP can be viewed
as interplay between primal feasibility, dual feasibility and the set of comple-
mentary slackness conditions (CSC). In our case CSC will be:

(yi + wij − yj)xij = 0 (i, j) ∈ E (4.15)

CSC must be fullfilled by a pair of optimal solutions for the primal resp. dual
problem. The predecessor variables p can be seen as representing the primal
variables x in our model. If pj = i this implies that xij > 0 in the model.

Initially our algorithm start by setting pi equal to Nil, basically stating that
all xij ’s are zero. So the CSC holds initially. Now in an iteration of any one of
our methods for solving the shortest path problem we find an edge to correct,
that is, we find a invalid constraint in our dual model. Then we set yj equal
to yi + wij and change the predecessor, which corresponds to setting xij to a
non-negative value. CSC was fullfilled before and after the operations it still
holds.

So in essence, what our algorithm do is to maintain primal feasibility and CSC,
and trying to obtain dual feasibility. When dual feasibility is obtained we have
primal and dual feasibility, and CSC. Now fundamental LP theory tells us that
theses solutions are optimal as well.

4.5 Applications of the Shortest Path Problem

Now we will look at some interesting applications of the shortest path problem.
However note that we may not be able to use Dijkstra’s algorithm in solutions
to some of these applications as the graphs involved may have negative edge
lengths.
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Figure 4.8: A graph to solve the currency conversion problem. Currencies are
taken from www.xe.com at 11:17 on February 16th 2007.

The currency conversion problem

Consider a directed graph G = (V,E) where each vertex denotes a currency.
We want to model the possibilities of exchanging currency in order to establish
the best way to go from one currency to another.

If 1 unit of a currency u can buy ruv units of another currency v we model it
by an edge of weight − log ruv from u to v (see Figure 4.8).

If there is a path P = 〈c1, c2, . . . , cl〉 from vertex c1 to cl, the weight of the path
is given by

w(P ) =
∑l−1

i=1 wcici+1

=
∑l−1

i=1− log rcici+1

= − log
∏l−1

i=1 rcici+1

So if we convert currencies along the path P , we can convert n units of currency
x to ne−wP units of currency y. Thus, the best way to convert x to y is to
do it along the shortest path in this graph. Also, if there is a negative cycle
in the graph, we have found a way to increase our fortune by simply making a
sequence of currency exchanges.
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Difference constraints

While we in general rely on the simplex method or an interior point method to
solve a general linear programming problem, there are special cases that can be
treated more efficient in another way.

In this section, we investigate a special case of linear programming that can be
reduced to finding shortest paths from a single source. The single-source shortest
path problem can then be solve using the Bellman-Ford algorithm, thereby also
solving the linear programming problem.

Now sometimes we don’t really care about the objective function; we just wish
to find an feasible solution, that is, any vector x that satisfies the constraints
(Ax ≤ b), or to determine that no feasible solution exists.

In a system of difference constraints each row of A contains exactly one 1, one
−1 and the rest 0’s. Thus, each of the constraints can be written on the form
xj − xi ≤ bk. An example could be:

x1 − x2 ≤ −3
x1 − x3 ≤ −2
x2 − x3 ≤ −1
x3 − x4 ≤ −2
x2 − x4 ≤ −4

This system of three constraints has a feasible solution, namely x1 = 0, x2 =
3, x3 = 5, x4 = 7.

Systems of difference constraints occur in many different applications. For exam-
ple, the variables xi may be times at which events are to occur. Each constraint
can be viewed as stating that there must be at least/most certain amount of
time (bk) between two events.

Another feasible solution to the system of difference constraints above is x1 =
5, x2 = 8, x3 = 10, x4 = 12. In fact, we have:

Theorem 4.3 Let x = (x1, x2, . . . , xn) be a feasible solution to a system of
difference constraints, and let d be any constant. Then x + d = (x1 + d, x2 +
d, . . . , xn + d) is a feasible solution to the system of difference constraints as
well.

Proof: Look at the general for of a constraint:

xj − xi ≤ bk
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Figure 4.9: The graph representing our system of difference constraints.

If we insert xj + d and xi + d instead of xj and xi we get

(xj + d)− (xi + d) = xj − xi ≤ bk

So if x satisfies the constraints so does x + d.△

The system of constraints can be viewed from a graph theoretic angle. If A is
an m×n matrix then we represent it by a graph with n vertices and m directed
edges. Vertex vi will correspond to variable xi, and each edge corresponds to
one of the m inequalities involving two unknowns. Finally, we add a vertex v0

and edges from v0 to every other vertex to guarantee that every other vertex is
reachable. More formally we get a set of vertices

V = {v0, v1, . . . , vn}

and

E = {(vi, vj) : xj − xi ≤ bk is a constraint} ∪ {(v0, v1), (v0, v2), . . . (v0, vn)}

Edges of the type (v0, vi) will get the weight 0, while the edges (vi, vj) get a
weight of bk. The graph of our example is shown in Figure 4.9

Theorem 4.4 Given a system Ax ≤ b of difference constraints. Let G be the
corresponding constraint graph constructed as described above vertex 0 being the
root. If G contains no negative weight cycles, then

x1 = y1, x2 = y2, . . . , xn = yn
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is a feasible solution to the system. Here yi is the length of the shortest path
from 0 to i.

Proof: Consider any edge (i, j) ∈ E. By the triangle inequality, yj ≤ yi + wij ,
or equivalently yj − yi ≤ wij . Thus letting xi = yi and xj = yj satisfies the
difference constraint xj − xi ≤ wij that corresponds to edge (i, j). △

Theorem 4.5 Given a system Ax ≤ b of difference constraints. Let G be the
corresponding constraint graph constructed as described above vertex 0 being the
root. If G contains a negative weight cycle then there is no feasible solution for
the system.

Proof: Suppose the negative weight cycle is 〈1, 2, . . . , k, 1〉. Then

x2 − x1 ≤ w12

x3 − x2 ≤ w23

...
xk − xk−1 ≤ wk−1,k

x1 − xk ≤ wk1

Adding left hand sides together and right hand sides together results in 0 ≤
weight of cycle, that is, 0 < 0. That is obviously a contradiction. △

A system of difference constraints with m constraints and n unknowns produces
a graph with n + 1 nodes and n + m edges. Therefore Bellman-Ford will run in
O(n + 1)(n + m)) = O(n2 + nm). In [1] it is established that you can achieve a
time complexity of O(nm).

Using the Bellman-Ford algorithm we can now calculate the following solution
x1 = −7, x2 = −4, x3 = −2, x4 = 0. By adding 7 to all variables we get the first
solution we saw.

Swapping applications in a daily airline fleet assignment

Brug Talluris artikel som har brug for korteste vej som endnu et eksempel p̊a
brugen af korteste vej. [6] er nummer 832 i mit paper-bibliotek.
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4.6 Supplementary Notes

A nice exposition to the relationship between the shortest path problem and LP
theory can be found in [3]. The section on the subject in these notes are based
on that text.

More information about totally unimodular (TU) matrixes can be found in [4].
Besides TU there exists other classes of matrices, Balanced and Perfect, that
also have the same integer property. More information on those can be found
in [5].

4.7 Exercises

1. Use Dijkstra’s algorithm to find the solution the shortest paths from vertex
1 to all other vertices in the graph in Figure 4.10.

Afterwards verify the result by constructing the shortest path integer pro-
gramming model for the graph. Solve it in your MIP solver. What happens
if we relax the integrality constraint and solve it using an LP solver?

Also verify the potentials by establishing the dual problem and solve it in
your LP solver.

2. Given two vertices i and j. Is the path between i and j in a minimum
spanning tree necessarily a shortest path between the two vertices? Give
a proof or counterexample.

3. You are employed in a consultancy company dealing mainly with rout-
ing problems. The company has been contacted by a customer, who is
planning to produce a traffic information system. The goal of the system
is to be able to recommend the best path between two destinations in a
major city taking into account both travel distance and time. The queries
posed to the system will be of the type “what is the shortest path (in kilo-
meters) from Herlev to Kastrup, for which the transportation time does
not exceed 25 minutes?” You have been assigned the responsibility of the
optimization component of the system.

As a soft start on the project, you find different books in which the usual
single source shortest path problem is considered.

(a) Apply Dijkstra’s algorithm to the digraph in Figure 4.11 and show
the resulting values of y1, . . . , y4 and the corresponding shortest path
tree.
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Figure 4.10: Find the shortest paths from the source vertex 1 to all other vertices

(b) The Shortest Path Problem can be formulated as a transshipment
problem, in which the source has capacity 4 and each other vertex is
a demand vertex with demand 1. State the problem corresponding
to the digraph in Figure 4.11 and compute the vertex potentials with
the shortest path tree found in question (a) as basis tree. Using the
potentials, show that the distances determined in question (a) are
not the correct shortest distances. Then find the correct distances
(and correct shortest path tree) using i) Bellman-Ford algorithm for
shortest paths; ii) the transshipment algorithm as described in chap-
ter 7.

(c) For the sake of completeness, you decide also to look at all-to-all
shortest path algorithms. You apply the algorithm of Floyd-Warshall.

Show the first iteration of the algorithm for the graph of Figure 4.11.

(d) As indicated one can use Dijkstra’s algorithm repeatedly to solve the
all-pairs-shortest path problem – given that the graph under consid-
eration has non-negative edge costs.

In case G does not satisfy this requirement, it is, however, possible
to change the cost of the edges so all costs become non-negative and
the shortest paths with respect to the new edge costs are the same as
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Figure 4.11: Digraph with source vertex s

those for the old edge costs (although the actual lengths of the paths
change). The method is the following:

An artificial vertex K is added to G, and for each vertex v in G, an
edge of cost 0 from K to v is added, cf. Figure 4.12, which illustrates
the construction for the digraph of Figure 4.11.

The shortest path from K to each vertex i ∈ V is now calculated
– this is denoted πi. The new edge lengths w′

ij are now defined by
w′

ij = wij + πi − πj .

Which shortest path algorithm would you recommend for finding the
shortest paths from K to the other vertices, and why? Show the
application of this algorithm on the digraph of Figure 4.12.

(e) Explain why it holds that w′
ij is non-negative for all i, j ∈ V , such

that Dijkstra’s algorithm may now be applied to G with the modified
edge costs.

Present an argument showing that for all s, t ∈ V , the shortest s-t
path with respect to the original edge costs wij , v, w ∈ V is also the
shortest s-t path with respect to the modified edge costs w′

ij .

(f) You are now in possession of two all-to-all shortest path algorithms:
The Floyd-Warshall algorithm, and the repeated application of Di-
jkstra’s algorithm once per vertex of the given graph. What is the
computational complexity for each of the methods? For which graphs
would you recommend Floyd-Warshall’s algorithm, and for which
would you use |V| applications of Dijkstra’s algorithm?
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Figure 4.12: Digraph with additional vertex K and with 0-length edges added.
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Chapter 5

Project Planning

The challenging task of managing large-scale projects can be supported by two
Operations Research techniques called PERT (Program Evaluation and Review
Technique) and CPM (Critical Path Method). These techniques can assist the
project manager in breaking down the overall project into smaller parts (called
activities or tasks), coordinate and plan the different activities, develop a real-
istic schedule, and finally monitor the progress of the project.

The methods were developed independently of each other in the late 50’s and the
original versions of PERT and CPM had some important differences, but are now
often used interchangeably and are combined into one acronym: PERT/CPM.
In fact PERT was developed in 1958 to help measure and control the progress
of the Polaris Fleet Ballistic Missile program for the US Navy. Around the same
time the American chemical company DuPont was using CPM to manage its
construction and repair of factories.

Today project management software based on these methods are widely available
in many software packages such as eg. Microsoft Projects.

PERT/CPM has been used for many different projects including:

1. Construction of a new building or road.
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2. Movie productions.

3. Construction of IT-systems.

4. Ship building.

5. Research and development of a new product.

The role of the project manager in project management is one of great re-
sponsibility. In the job one needs to direct and supervise the project from the
beginning to the end. Some of the roles are:

1. The project manager must define the project, reduce the project to a set
of manageable tasks, obtain appropriate and necessary resources.

2. The project manager must define the final goal for the project and must
motivate the workers to complete the project on time.

3. A project manager must have technical skills. This relates to financial
planning, contract management, and managing innovation and problem
solving within the project.

4. No project ever goes 100% as planned. It is the responsibility of the project
manager to adapt to changes such as reallocation of resources, redefining
activities etc.

In order to introduce the techniques we will look at an example. As project
manager at for GoodStuff Enterprises we have the responsibility for the devel-
opment of a new series of advanced intelligent toys for kids called MasterBlaster.
Based on a preliminary idea top management has given us green light to a more
thorough feasibility study. As the toy should be ready before the Christmas sale
we have been asked to investigate if we can finish the project within 30 weeks.

The tasks that needs to be carried out during the project is broken down into
a set of individual “atomic” tasks called activities. For each activity we need
to know the duration of the activity and its immediate predecessors. For the
MasterBlaster project the activities and their data can be seen in Table 5.1.

5.1 The Project Network

As project managers we first and foremost would like to get a visualization of
the project that reveal independencies and the overall “flow” of the project. As
the saying goes one picture is worth a thousand words.
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Activity Description Immediate Duration
predecessor (weeks)

A Product design – 10
B Market research – 4
C Production analysis A 8
D Product model A 6
E Marketing material A 6
F Cost analysis C 5
G Product testing D 4
H Sales training B, E 7
I Pricing F, H 2
J Project report F, G, I 3

Table 5.1: Activities in project MasterBlaster

The first issue we will look at is how to visualize the project flow, that is, how
do we visualize the connection of the different tasks in the project and their
relative position in the overall plan.

Project networks consist of a number of nodes and a number of arcs. Since the
first inventions of the project management methods PERT and CPM there have
been two alternatives for presenting project networks:

AOA (Activity-on-arc): Each activity is represented as a an arc. A node is
used to separate an activity from each of its immediate predecessors.

AON (Activity-on-node: Each activity is represented by a node. The arcs
are used to show the precedence relationships.

AON have generally been regarded as considerably easier to construct than
AOA. AON is also seen as easier to revise than AOA when there are changes
in the network. Furthermore AON are easier to understand than AOA for
inexperienced users. Let us look at the differences on a small example. In Table
5.2 we have a breakdown of a tiny project into activities (as duration is not
important for visualizing the project it is omitted here).

First we build a flow network as an AON network. In an AON network nodes
are equal to activities and arcs will represent precedence relations. Note that
this will result in a acyclic network (why?). In order to start the process two
“artificial” activities “St” (for start) and “Fi” (for finish) are added. St is the
first activity of the project and Fi is the final activity of the project.

We start of by drawing the nodes St, A, B, C, D, and Fi. Now for each prede-
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Activity Immediate
predecessor

A –
B –
C A, B
D B

Table 5.2: A breakdown of activities for a tiny project

cessor relation we draw an arc, that is, we draw an arc (A,C), a (B,C) arc and
a (B,D) arc. As A and B do not have any predecessors we introduce an (St,A)
arc and an (St,B) arc. Finally we introduce a (C,F i) arc and a (D,Fi) arc as
they do not occur as predecessors to any activity. We have now constructed an
AON network representation of our small example shown in Figure 5.1

A

B

C

D

St Fi

Figure 5.1: An AON network for our little example

Where the activities are represented by nodes in the AON network they are
represented by arcs in an AOA network. The nodes merely describes an “state
change” or a checkpoint. In the small example we need to be able to show that
whereas activity C is preceded by A and B, D is only preceded by B. The only
way to do this is by creating a “dummy” activity d, and we then get the network
as shown in Figure 5.2

Although the AOA network is more compact than the AON network the prob-
lem with the AOA network is the use of dummy activities. The larger and more
complex the project becomes the more dummy activities will have to be intro-
duced to construct the AOA network, and these dummy activities will blur the
picture making it harder to understand.

We will therefore focus on AON networks in the following as they are more
intuitive and easy to construct and comprehend.

Let us construct the project network for our MasterBlaster project. We begin
by making the start node (denoted St). This node represents an activity of zero
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St Fi

A

B

C

D
d

Figure 5.2: An AOA network for out little example

duration that starts the project. All nodes in the project that do not have an
immediate predecessor will have the start node as their immediate predecessor.
After the St node the nodes A and B, an arc from St to A, and one from St to B
are generated. This is shown in Figure 5.3 where the duration of the activities
are indicated next to the nodes.

Figure 5.3: Start building the project network by making the start node and
connecting nodes that does not have an immediate predecessor to the start node.
In this case it is node A and B.

Then we make the nodes for activities C, D and E and making an arc from A
to each of these nodes. This way we continue to build the AON network. After
having made node J and connected it to activities F and I, we conclude the
construction of the project network by making the finish node, Fi. All activities
that are not immediate predecessor to an activity is connected to Fi. Just as
the start node the finish node represents an imaginary activity of duration zero.
For our MasterBlaster project the project network is shown in Figure 5.4.

In relation to our project a number of questions are quite natural:
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Figure 5.4: A AON network of our MasterBlaster project. The duration of the
individual activities are given next to each of the nodes.

• What is the total time required to complete the project if no delays occur?

• When do the individual activities need to start and finish (at the latest)
to meet this project completion time?

• When can the individual activities start and finish (at the earliest) if no
delays occur?

• Which activities are critical in the sense that any delay must be avoided
to prevent delaying project completion?

• For other activities, how much delay can be tolerated without delaying
the project completion?
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5.2 The Critical Path

A path through a project network starts at the St node, visits a number of
activities, and ends at the Fi node. Such a path cannot contain a cycle. An
example of a path is 〈St,A,C, F, J, F i〉. The MasterBlaster project contains a
total of 5 paths which are enumerated below:

〈St,A,C, F, J, F i, 〉
〈St,A,C, F, I, J, F i〉
〈St,A,D,G, J, F i〉
〈St,A,E,H, I, J, F i〉
〈St,B,H, I, J, F i〉

To each of the paths we assign a length, which is the total duration of all activities
on the path if they where executed with no breaks in between. The length of a
path is calculated by adding the durations of the activities on the path together.
For the first path 〈St,A,C, F, J, F i〉 we get 10 + 8 + 5 + 3 = 26. Below we have
listed all paths and their length.

〈St,A,C, F, J, F i〉 26
〈St,A,C, F, I, J, F i〉 28
〈St,A,D,G, J, F i〉 23
〈St,A,E,H, I, J, F i〉 28
〈St,B,H, I, J, F i〉 16

The estimated project duration equals the length of the longest path through
the project network. The length of a path identifies a minimum time required
to complete the project. Therefore we cannot complete a project faster than
the length of the longest path.

This longest path is also called the critical path. Note that there can be more
than one critical path if several paths have the same maximum length. If we run
a project we must be especially careful about keeping the time on the activities
on a critical path. For the other activities there will be some slack, making it
possible to catch up on delays without forcing a delay in the entire project.

In the case of our MasterBlaster project there are in fact two critical paths,
namely: 〈St,A,C, F, I, J, F i〉 and 〈St,A,E,H, I, J, F i〉 with a length of 28
weeks. Thus the project can be completed in 28 weeks, two weeks less than
the limit set by top management.
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5.3 Finding earliest start and finish times

As good as it is to know the project duration it is necessary in order to con-
trol and manage a project to know the scheduling of the individual activities.
The PERT/CPM scheduling procedure begins by determining start and finish
time for the activities. They need to start and end maintaining the calculated
duration of the project. No delays means that

1. actual duration equals estimated duration, and

2. each activity begins as soon as all its immediate predecessors are finished.

For each activity i in our project we define:

• ESi as the earliest start for activity i, and

• EFi to be Earliest finish for activity i

Let us denote the duration of activity i as di. Now clearly EFi can be computed
as ESi + di.

ES and EF is computed in a top down manner for the project graph. Initially
we assign 0 to ESst and EFst. Now we can set ESA and ESB to 0 as they
follow immediately after the start activity. EFA must then be 10, and EFB 4.
In the same way earliest start and finish can easily be computed for C, D and E
based on an earliest start of 10 (as this is the earliest finish of their immediate
predecessor, activity A). Activities F and G can be computed now that we know
the earliest finish of their immediate predecessors.

When we need to compute ES and EF for activity H we need to apply the
Earliest Start Time Rule. It states that the earliest start time of an activity is
equal to the largest of the earliest finish times of its immediate predecessors, or

ESi = max{EFj : j is an immediate predecessor of i}

Applying this rule for activity H means that ESH = max{EFB,EFE} = max{4, 16} =
16 and then EFH = 23. We continue this way from top to bottom computing
ES and EF for activities. The values for the project can be seen in Figure 5.6
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Figure 5.5: A AON network of our MasterBlaster project with earliest start and
finish times.

5.4 Finding latest start and finish times

The latest start time for an activity i is the latest possible time that the activity
can start without delaying the completion of the project. We define:

• LSi to be the latest start time for activity i, and

• LFi to be latest finish time for for activity i.

Obviously LSi = LFi − di.
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Figure 5.6: A AON network of our MasterBlaster project with earliest start and
finish times.

We want to compute LS and LF for each of the activities in our problem. To
do so we use a bottom up approach given that we have already established the
completion time of our project. This automatically becomes then latest finish
time of the finish node. Initially LSfi and LFfi is set to 28.

Now LS and LF for activity J is computed. Latest finish time must be equal
to the latest start time of the successor which is the finish activity. So we get
LSJ = 28 and LFJ = 25. Again LS and LF for activity I can easily be calculated
as it has a unique successor. So we get LSI = 25 and LFI = 23. For activity F
we need to take both activity I and J into consideration. In order to calculate
the latest finish time we need to use the Latest Finish Time Rule, which states
that the latest finish time of an activity is equal to the smallest of the latest
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start times of its immediate successors, or

LFi = min{LSj : j is an immediate successor of i}

because activity i has to finish before any of its successors can start.

With this in mind we can now compute LFF = min{LSI ,LSJ} = min{23, 25} =
23 and LSF will therefore be 18. In the same way the remaining latest start
and finish times can be calculated. For the MasterBlaster project we get the
numbers in Figure 5.7.

Figure 5.7: A AON network of the MasterBlaster project with latest start and
finish times.
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In Figure 5.8 the latest and earliest start and finish times are presented in one
figure. These quite simple measures are very important in handling a project.

Figure 5.8: A AON network of the MasterBlaster project with earliest and latest
start and finish times.

When we eg. look at activity G we can see that the project can start as early as
week 16 but even if we start as late as in week 21 we can still finish the project
on time. On the contrary activity E has to be managed well as there is no room
for delays. It will cause a knock-on effect and thereby delay the entire project
it activity E gets delayed.

We can in fact for each of the activities compute the slack. The slack for an
activity is defined as the difference between its latest finish time and its earliest
finish time. For our projects the slacks are given in Table 5.3

An activity with a positive slack has some flexibility: it can be delayed (up to
a certain point) and not cause a delay of the entire project.
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Slack Activities
0 A, C, E, F, H, I, J
pos. B, D, G

Table 5.3: The slacks for the MasterBlaster project. The main issue is to know
whether the slack is zero or positive.

Note that each activity with zero slack is on a critical path through the project
network. Any delay for an activity along this path will delay project completion.
Therefore through the calculation of the slacks the project manager now has a
clear identification of activities that needs his utmost attention.

5.5 Considering Time-Cost trade-offs

Once we have identified the critical path and the timing on the activity the next
question is if we can shorten the project. This is often done in order to finish
within a certain deadline. In many building projects there are incentives made
by the developer to encourage the builder to finish before time.

Crashing an activity refers to taking (costly) measures to reduce the duration
of an activity below its normal time. This could be to use extra manpower or
using more expensive but also more powerful equipment. Crashing a project
refers to crashing a number of activities in order to reduce the duration of the
project below its normal time. Doing so we are targeting a specific time limit
and we would like to reach this time limit in the least cost way.

In the most basic approach we assume that the crashing cost is linear, that is,
for each activity the cost for each unit of reduction in time is constant. The
situation is shown in Figure 5.9.

Top management reviews our project plan and comes up with a offer. They
think 28 weeks will make the product available very late in comparison with the
main competitors. They offer an incentive of 40000 Euros if the project can be
finish in 25 weeks or earlier.

Quickly we evaluate every activity in our project to estimate the unit cost of
crashing each activity and by how much we can crash each of the activities. The
numbers for our project is shown in Figure 5.4.

Now based on these figures we can look at the problem of finding the least cost
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Figure 5.9: Crashing an activity

way of reducing the project duration from the current 28 weeks to 25 weeks.

One way is the Marginal Cost Approach. The Marginal Cost Approach was
developed in conjunction with the early attempts of project management. Here
we use the unit crash cost to determine a way of reducing the project duration
by 1 week at a time. The easiest way to do this is by constructing a table like
the one shown in Table 5.5.

As the table clearly demonstrates, a weakness of the method is that even with
a few routes it can be quite difficult to keep an overview (and to fit it on one
piece of paper!). And many projects will have significantly more paths than 5.

In the Marginal Cost Approach we repeatedly ask the question “What is the
cheapest activity to crash in a critical path?”. Initially there are two crit-
ical paths in the MasterBlaster project, which are 〈St,A,C, F, I, J, F i〉 and
〈St,A,E,H, I, J, F i〉. We can run through Table 5.4 and find the cheapest
activity to crash which is activity H. We now crash activity H by one week and
our updated table will look like Table 5.6.

As a consequence of crashing activity H by one week all paths that contains
activity H are reduced by one in length.

The length of the critical path is still 28 weeks but there is not only one critical
path in the project namely 〈St,A,C, F, I, J, F i〉. So we have not yet reached the
25 weeks and therefore perform yet another iteration. We look at the critical
path(s). We find the cheapest activity that can be crashed, which is activity F,
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Activity Duration Duration Unit Crashing
(normal) (crashing) cost

A 10 7 8000
B 4 3 4000
C 8 7 9000
D 6 4 16000
E 6 3 11000
F 5 3 6000
G 4 3 7000
H 7 3 5000
I 2 2 —
J 3 2 9000

Table 5.4: Crashing activities in project MasterBlaster.

Activity Crash Path length
to crash cost ACFJ ACFIJ ADGJ AEHIJ BHIJ

26 28 23 28 16

Table 5.5: The initial table for starting the marginal cost approach

and crash it by one week we then get the situation in Table 5.7.

As we have still not reached the required 25 weeks we continue. The final result
can be seen in Table 5.8

So overall it costs us 35000 Euros to get the project length down to 25 weeks.
Given that the overall reward is 40000 Euros the “surplus” is 5000 Euros. As the
project must be considered more unstable after the crashing we should definitely
think twice before going for the bonus. The wise project manager will probably
resist the temptation as the risk is to high and the payoff to low.

Another way of determining the minimal crashing cost is to state the problem
as an LP model and solve it using an LP solver.

Activity Crash Path length
to crash cost ACFJ ACFIJ ADGJ AEHIJ BHIJ

26 28 23 28 16
H 5000 26 28 23 27 15

Table 5.6: Crashing activity H by one week and update the paths accordingly.
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Activity Crash Path length
to crash cost ACFJ ACFIJ ADGJ AEHIJ BHIJ

26 28 23 28 16
H 5000 26 28 23 27 15
F 6000 25 27 23 27 15

Table 5.7: Crashing activity D by one week for the second time and update the
paths accordingly.

Activity Crash Path length
to crash cost ACFJ ACFIJ ADGJ AEHIJ BHIJ

26 28 23 28 16
H 5000 26 28 23 27 15
F 6000 25 27 23 27 15
H 5000 25 27 23 26 14
F 6000 24 26 23 26 14
H 5000 24 26 23 25 13
A 8000 23 25 22 24 13

Table 5.8: After crashing activities H (three times), F (twice) and A (once).

We need to present the problem as an LP problem with objective function,
constraints and variable definitions.

The decisions that we need to take are by how much we crash an activity and
when the activity should start. So for each activity we define two variables xi

and yi, where xi is the reduction in the duration of the activity and yi is the
starting time of the activity.

How will our objective function look like? The objective function is to minimize
the total cost of crashing activities: min 8000xA + 4000xB + . . . + 9000xJ .

With respect to the constraints we have to impose the constraint that the project
must be finished in less than or equal to a certain number of weeks. A variable,
yFi, is introduced and the project duration constraint yFi ≤ 25 is added to the
model.

Furthermore we need to add constraints that correspond to the fact that the
predecessor of an activity needs to be finished before the successor can start.
Since the start time of each activity is directly related to the start time and
duration of each of its immediate predecessors we get:



5.5 Considering Time-Cost trade-offs 85

start time of this activity ≥ (start time - duration) for this immediate
predecessor

In other words if we look at the relationship between activity A and C we get
yC ≥ yA + (10− xA). For each arc in the AON project network we get exactly
one of these constraints.

Finally we just need to make sure that we do not crash more than actually
permitted so we get a series of upper bounds on the x-variables, that is, xA ≤
7, xB ≤ 1, . . . , xJ ≤ 1.

For our project planning problem we arrive at the following model:

min 8000xA + 4000xB + 9000xC + 16000xD + 11000xE+
6000xF + 7000xG + 5000xH + 9000xJ

s.t. yC ≥ yA + (10− xA)
yD ≥ yA + (10− xA)
yE ≥ yA + (10− xA)

. . .
yFi ≥ yJ + (3− xJ)
yFi ≤ 25
xA ≤ 3

. . .
xJ ≤ 1

This model can now be entered into CPLEX or another LP solver. If we do that
we get a surprising result. The LP optimium is 24000 Euros (simply crashing
activity A three times) which is different from the Marginal Cost Approach.
How can that be? The Marginal Cost Approach said that the total crashing
cost would be 35000 Euros and now we found a solution that is 11000 Euros
better.

In fact the Marginal Cost Approach is only a heuristic. Before we investigate
why we only got a heuristic solution for our MasterBlaster project let us look
at Figure 5.10.

There are two activities with a unit crashing cost of 30000 Euros (activity B and
C) and one (activity D) with a unit crashing cost of 40000 Euros. Assume we
have two critical paths from A to F one going via B the other via C. In the first
step of the marginal cost analysis we will choose either B or C to crash. This
will cost us 30000 Euros. If we crash B we will crash C in the next step or vice
versa. Again costing us 30000 Euros. In total both paths have been reduced by
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Figure 5.10: An example of where the Marginal Cost Approach makes a subop-
timal choice.

1 unit each. This could also have been achieved by crashing activity D by one
week, and that would only cost us 40000 Euros.

In the solution to the MasterBlaster project problem we crash activities H and
F once each to reduce the critical path by one. This costs us 11000 Euros. Now
crash activity A just once also reduces the length of the critical path by one,
but this is only at a cost of 8000 Euros. But because we very narrowly looks at
the cheapest activity a critical path to crash we miss this opportunity.

So now we have to reconsider our refusal to crash the project. Now the potential
surplus is 16000 Euros.

5.6 Supplementary Notes

In the material we have discussed here all durations times were static. Of
course in a real world project one thing is to estimate duration times another
is to achieve them. The estimate could be wrong from the beginning or due
to other reasons it could become wrong as the project is moving on. Therefore
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research has been conducted into looking at stochastic elements in relation to
project planning.

Further readings on project planning where we also consider stochasticity can
be found in [1] that introduces the first simple approaches.

This very simple model on project planning can be extended in various ways
taking on additional constraints on common resources etc. For further reading
see [2].

5.7 Exercises

1. You are in charge of organizing a training seminar for the OR department
in your company. Remembering the project management tool in OR you
have come up with the following list of activities as in Table 5.9.

Activity Description Immediate Duration
predecessor (weeks)

A Select location – 1
B Obtain keynote speaker – 1
C Obtain other speakers B 3
D Coordinate travel for A, B 2

keynote speaker
E Coordinate travel for A, C 3

other speakers
F Arrange dinners A 2
G Negotiate hotel rates A 1
H Prepare training booklet C, G 3
I Distribute training booklet H 1
J Take reservations I 3
K Prepare handouts from speaker C, F 4

Table 5.9: Activities in planning the training seminar.

(a) Find all paths and path lengths through the project network. Deter-
mine the critical path(s).

(b) Find earliest time, latest time, and slack for each of the activities.
Use this information to determine which of the paths is a critical
path?

(c) As the proposed date for the training seminar is being moved the
training seminar needs to be prepare in less time. Activities with a
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duration of 1 week cannot be crashed any more, but those activities
that takes 2 or 3 weeks can be crashed by one week. Activity K can
be crashed by 2 weeks. Given a unit crashing cost of 3000 Euros for
the activities D and H, 5000 Euros for the activities J and K and
6000 Euros for activities E and F. Finally crashing activity C costs
7000 Euros. What does it cost to shorten the project by one week?
and how much to shorten it by two weeks?

2. You are given the following information about a project consisting of seven
activities (see Table 5.10).

Activity Immediate Duration
predecessor (weeks)

A – 5
B – 2
C B 2
D A, C 4
E A 6
F D, E 3
G D, F 5

Table 5.10: Activities for the design of a project network.

(a) Construct the project network for this project.

(b) Find earliest time, latest time, and slack for each of the activities.
Use this information to determine which of the paths is a critical
path?

(c) If all other activities take the estimated amount of time, what is the
maximum duration of activity D without delaying the completion of
the project?

3. Subsequently you are put in charge of the rather large project of imple-
menting the intra-net and the corresponding organizational changes in the
company. You immediately remember something about project manage-
ment from you engineering studies. To get into the tools and the way of
thinking, you decide to solve the following test case using PERT/CPM:

The available data is presented in Table 5.11. Find the duration of the
project if all activities are completed according to their normal-times.

In the LP model for finding the cheapest way to shorten a course, there is a
variable xi for each activity i in the project. There are also two constrains,
“xi ≥ 0” and “xi ≤ Di − di”. Denote the dual variables of the latter gi.
Argue that if di < Di, then either gi is equal to 0 or xi = Di − di in any
optimal solution.
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Activity Imm. pred. Normal-time (Di) Crash-time (dj) Crash cost
e1 5 1 4
e2 3 1 4
e3 e1 4 2 1
e4 e1, e2 6 1 3
e5 e2 6 5 0
e6 e3, e4 4 4 0

Table 5.11: Data for the activities of the test case.

What is the additional cost of shortening the project time for the test case
to 13?

4. The linear relationship on the crashing cost is vital for the results. After a
thorough analysis a project manager has come to a situation where one of
his activities does not exhibit the linear behavior. After further analysis
it has been shown that the crashing costs can actually be modeled by a
piecewise linear function, in this simple case with only one “break point”.

So the situation for the given activity can be illustrated like in Figure 5.11.

crash
cost

normal
cost

crash
time

normal
time

intermediate
time

crash

normal

Figure 5.11: Crashing an activity

You may assume that the slopes are as depicted. But can we deal with
this situation in our LP modeling approach? If yes, how. If no, why not.

Same question if you do not know anything about the slopes beforehand.

5. Let us turn back to our MasterBlaster project. Let us assume that the
incentive scheme set forward by the top management instead of giving a
fixed date and a bonus specified a daily bonus. Suppose that we will get
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9500 Euros for each week we reduce the project length. Describe how this
can be solved in our LP model and what the solution in the MasterBlaster
project will be.

Construct the project crashing curve that presents the relationship be-
tween project length and the cost of crashing until the project can no
longer be crashed.
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Chapter 6

The Max Flow Problem

Let us assume we want to pump as much water from point A to B. In order
to get the water from A to B we have a system of waterpipes with connections
and pipelines. For each pipeline we furthermore have a capacity identifying the
maximum throughput through the pipeline. In order to find how much can be
pumped in total and through which pipes we need to solve the maximum flow
problem.

In the maximum flow problem (for short the max flow problem) a directed graph
G = (V,E) is given. Each edge e has a capacity ue ∈ R+, therefore we define
the graph as G = (V,E, u) . Furthermore two “special” vertices r and s are
given; these are called resp. the source and the sink. The objective is now to
determine how much flow we can get from the source to the sink. We may
imagine the graph as a road network and we want to know how many cars we
can get through this particular road network. An alternative application as
described above the network is a network of water pipes and we now want to
determine the maximal throughput in the system.

In the max flow problem we determine 1) the maximal throughput and 2) how
we can achieve that through the system. In order to specify how we want to
direct the flow in a solution we first need formally to define what a flow actually
is:
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Definition 6.1 A flow x in G is a function x : E → R+ satisfying:

∀i ∈ V \ {r, s} :
∑

(j,i)∈E

xji −
∑

(i,j)∈E

xij = 0

∀(i, j) ∈ E : 0 ≤ xij ≤ uij

Given the definition of a flow we can define fx(i) =
∑

(j,i)∈E xji −
∑

(j,i)∈E xij .

So fx(i) is for a given flow and a give node the difference in inflow and outflow
of that node where a surplus is counted positive. fx(i) called the net flow into
i or the excess for x in i. Specifically fx(s) is called the value of the flow x.

We can now state the max flow problem as an integer programming problem.
The variables in the problem are the flow variables xij .

max fx(s)
s.t. fx(i) = 0 i ∈ V \ {r, s}

0 ≤ xe ≤ ue e ∈ E
xe ∈ Z+ e ∈ E

Notice that we restrict the flow to being integer. The reason for this will become
apparent as the solution methods for the max flow problem are presented.

Related to the definition of a flow is the definition of a cut. There is a very tight
relationship between cuts and flows that will also become apparent later. Let
us consider R ⊂ V . δ(R) is the set of edges incident from a vertex in R to a
vertex in R. δ(R) is also called the cut generated by R:

δ(R) = {(i, j) ∈ E | i ∈ R, j ∈ R}

Note the difference to the cut we defined for an undirected graph in chapter 3.
In a directed graph the edges in the cut are only the edges going from R to R
and not those in the opposite direction.

So in an undirected graph we have δ(R) = δ(R), but this does not hold for the
definition of a cut in directed graphs. As the cut is uniquely defined by the
vertex-set R we might simply call R the cut. A cut where r ∈ R and s /∈ R is
called an r, s-cut. Furthermore we define the capacity of the cut R as:

u(δ(R)) =
∑

(i,j)∈E,i∈R,j∈R

uij
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that is, the capacity of a cut is the sum of capacities of all edges in the cut.

Theorem 6.2 For any r, s-cut δ(R) and any flow x we have: x(δ(R))−x(δ(R̄)) =
fx(s).

Proof: Let δ(R) be an (r, s)-cut and f a flow. Now we know that fx(i) = 0
for all nodes i ∈ R \ {s}. Trivially we have fx(s) = fx(s). If we now add these
equations together we get

∑

i∈R\{s} fx(i) + fx(s) = fx(s) that is

∑

i∈R

fx(i) = fx(s). (6.1)

Consider the contribution of the different edges to the right hand side of the
equation (the four different cases are illustrated in Figure 6.1).

Figure 6.1: Illustration of the four different cases for accessing the contribution
to a flow based on the nodes relationship to R and R.

1. (i, j) ∈ E, i, j ∈ R: xij occurs in none of the equations added, so it does
not occur in (6.1).

2. (i, j) ∈ E, i, j ∈ R: xij occurs in the equation for i with a coefficient of
−1 and a +1 in the equation for j so in (6.1) it will result in a coefficient
of 0.

3. (i, j) ∈ E, i ∈ R, j ∈ R: xij occurs in (6.1) with a coefficient of 1 and
therefore the sum will have a contribution of +1 from this edge.
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4. (i, j) ∈ E, i ∈ R, j ∈ R: xij occurs in (6.1) with a coefficient of −1 and
therefore the sum will have a contribution of −1 from this edge.

So the left hand side is equal to x(δ(R))− x(δ(R)). △

Corollary 6.3 For any feasible flow x and any r, s-cut δ(R), we have: fx(s) ≤
u(δ(R)).

Proof: Given a feasible flow x and a r, s-cut δ(R). From theorem 6.2 we have

x(δ(R))− x(δ(R)) = fx(s)

Since all values are positive (or zero) this gives us

fx(s) ≤ x(δ(R)).

Furthermore we cannot have a flow larger than the capacity, that is, x(δ(R)) ≤
u(δ(R)). So we have fx(s) ≤ x(δ(R)) ≤ u(δ(R)). △

The importance of the corollary is that it gives an upper bound on any flow
value and therefore also the maximum flow value. In words it states – quite
intuitively – that the capacity of the minimum cut is an upper bound on the
value of the maximum flow. So if we can find a cut and a flow such that the
value of the flow equals the capacity of the cut then the flow is maximum, the
cut is a “minimum capacity” cut and the problem is solved. The famous Max
Flow - Min Cut theorem states that this can always be achieved.

The proof of the Max Flow - Min Cut Theorem is closely connected to the first
algorithm to be presented for solving the max flow problem. So we will already
now define some terminology for the solution methods.

Definition 6.4 A path is called x-incrementing (or just incrementing) if for
every forward arc e xe < ue and for every backward arc xe > 0. Furthermore a
x-incrementing path from r to s is called x-augmenting (or just augmenting).

Theorem 6.5 Max Flow - Min Cut Theorem. Given a network G = (V,E, u)
and a current feasible flow x. The following 3 statements are equivalent:

1. x is a maximum flow in G.
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2. A flow augmenting path does not exist (an r-s-dipath in Gx).

3. An r, s-cut R exists with capacity equal to the value of x, ie. u(R) = fx(s).

Proof:

1) ⇒ 2) Given a maximum flow x we want to prove that there does not exist a
flow augmenting path.

Assume there does exist a flow augmenting path, and seek a contradiction.
If there exists a flow augmenting path we can increase the flow along the
augmenting path by at least 1. This means that the new flow is at least
one larger than the existing one. But this is in contradiction with the
assumption that the flow was maximum. So no flow augmenting path can
exist when the flow is maximum.

2) ⇒ 3) First define R as R = {i ∈ V : ∃ an x-incrementing path from r to i}.
Based on this definition we derive:

1. r ∈ R

2. s 6∈ R

Therefore R defines an r, s-cut.

Based on the definition of R we derive (i, j) ∈ δ(R) xij = uij and for
(i, j) ∈ δ(R) we get xij = 0. As x(δ(R)) − x(δ(R)) = fx(s) we insert
x(δ(R)) = u(δ(R)) and x(δ(R)) = 0 from above, and get: u(δ(R)) = fx(s).

3) ⇒ 1) We assume that there exists an r, s-cut R with fx(s) = u(δ(R)). From the
corollary we have fx(s) ≤ u(δ(R)). The corollary defines an upper bound
equal to the current feasible flow, which therefore must be maximum.

This proves that the three propositions are equivalent.△

6.1 The Augmenting Path Method

Given the Max Flow - Min Cut theorem a basic idea that leads to our first
solution approach for the problem is immediate. The augmenting path method.
This is the classical max flow algorithm by Ford and Fulkerson from the mid-
50’s.
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The basic idea is to start with a feasible flow. As a feasible flow we can always
use x = 0 but in many situations it is possible to construct a better initial flow
by a simple inspection of the graph.

Based on the current flow we then try to find an augmenting path in the network,
that is, a path from r to s that can accommodate an increase in flow. If that
is possible we introduce the increased flow. This updates the previous flow by
adding the new flow that we have managed to get from r to s. Now we again
look for a new augmenting path. When we cannot find an augmenting path the
maximum flow is found (due to Theorem 6.5) and the algorithm terminates.

The critical part of this approach is to have a systematic way of checking for
augmenting paths.

An important graph when discussing the max flow problem is the residual graph.
In some textbooks you might see the term “auxiliary graph” instead of residual
graph. The residual graph identifies based on the current flow where excess can
be send to.

Definition 6.6 Given a feasible flow x the residual graph Gx for G wrt. x is
defined by:

Vx = V (Gx) = V
Ex = E(Gx) = {(i, j) : (i, j) ∈ E ∧ xij < uij} ∪

{(j, i) : (i, j) ∈ E ∧ xij > 0}

The residual graph can be built from the original graph and the current flow
arc by arc. This is illustrated in Figure 6.2.

If we look at the arc (r, 1) there is a flow of four and a capacity of four. Therefore
we cannot push more flow from r to 1 along that arc as it is already saturated.
On the other hand we can lower the flow from r to 1 along the (r, 1) arc. This
is represented by having an arc in the opposite direction from 1 to r. Therefore
the residual graph contains an (1, r) arc. As another example consider the (1, 3)
arc. There is room for more flow from 1 to 3, so we can push excess flow from
1 in the direction of 3 using the (1, 3). Therefore the arc (1, 3) is in the residual
graph. But (3, 1) is also included in the residual graph as excess flow from node
3 can be pushed to 1 by reducing flow along the (1, 3) arc.

The nice property in a residual graph is that an augmenting path consists of
forward arcs only. This is not necessarily the case in the original graph. If we
return to Figure 6.2 the path 〈r, 3, 2, s〉 is in fact an augmenting path. We can
push one more unit along this path and thereby increase the value of the flow by
one. But the path uses the (2, 3) arc in the “reverse” direction as we decrease
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(a) The graph G and a flow x

(b) The residual graph Gx

Figure 6.2: The residual graph reflects the possibilities to push excess flow from
from a node
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the inflow from node 3 and instead route it to the sink. In the residual graph
the path is simply made up by forward arcs.

Now we can describe the augmenting path algorithm where we use the residual
graph in each iteration to check if there exists an augmenting path or not. The
algorithm is presented in algorithm 9.

Algorithm 9: The Augmenting Path algorithm

Data: A directed graph G = (V,E, u), a source r and sink s
Result: A flow x of maximum value

xij ← 0 for all (i, j) ∈ E1

repeat2

construct Gx3

find an augmenting path in Gx4

if s is reached then5

determine max amount x′ of flow augmentation6

augment x along the augmenting path by x′
7

until s is not reachable from r in Gx8

If s is reached then the augmenting path is given by the p. Otherwise no
augmenting path exists.

Consider the following example. In order not to start with x = 0 as the initial
flow we try to establish a better starting point. We start by pushing 4 units of
flow along 〈r, 1, 2, s〉 and one unit of flow along 〈r, 4, s〉. Furthermore we push
two units of flow along the path 〈r, 1, 2, 3, 4, s〉 and arrive at the situation shown
in Figure 6.3 and the corresponding residual graph. Based on the residual graph
we can identify an augmenting path 〈r, 1, s〉. The capacities on the path are 2
and 1. Hence, we can at most push one unit of flow through the path. This is
done in the following figure and its corresponding residual graph is also shown.

Now it becomes more tricky to identify an augmenting path. From r we can
proceed to 1 but from this node there is no outgoing arc. Instead we look at
the arc (r, 3). From 3 we can continue to 2 and then to 4 and then can get to
s. Having identified the augmenting path 〈r, 3, 2, 4, s〉 we update the flow with
2 along the path and get to the situation shown in 6.3 (c).

In the residual graph is not possible to construct incrementing paths beyond
nodes 1 and 3. Consequently, there is not an augmenting path in the graph and
consequently we have found a maximum flow. The value of the flow is 11 and
the minimum cut is identified by R = {r, 1, 3}. Note that forward edges are
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saturated, that is, flow equal to capacity, and backward edges are empty in the
cut.

In the algorithm we need to determine the maximum amount that we can in-
crease the flow along the augmenting path we have found. When increasing the
flow we need to be aware that in arcs that are forward arcs in the original graph
we cannot exceed the capacity. For arcs that are backward arcs in the original
graph the flow will be reduced along the augmenting path, and we cannot get a
negative flow. As a result we get the updated (augmented) flow x′:

• for (i, j) ∈ P : (i, j) ∈ E : x′
ij ← xij + umax

s

• for (i, j) ∈ P : (j, i) ∈ E : x′
ji ← xji − umax

s

• for all other (i, j) ∈ E : x′
ij ← xij

where umax
s is the maximum number of units that can be pushed all the way

from source to sink.

The next issue is how the search in the residual graph for an augmenting path
is made. Several strategies can be used, but in order to ensure a polynomial
running time we use a breath first approach as shown in algorithm 10. To realize
the importance of the search strategy look at Figure 6.4.

A first augmenting path could be 〈r, 1, 2, s〉. We can push 1 unit of flow through
this path. Next iteration we get the augmenting path 〈r, 2, 1, s〉 again increasing
the flow by one unit. Two things should be noted: 1) the running time of the
algorithm is dependent on the capacities on the arcs (here we get a running time
of 2M times the time it takes to update the flow) and 2) if M is large it will
take a long time to reach the maximal flow although it is possible to find the
same solution in only two iterations.
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(a) The graph G with an initial flow an the corresponding residual graph

(b) Updating based on the augmenting path 〈r, 1, s〉

(c) Updating based on the augmenting path 〈r, 3, 2, 4, s〉

Figure 6.3: An example of the iterations in the augmenting path algorithm for
the maximum flow problem
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1

1

M M

M M

r s

2

Figure 6.4: Example of what can go wrong if we select the ”wrong” augmenting
paths in the augmenting path algorithm

Algorithm 10: Finding an augmenting path if it exists

Data: The network G = (V,E, u), a source vertex r, sink vertex s, and
the current feasible flow x

Result: An augmenting path from r to s and the capacity for the flow
augmentation, if it exists

all vertices are set to unlabeled1

Q← {r}, S ← ∅2

pi ← 0 for all i3

umax
i ← +∞ for i ∈ G4

while Q 6= ∅ and s is not labeled yet do5

select a i ∈ Q6

scan (i, j) ∈ Ex7

label j8

Q← Q ∪ {j}9

pj ← i10

if (i, j) ∈ Ex is forward in G then11

umax
j ← min{umax

i , uij − xij}12

if (i, j) ∈ Ex is backward in G then13

umax
j ← min{umax

i , xji}14

Q← Q \ i15

S ← S ∪ {i}16

We call an augmenting path from r to s shortest if it has the minimum possible
number of arcs. The augmenting path algorithm with a breadth-first search
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solves the maximum flow problem in O(nm2). Breadth-first can be implemented
using the queue data structure for the set Q.

6.2 The Preflow-Push Method

An alternative method to the augmenting path method is the preflow-push al-
gorithm for the Max Flow problem. This method is sometimes also called Push-
relabel.

In the augmenting flow method a flow was maintained in each iteration of the
algorithm. In the preflow-push method the balance constraint – in-flow for a
vertex equals out-flow for a vertex – is relaxed by introducing a preflow.

Definition 6.7 A preflow for a directed graph G with capacities u on the
edges, a source vertex r and a sink vertex s is a function x : E → R+ satisfying:

∀i ∈ V \ {r, s} :
∑

(j,i)∈E

xji −
∑

(i,j)∈E

xij ≥ 0

∀(i, j) ∈ E : 0 ≤ xij ≤ uij

In other words: for any vertex v except r and s, the flow excess fx(i) is non-
negative – “more runs into i than out of i”. If fx(i) > 0 then node i is called
active. A preflow with no active nodes is a flow.

An important component of the preflow-push method is the residual graph which
remains unchanged. So for a given graph G and preflow x the residual graph
Gx shows where we can push excess flow.

The general idea in the preflow-push algorithm is to push as much flow as
possible from the source towards the sink. However it is not possible to push
more flow towards the sink s, and there are still active nodes we push the excess
back toward the source r. This restores the balance of flow.

A push operation will move excess flow from an active node to another node
along an forward arc in the residual graph. Figure 6.5 (a) illustrates the process.
The nodes 2 and 3 are active nodes. In the graph we could push additional flow
from node 3 to node 2. In this case node 3 would be in balance and the only
remaining active node would be node 2 as illustrated in Figure 6.5 (b). If we
are not careful the next push operation could potentially take one units of flow
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from node 2 back to node 3 and thereby reestablish the preflow we just had (as
there is an (2, 3) edge in Ex). It is therefore necessary be able to control the
direction of the pushes in order to avoid repeating pushes.

In order to control the direction of the pushes we introduce what will later
turn out to be estimates (in fact lower bounds) on the distances in Gx called a
labeling.

Definition 6.8 A valid labeling of the vertices in V wrt. a preflow x is a
function d : V → Z satisfying:

1. dr = n ∧ ds = 0

2. ∀(i, j) ∈ Ex : di ≤ dj + 1

The idea is that as long as it is possible we would like to send the flow “towards”
the sink. In order to estimate that we use the valid labeling.

Having defined valid labeling it is natural to ask if any feasible preflow admits
a valid labeling. The answer is no. Look at the simple example in Figure 6.6.

First of all dr must be 3 and ds 0 according to the definition. What value can
we assign to da in order to get a valid labeling? According to rule 2 based on
the arc (r, a) we have that dr ≤ da + 1 and using rule 2 on the (a, s) arc we get
da ≤ ds + 1. This gives da ≥ 2 and da ≤ 1 which clearly does not leave room
for a feasible value.

It is however possible to construct an initial feasible preflow that permits a valid
labeling. We will call this procedure an initialization of x and d. In order to get
a feasible preflow with a valid labeling we:

1. set xe ← ue for all outgoing arcs of r,

2. set xe ← 0 for all remaining arcs, and

3. set dr ← n and di ← 0 otherwise.

For the max flow problem in Figure 6.5 the initialization will result in the labels
shown in Figure 6.7.

A valid labeling for a preflow implies an important property of the preflow, that
it “saturates a cut”, that is, all edges leaving the cut have flow equal to capacity.
If we look at Figure 6.7 the cut defined by R = {r} is saturated.
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(a) Inititial preflow

(b) Pushing one unit from node 3 to node 2

Figure 6.5: Changing a preflow by applying a push operation
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Figure 6.6: A preflow does not always admit a valid labeling as this small
example shows

Figure 6.7: Initialization of the preflow and a corresponding valid labeling. The
values on the nodes is the labeling.

In a way the augmenting path algorithm and the preflow-push algorithm are
“dual” to each other. While the augmenting algorithm maintains a flow and
terminates as a saturated cut is found, the preflow-push algorithm maintains a
saturated cut and terminates as a feasible flow has been detected.

Theorem 6.9 Given a feasible preflow x and a valid labeling d for x, then there
exists an r, s-cut δ(R) such that xij = uij for all (i, j) ∈ δ(R) and xij = 0 for
all (i, j) ∈ δ(R).

Proof: Since there are n nodes, there exists a value k, 0 < k < n such that
di 6= k for all i ∈ V . Define R = {i ∈ V : di > k}. Clearly r ∈ R (dr = n) and
s 6∈ R (ds = 0). R therefore defines an r, s-cut δ(R).

Let us look at an edge (i, j) in the residual graph that crosses the cut, that is
i ∈ R and j ∈ R. As the labeling is valid we must have di 6= dj + 1. As i ∈ R
di ≥ k + 1 and as j 6∈ R dj ≤ k − 1. No edge can fulfill the valid labeling and
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consequently not edge in Ex is leaving R. △

Let us return to the relationship between the labeling and the distance from a
node to the sink. Let dx(i, j) denote the number of arcs in a shortest dipath
from i to j in Gx. With the definition d we can prove that for any feasible
preflow x and any valid labeling d for x we have

dx(i, j) ≥ di − dj

Basically for every edge (i, j) in the shortest path P from i to j we have di ≤
dj + 1. Adding those together gives the states result.

As a consequence from this result we have:

Corollary 6.10 Estimates on distances. As special cases we have:

• di is a lower bound on the distance from i to s.

• di − n is a lower bound on the distance from i to r.

• If di ≥ n this means that there is no path from i to s.

• di < 2n for all nodes.

We try to push flow towards nodes j having dj < di, since such nodes are
estimated to be closer to the ultimate destination. Having dj < di and a valid
labeling means that push is only applied to arcs (i, j) where i is active and
di = dj + 1. Such an edge (i, j) is called an admissible edge.

Algorithm 11: The Push operation

consider an admissible edge (i, j)1

calculate the amount of flow, which can be pushed to w j2

(min{fx(i), (xji + (uij − xij))})
push this by first reducing xji as much as possible and then increasing xij3

as much as possible until the relevant amount has been pushed

If an admissible edge is available the preflow-push algorithm can push flow on
that edge. If we return to our max flow problem in Figure 6.7 it is obvious that
no admissible edges exist. So what should we do if there are no more admissible
edges and a node v is still active?
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The answer is to relabel. Relabel means that we take an active node and assign
it a new label that should result in generating at least one admissible edge. This
is done by increasing the value of the label to the minimum of any label on an
outgoing edge from the node plus one.

Algorithm 12: The Relabel operation

consider an active vertex i, for which no edge (i, j) ∈ Ex with di = dj + 11

di ← min{dj + 1 : (i, j) ∈ Ex}2

Notice that this will not violate the validity of the labeling (check for yourself!).
Now we can put the elements together and get the preflow-push algorithm.

Algorithm 13: The Preflow-Push algorithm

initialize x, d1

while x is not a flow do2

select an active node i3

if no admissible arc (i, j) out of i exist then4

relabel i5

while there exists an admissible arc (i, j) do6

push on (i, j)7

If we return to our example from before we may choose any active node and
perform a relabel. Initially the nodes 1 and 3 are active, and we arbitrarily
choose node 1. As no admissible edges exist we relabel to 1, and now the single
unit of surplus in node 1 is pushed along (1, 2) (we could also have chosen edge
(1, 4)). Now nodes 2 and 3 are active nodes. We choose node 3 and need to
relabel. Now we can push the surplus of 7 along the edges (3, 2) (3 units), (3, s)
(1 unit) and (3, 4) (3 units). Now node 3 is no longer active but 4 is. First
we need to relabel to get a label of value 1 and push 2 units to s. As node 2
remains active we choose it again and following need to relabel to 2 and now
we can push one unit “back” to node 3. In the next iteration nodes 2 and 3 are
active and will be chosen by the preflow push algorithm for further operations.

Analysis of the running time of the preflow-push algorithm is based on an anal-
ysis of the number of saturating pushes and non-saturating pushes. It can be
shown that the push-relabel maximum flow algorithm can be implemented to
run in time O(n2m) or O(n3).
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(a) Relabel and push from 1 (b) Relabel and push from 3

(c) Relabel and push from 4 (d) Relabel and push from 4
(again)

Figure 6.8: Initial iterations of the preflow push algorithm on our example graph.

6.3 Applications of the max flow problem

6.3.1 Maximum Bipartite Matching

6.4 Supplementary Notes

6.5 Exercises

1. Consider the max flow problem defined by the graph G = (V,E, u) in
Figure 6.9 with node 1 as the source and node 8 as the sink. Solve the
problem using the augmenting path algorithm and the preflow push algo-
rithm. Also find a minimum cut.

In order to verify your results enter the integer programming model into
your favourite MIP solver.

2. Let G be a directed graph with two special vertices s and t. Any two
directed paths from s to t are called vertex-disjoint if they do not share
any vertices other than s and t. Prove that the maximum number of
directed vertex-disjoint paths from s to t is equal to the minimum number
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Figure 6.9: Example max flow problem

of vertices whose removal ensures that there are no directed paths from s
to t.

3. Let P range over the set of s–t paths for two vertices s, t of a given graph.
Let C range over cuts that separate s and t. Then show that

max
P

min
e∈P

ce = min
C

max
e∈C

ce

where ce is the capacity of edge e.
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Chapter 7

The Minimum Cost Flow

Problem

Recall the definition of fx(i) from the maximum flow problem:

fx(i) =
∑

(j,i)∈E

xji −
∑

(i,j)∈E

xij

In the minimum cost flow problem a feasible flow x of minimum cost has to be
determined. Feasibility conditions remains unchanged from the maximum flow
problem. The minimum cost flow problem can be defined as:

min
∑

e∈E

wexe (7.1)

s.t. fx(i) = bi i ∈ V

0 ≤ xij ≤ uij (i, j) ∈ E

In the minimum cost flow problem we consider a directed graph G = (V,E)
where each edge e has a capacity ue ∈ R+ ∪{∞} and a unit transportation
cost we ∈ R. Each vertex i has a demand bi ∈ R. If bi ≥ 0 then i is called a
sink, and if bi < 0 then i is called a source. We assume that bV =

∑

i∈V bi = 0,
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that is, inflow in the graph is equal to outflow. This network can be defined as
G = (V,E,w, u, b).

An example of a minimum cost flow problem is shown in Figure 7.1. Vertices 1
and 2 are sources and 3, 4 and 6 are sinks. The objective is to direct the flow
from 1 and 2 in the most cost efficient way to 3, 4 and 6.

1 4

3

2 5

6

4,10

4,1

1,7
2,5

3,5

6,11

3,6
2,4

-10

-5

0

10

4

1

4,1

(a) Graph

1 4

3

2 5

6

4,10,10

4,1,0

1,7,5
2,5,5

3,5,0

6,11,0

3,6,4
2,4,4

-10

-5

0

10

4

1

4,1,0

(b) Feasible flow

Figure 7.1: Example of a minimum cost flow problem. Labels on edges on the
graph shown on Figure (a) are represented by we, ue. Figure (b) shows a feasible
flow (bold edges). Labels on the edges represent we, ue, xe. The cost of the flow
is 75

The minimum cost flow problem is a very versatile problem. Among others, the
following flow problems can be described as special cases, we will just note the
following:

1. The Transportation Problem

2. The Shortest Path Problem

3. The Max Flow Problem

A class of minimum cost flow problems arises from transportation problems.
In a transportation problem G = (V,E) is a bipartite graph with partitions
{I, J}, and we are given positive numbers ai, i ∈ I and bj , j ∈ J , as well as costs
wij , (i, j) ∈ E. The set I defines a set of factories and J a set of warehouses.
Given production quantities (ai), demands (bj), and unit transportation cost
from i to j (wij) the objective is to find the cheapest transportation of products
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to the warehouses. The transportation can be stated as:

min
∑

e∈E

wexe (7.2)

s.t.
∑

i∈I,(i,j)∈E

xij = bj j ∈ J

∑

j∈J,(i,j)∈E

xij = ai i ∈ I

xe ≥ 0 e ∈ E

Adding constraints of the form xe ≤ ue, where ue is finite, to (7.2), the problem
is called a capacitated transportation problem. In either case, multiplying
each of the second group of equations by −1, and setting bi = −ai for i ∈ I, we
get a problem on the same form as minimum cost flow problem.

The shortest path problem can also be considered as a special case of the min-
imum cost flow problem. Define the root as a source and the remaining n − 1
other vertices as sinks. Each of the sinks will have di = 1, while the root will
have dr = n − 1. This represents n − 1 paths are “flowing” out of the root
and exactly one is ending in each of the other vertices. The unit transportation
cost will be equal to the cost on the edges and we have stated the shortest path
problem as a minimum cost flow problem.

The maximum flow problem can be modelled as a minimum cost flow problem
by the following trick: Given a directed graph with capacities on the edges, a
source and a sink we define bi = 0 for all vertices, and set the unit transportation
cost to 0 for each of the edges. Furthermore we introduce a new edge from the
sink back to the source with unlimited capacity (at least larger than or equal
to

∑

e∈E ue) and a unit cost of −1. Now in order to minimize cost the model
will try to maximize the flow from sink to source which at the same time will
maximize the flow from the source through the graph to the sink as these flows
must be in balance. This is illustrated in Figure 7.2.

As several of the important flow optimization problems can be stated as special
cases of the minimum cost flow problem it is interesting to come up with an
effective solution approach for the problem. Let us take a look at the constraint
matrix of the minimum cost flow problem.
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(a) The graph of a maximum flow
problem
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(b) The graph “restated” as a mini-
mum cost flow problem

Figure 7.2: Figure (a) shows a maximum flow problem with labels representing
ue. In Figure (b) the same maximum flow problem has been reformulated as
a minimum cost flow problem. Labels on the edges are we, ue. Note that M
should be chosen to be at least 20
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we1
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. . . wij . . . wem

1 −1 . . . . . . . = b1

2 . . . . . . . . . . = b2
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...

i 1 . . . . −1 . . . . = bi

... . . . . . . . . . . =
j . . . . . 1 . . . . = bj
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n . . . . . . . . . . = bn

e1 −1 ≥ −u1

e2 −1 ≥ −u2

... . . . . . . ≥
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(i, j) −1 ≥ −uij
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em −1 ≥ −um





































































Proposition 3.2 from [2] gives a sufficient condition for a matrix being totally
unimodular. It states that a matrix A is totally unimodular if:
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1. aij ∈ {+1,−1, 0} for all i, j.

2. Each column contains at most two nonzero coefficients (
∑m

i=1 |aij | ≤ 2).

3. There exists a partition {M1,M2} of the set M of rows such that each
column j containing two non-zeros satisfies

∑

i∈M1
aij −

∑

i∈M2
aij = 0.

Consider the matrix without the xe ≤ ue constraints. If we let M1 contain the
remaining constraints and M2 = ∅ the conditions of proposition 3.2 is fulfilled.
The matrix is therefore totally unimodular. It is let to the reader to prove that
the entire matrix with the xe ≤ ue constraints also is totally unimodular.

A consequence is the the minimum cost flow problem can be solved by simply
removing integrality constraints from the model and solve it using an LP solver
like eg. CPLEX.

In order to come up with a more efficient approach we take a look at optimality
conditions for the minimum cost flow problem.

7.1 Optimality conditions

Having stated the primal LP of the minimum cost flow problem in (7.1) it is
a straightforward task to formulate the dual LP. The dual LP has two sets
of variables: the dual variables corresponding to the flow balance equations
are denoted yi, i ∈ V , and those corresponding to the capacity constraints are
denoted zij , (i, j) ∈ E. The dual problem is:

max
∑

i∈V

biyi −
∑

(i,j)∈E

uijzij (7.3)

s.t. −yi + yj − zij ≤ wij ⇔ (i, j) ∈ E

−wij − yi + yj ≤ zij (i, j) ∈ E

zij ≥ 0 (i, j) ∈ E

Define the reduced cost w̄ij of an edge (i, j) as w̄ij = wij + yi − yj . Hence,
the constraint −wij − yi + yj ≤ zij is equivalent to

−w̄ij ≤ zij
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When is the set of feasible solutions x, y and z optimal? Let us derive the opti-
mality conditions based on the primal and dual LP. Consider the two different
cases:

1. If ue = +∞ (i.e. no capacity constraints for the edges) then ze must be
0 and hence just w̄e ≥ 0 has to hold. The constraint now corresponds to
the primal optimality condition for the LP.

2. If ue < ∞ then ze ≥ 0 and ze ≥ −w̄e must hold. As z have negative
coefficients in the objective function of the dual problem the best choice
for z is as small as possible, that is, ze = max{0,−w̄e}. Therefore, the
optimal value of ze is uniquely determined from the other variables, and
hence ze is “unnecessary” in the dual problem.

Complementary slackness conditions is used to obtain optimality conditions.
Generally, complementary slackness states that 1) each primal variable times
the corresponding dual slack must equal 0, 2) and each dual variable times the
corresponding primal slack must equal 0 in optimum). In our case this results
in:

xe > 0⇒ −w̄e = ze = max(0,−w̄e)
i.e. xe > 0⇒ −w̄e ≥ 0, that is w̄e > 0⇒ xe = 0

and
ze > 0⇒ xe = ue

i.e. − w̄e > 0⇒ xe = ue, that is w̄e < 0⇒ xe = ue

Summing up: A primal feasible flow satisfying demands respecting the capacity
constraints is optimal if and only if there exists a dual solution ye, e ∈ E such
that for all e ∈ E it holds that:

w̄e < 0 implies xe = ue(6=∞)

w̄e > 0 implies xe = 0

All pairs (x, y) of optimal solutions satisfy these conditions. The condition can
be used to define a solution approach for the minimum cost flow problem.

To present the approach we initially define a residual graph. For a legal flow x
in G, the residual graph is (like for maximum flow problem) a graph, in which
the edges indicate how flow excess can be moved in G given that the flow
x already is present. The only difference to the residual graph of the maximum
flow problem is that each edge additionally has a cost assigned. The residual
graph Gx for G wrt. x is defined by V (Gx) = V and E(Gx) = Ex = {(i, j) ∈
E : (i, j) ∈ E ∧ xij < uij} ∪ {(i, j) : (j, i) ∈ E ∧ xji > 0}.
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Figure 7.3: G = (V,E, c, u, x) and its residual graph

The unit transportation cost w′
ij of an edge with xij < uij is wij , while w′

ij of
an edge with xji > 0 is −wji. The reason for this definition can be explained by
considering an x-incrementing path P . P contains both forward and backward
edges. Suppose we now send one unit of flow from one end to the other of the
path. Then xe will be raised by one on forward edges and lowered by one on
backward edges. Subsequently the cost must reflect the change, hence we have
w′

ij = wij for forward edges and w′
ij = −wji for backward edges.

Note that a dicircuit with negative cost in Gx corresponds to a negative cost
circuit in G, if costs are added for forward edges and subtracted for backward
edges, see Figure 7.3.

Note that if a set of potentials yi, i ∈ V are given, and the cost of a circuit wrt.
the reduced costs for the edges (w̄ij = wij + yi − yj) are calculated, the cost
remains the same as the original costs as the potentials are “telescoped” to 0.

A primal feasible flow satisfying demands and respecting the capacity constraints
is optimal if and only if an x-augmenting circuit with negative w-cost (or
negative w̄-cost, there is no difference), does not exist.

This is the idea behind the identification of optimal solutions in the network
simplex algorithm that will be presented later.

An initial and simple idea is to find a feasible flow and then in each iteration test
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for the existence a negative circuit by trying to find a negative cost circuit in the
residual graph. This test could be done using the Bellmann-Ford algorithm. It
has a running time of O(mn). This algorithm is called the augmenting circuit
algorithm

Algorithm 14: The Augmenting Circuit Algorithm

Find a feasible flow x1

while there exists an augmenting circuit do2

Find an augmenting circuit C3

if C has no reverse edge, and no forward edge of finite capacity then4

STOP5

Augment x on C6

When performing a complete O(nm) computation in every iteration it is paramount
to keep the number of iterations low. Several implementations of the augment-
ing circuit algorithm exist. Most often these algorithms does not perform as
well as the most effective methods. We will therefore turn our attention to one
of the methods that is currently most used, namely the Network Simplex
Method.

7.2 Network Simplex for The Transshipment prob-

lem

In order to get a better understanding of the network simplex approach we ini-
tially look at the minimum cost flow problem without capacities. This problem
is also called the transshipment problem. Given a directed graph G = (V,E)
with demands di for each vertex i ∈ V and unit transportation cost we for each
edge e ∈ E find the minimum cost flow that satisfies the demand constraints.

Assume G is connected. Otherwise the problem simply reduces to a transship-
ment problem for each of the components in G. A tree in a directed graph
is a set T ⊆ E, such that, T is a tree in the underlying undirected graph. A
tree solution for the transshipment-problem given by G = (V,E), demands
bi, i ∈ V and costs we, e ∈ E, is a flow x ∈ RE satisfying:

∀i ∈ V : fx(i) = bi

∀e /∈ T : xe = 0

So there is no flow on edges not in T , and all demands are satisfied. Note that
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Figure 7.4: Let vertex 1 be the root vertex. Consider edge h as shown it defines
two sets RT

h and PT
h

tree solutions are normally not feasible, since edges with negative flow may exist
(cf. basic solutions and feasible basic solutions in linear programming).

Initially we may ask whether there exists a tree solution for any tree T . The
answer is yes, and can be seen by the following constructive argument. Select
a vertex r and call it the root. It can be any vertex. Consider an edge h in
T . The edge h partitions V into two sets, one containing r denoted RT

h and the
remainder PT

h = V \RT
h (see Figure 7.4). If h starts in RT

h and (consequently)
ends in PT

h then

xh =
∑

i∈P T

h

bi = −
∑

i∈RT

h

bi. (7.4)

Alternatively if h starts in PT
h and ends in RT

h then

xh =
∑

i∈RT

h

bi. (7.5)

So a tree T uniquely defines a tree solution. In the example in Figure 7.4 xh = 8.

It is essential to note that any feasible solution can be transformed into a tree
solution. Consequently this will allow us to only look at tree solutions.

Theorem 7.1 If the transshipment problem defined by G = (V,E,w, b) has a
feasible solution, then it also has a feasible tree solution.
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Proof: Let x be a feasible solution in G. If x is not a tree solution then there
must exist a circuit C where all edges have a positive flow. We can assume that C
has at least one backward edge. Let α = min{xe : e ∈ C, e is a backward edge}.
Now replace xe by xe + α if e is a forward edge in C, and by xe − α if e is a
backward edge in C. The new x is feasible, and moreover, has one circuit less
that the initial flow. If the flow is a tree solution we are done, if not, we continue
the procedure. Note that each time we make an “update” to the flow, at least
one edge with get flow equal to 0 and that we never put flow onto an edge with
a flow of 0. Therefore we must terminate after a finite number of iterations. △

If the flow x is an optimal solution and there exists a circuit C with positive
flow, C must have zero cost. This means that the approach used in the proof
above can be used to generate a new optimal solution in which fewer edges have
a positive flow. So it can be proved that:

Theorem 7.2 If the transshipment problem defined by G = (V,E,w, b) has an
optimal solution then it also has an optimal tree solution.

The results of these two theorems are quite powerful. From now on we can
restrict ourselves to look only on tree solutions. Consequently, the network
simplex method moves from tree solution to tree solution using negative cost
circuits CT

e consisting of tree edges and exactly one non-tree edge e (think of
the tree edges as basic variables and the non-tree edge as the non-basic variable
of a simplex iteration). Remember that the non-tree edge e uniquely defines a
circuit with T . Each edge e will define a unique circuit with the characteristics:

• CT
e ⊆ T ∪ {e}

• e is an forward edge in CT
e

This is illustrated in Figure 7.5.

Consider the vector of potentials y ∈ RV . Set the vertex potential yi, i ∈ V
to the cost of the (simple) path in T from r to i (counted with sign: plus for a
forward edge, minus for a backward edge). It now holds that for all i, j ∈ V , the
cost of the path from i to j in T equals yj − yi (why ?). But then the reduced
costs w̄ij (defined by wij + yi − yj) satisfy:

∀e ∈ T : w̄e = 0

∀e /∈ T : w̄e = w(CT
e )

If T determines a feasible tree solution x and CT
e has non-negative cost ∀e /∈ T
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Figure 7.5: An example of the definition of the unique circuit CT
e by the edge e.

The edge (6, 5) defines the circuit 〈3, 4, 6, 5, 3〉 and the anti clockwise orientation

(i.e. w̄e ≥ 0), then x is optimal. Now the network simplex algorithm for the
transshipment problem can be stated:

Algorithm 15: The Network Simplex Algorithm for the Transshipment
Problem

find a tree T with a corresponding feasible tree solution x1

select an r ∈ V as root for T2

compute yi as the length of the r − i–path in T , costs counted with sign3

while ∃(i, j) : w̄ij = wij + yi − yj < 0 do4

Select an edge with w̄ij < 05

if all edges in CT
e are forward edges then6

STOP /* the problem is ‘‘unbounded’’ */7

find θ = min{xj : j backward in CT
e } and an edge h with xh = θ8

increase x with θ along CT
e9

T ← (T ∪ {e}) \ {h}10

update y11

Remember as flow is increased in the algorithm it is done with respect to the
orientation defined by the edge that defines the circuit, that is, increase flow in
forward edges and decrease flow in backward edges.

Testing whether T satisfies the optimality conditions is relatively easy. We can
compute y in time O(n) and thereafter w̄ can be computed in O(m). With
the simple operations involved and the modest time complexity this is certainly
going to be faster than running Bellman-Fords algorithm.

An issue that we have not touched upon is how to construct the initial tree. One
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(d) Step 2

Figure 7.6: The solution of an transshipment problem using the network simplex
algorithm. The labels on the edges are ue, xe. Bold edges identify the tree
solution

approach is the following: We can use the tree T whose edges are (r, i) where
i ∈ V \ {r} and bi ≥ 0 and edges (i, r) where i ∈ V \ {r} and bi < 0. Not all
these edges may exist. If they do not exist we add them to G but assign them
a large enough cost to secure they will not be part of an optimal solution.

Let us demonstrate the network simplex algorithm by the example in Figure 7.6.

First, we need to find an initial feasible tree solution. Having determined the
tree as T = {(2, 1), (1, 3), (3, 6), (2, 4), (4, 5)} we let vertex 2 be the root vertex.
Now the feasible solution wrt. tree solution is uniquely defined, and can be
computed by (7.4) and (7.5) defined earlier. So we get the tree solution in the
graph in the upper right of Figure 7.6. The flow corresponds to a value of 115.
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Now we compute the potential vector y = (1, 0, 3, 5, 9, 6). Let us check if we have
a negative cost circuit. The edges (3, 4) and (6, 5) both uniquely determine two
circuits with cost:

w̄34 = y3 + w34 − y4 = 3 + 1− 5 = −1

w̄65 = y6 + w65 − y5 = 6 + 1− 9 = −2

So both edges define a negative cost circuit. We can choose either one of them.
Let us select the circuit C1 defined by (3, 4). Every time we push one unit of
flow around the circuit the flow on all edges but (2, 4) in C1 increase by one,
while the flow decreases by one on the (2, 4) edge. As the current flow is 10 on
(2, 4) we can increase the flow on the other edges by 10. (2, 4) is discarded from
the tree solution and (3, 4) is added.

The resulting flow is shown in the lower left graph. Here the flow has a value of
105. We update y and get (1, 0, 3, 4, 8, 6). Now we check for potential negative
cost circuits:

w̄24 = y2 + w24 − y4 = 0 + 5− 4 = 1

w̄65 = y6 + w65 − y5 = 6 + 1− 8 = −1

Naturally edge (2, 4) cannot be a candidate for a negative cost circuit as we have
just removed it from the tree solution, but the edge (6, 5) defines a negative
cycle C2. In C2 the forward edges are (6, 5) and (3, 6), while (4, 5) and (3, 4)
are backward edges. The backward edges both have a flow of 10 so we decrease
both to zero, while flows on the forward edges are increased by 10. One of the
backward edges must leave the tree solution. The choice is really arbitrary, we
will remove (4, 5) from the tree solution and add (6, 5). This gets us the solution
in the lower right graph. With the updated y being (1, 0, 3, 4, 7, 6) there are no
more negative cost circuits and the algorithm terminates. The optimum flow
has a value of 95.

7.3 Network Simplex Algorithm for the Mini-

mum Cost Flow Problem

We now consider the general minimum cost flow problem given by the network
G = (V,E) with demands bi, i ∈ V , capacities ue, e ∈ E and costs we, e ∈
E. In general, the algorithm for the general case of the minimum cost flow
problem is a straightforward extension of the network simplex algorithm for
the transshipment problem as described in the previous section. It can also be
viewed as an interpretation of the bounded variable simplex method of linear
programming.
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Remember the optimality conditions for a feasible flow x ∈ RE :

w̄e < 0 ⇒ xe = ue (6=∞)

w̄e > 0 ⇒ xe = 0

The concept of a tree solution is extended to capacity constrained problems. A
non-tree edge e may now have flow either zero or ue. E \T is hence partitioned
into two sets of edges, L and U . Edges in L must have flow zero and edges in
U must have flow equal to their capacity. The tree solution x must satisfy:

∀i ∈ V : fx(i) = bi

∀e ∈ L : xe = 0

∀e ∈ U : xe = ue

As before, the tree solution for T is unique: Select a vertex r called the root of
T . Consider an edge h in T . Again h partitions V into two: a part containing
r denoted RT

h and a remainder PT
h = V \RT

h .

Consider now the modified demand B(PT
h ) in PT

h given that a tree solution is
sought:

B(PT
h ) =

∑

i∈P T

h

bi

−
∑

{(i,j)∈U :i∈RT

h
,j∈P T

h
}

uij

+
∑

{(i,j)∈U :i∈P T

h
,j∈RT

h
}

uij

If h starts in RT
h and ends in PT

h then set

xh = B(PT
h )

and if h starts in PT
h and ends in RT

h then set

xh = −B(PT
h ).

Now the algorithm for the general minimum cost flow problem is based on the
following theorem, that will be presented without proof:

Theorem 7.3 If G = (V,E,w, u, b) has a feasible solution, then it has a feasible
tree solution. If it has an optimal solution, then it has an optimal tree solution.
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The network simplex algorithm will move from tree solution to tree solution only
using circuits formed by adding a single edge to T . However, if the non-tree edge
being consider has flow equal to capacity, then we consider sending flow in the
opposite direction. We now search for either a non-tree edge e with xe = 0 and
negative reduced cost or a non-tree edges e with xe = ue and positive reduced
cost. Given e and T,L and , U , the corresponding circuit is denoted CT,L,U

e .
This circuit the satisfies:

• Each edge of CT,L,U
e is an element if T ∪ {e}.

• If e ∈ L it is a forward edge of CT,L,U
e , and otherwise it is a backward

edge.

With finite capacities it is not so easy to come up with an initial feasible tree
solution. One approach is to add a “super source” r̄ vertex and a “super sink”
vertex s̄ to G. Now edges from r̄ to a source vertex i get capacity equal to
the absolute value of the demand of i, that is, ur̄i = −bi and correspondingly
we get uis̄ = di for a sink vertex i. The capacity on edges from are set to
the supply/demand of that node. On the “extended” G we solve a maximum
flow problem. This will constitute a feasible solution and will present us with a
feasible tree solution.

In this, the flow must be increased in forward edges respecting capacity con-
straints and decreased in backward edges respect the non-negativity constraints.
We can now state the algorithm for the minimum cost flow problem.

Let us finish of the discussion on the network simplex by demonstrating it on
an example. Figure 7.7 show the iterations.

In this case it is easy to come up with a feasible tree solution. Both non-tree
edges (3, 4) and (6, 5) are in L as their flow is equal to zero. Now we compute
y = (1, 0, 3, 5, 6, 9) and for each of the two non-tree edges we get:

w̄34 = y3 + w34 − y4 = 3 + 1− 5 = −1

w̄65 = y6 + w65 − y5 = 6 + 1− 9 = −2

Both will improve the solution. Let us take (3, 4). This defines a unique cycle
with forward edges (3, 4), (2, 1) and (1, 3) and (2, 4) being a backward edges.
The bottleneck in this circuit becomes (1, 3) as the flow on this edge only can
be increased by five units. We increase the flow on forward edges by five and
decrease it by five on (2, 4) which gets us to step 1. Note now that the non-tree
edge (1, 3) belongs to U whereas (6, 5) remains in L. We recompute y to be
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Figure 7.7: An example of the use of the network simplex algorithm. Labels on
the edges represent we, ue respectively we, ue, xe. Bold edges identify the tree
solution
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Algorithm 16: The Network Simplex Algorithm for the Minimum Cost
Flow Problem

Find a tree T with a corresponding feasible tree solution x1

Select a vertex r ∈ V as root for T2

Compute yi as the length of the r − i–path in T , costs counted with sign3

(plus for forward edges, minus for backward edges)
while ∃(i, j) ∈ L s.t w̄ij = wij + yi − yj < 0) ∨ (∃(i, j) ∈ U s.t w̄ij =4

wij + yi − yj > 0) do
Select one of these5

if no edge in CT,L,U
e is backward and no forward edge has limited6

capacity then
STOP7

/* the problem is unbounded */

find θ1 ← min{xj : j backward in CT,L,U
e }, θ2 ← min{uj − xj : j8

forward in CT,L,U
e }, and an edge h giving rise to θ ← min{θ1, θ2}

increase x by θ along CT,L,U
e9

T ← (T ∪ {e}) \ {h}10

Update L,U by removing e and inserting h in the relevant one of L11

and U
Update y12

(1, 0, 4, 5, 7, 9). For the two non-tree edges we no get:

w̄13 = y1 + w13 − y3 = 1 + 2− 4 = −1

w̄65 = y6 + w65 − y5 = 7 + 1− 9 = −1

Even though w̄13 is negative we can only choose (6, 5) because (1, 3) ∈ U . We
choose (6, 5) and in the circuit defined by that edge the flow can be increase by
at most three units. The edge that defines the bottleneck is edge (3, 6) which
is included in U , whereas (1, 3) is included in T . This gets us to step 2 in the
figure.

w̄13 = y1 + w13 − y3 = 1 + 2− 4 = −1

w̄36 = y3 + w36 − y6 = 4 + 3− 8 = −1

Because both non-tree edges are in U and have negative reduced cost the tree
solution is optimal.
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7.4 Supplementary Notes

There is (naturally) a close relationship between the network simplex algorithm
and the simplex algorithm. An in-depth discussion of these aspects of the net-
work simplex algorithm can be found in [1].

7.5 Exercises

1. ([1])For the minimum-cost flow problem of Figure 7.8 determine whether
the indicated vector x is optimal. Numbers on edges are in order we, ue, xe,
numbers at vertices are demands. If it is optimal, find a vector y that
certifies its optimality.

6,3,2 5,2,0

3,5,4

0,4,0

−2,4,3

5,4,4

6,2,2

−2,2,0 2,3,0

3,8,8

2,4,1

−3,2,1 3,2,1

4,6,3

2,3,30,3,0

Figure 7.8: Given x, find y

2. Bandwidth packing problem. Consider a communications network,
G = (V,E), where there are n vertices and m edges. Each edge has a
bandwidth, be, and unit cost we. A call i is defined by its starting vertex
(si), destination vertex (di), bandwidth demand (wi) and revenue (ri).
(Bandwidth demands are additive: if calls 1 and 2 both use the same
edge, the total bandwidth requirement is w1 + w2.) Let N denote the
number of calls, and we seek to maximize profit subject to logical flow
requirements and bandwidth limits. Formulate this as a 0-1 Integer Linear
Programming Problem.
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3. Piecewise linear objective function. Suppose that the linear objective
function for the minimum cost flow problem is replaced with a separable
piecewise linear function. Show how to convert this problem to the stan-
dard minimum cost-flow problem.

4. The Caterer Problem. ([3]) A caterer has booked his services for the
next T days. He requires rt fresh napkins on the t’th day, t = 1, 2, . . . , T .
He sends his soiled napkins to the laundry, which has three speeds of
service f = 1, 2, or 3 days. The faster the service the higher the cost cf

of laundering a napkin. He can also purchase new napkins at the cost co.
He has an initial stock of s napkins. The caterer wishes to minimize the
total outlay.

(a) Formulate the problem as a network problem.

(b) Solve the problem for the next 14 days. Daily requirement of napkins
is given by Table 7.1. In addition the price of the three different
laundry solutions are f = 1 costs 8 Danish kroner, f = 2 costs 4
Danish kroner and f = 3 costs 2 Danish kroner. The unit price of
buying new napkins are 25 Danish kroner.

Day 1 2 3 4 5 6 7
Req. 500 600 300 800 2200 2600 1200
Day 8 9 10 11 12 13 14
Req. 300 1000 400 600 1400 3000 2000

Table 7.1: Daily requirement of napkins for the next 14 days.

5. Flow restrictions. ([3]) Suppose that in a minimum cost flow problem
restrictions are placed on the total flow leaving a node k, i.e.

θk ≤
∑

(k,j)∈E

xkj ≤ θk

Show how to modify these restrictions to convert the problem into a stan-
dard minimum cost flow problem.
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Chapter 8

Dynamic Programming

8.1 The Floyd-Warshall Algorithm

Another interesting variant of the Shortest Path Problem is the case where we
want to find the Shortest Path between all pairs of vertices i, j in the problem.
This can be resolved by repeated use one of our “one source” algorithms from
earlier in this chapter. But there are faster and better ways to solve the “all
pairs” problem.

This problem is relevant in many situations, most often as subproblems to other
problems. One case is routing of vehicles. Having a fleet of vehicles and a set of
customers that needs to be visited often we want to build a set of routes for the
vehicles in order to minimize the total distance driven. In order to achieve this
we need to know the shortest distances between every pair of customers before
we can start to compute the best set of routes.

In the all pairs problem we no longer maintain just a vector of potentials and a
vector of predecessors instead we need to maintain two matrices one for distance
and one for predecessor.

One of the algorithms for the all pairs problem is the Floyd-Warshall algorithm.
The algorithm is based on dynamic programming and considers “intermediate”
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vertices of a shortest path. An intermediate vertex of a simple path is any of
the vertices in the path except the first and the last.

Let us assume that the vertices of G are V = {1, 2, . . . , n}. The algorithm is
based on an observation that we, based on shortest paths between (i, j) con-
taining only vertices in the set {1, 2, . . . , k − 1}, can construct shortest paths
between (i, j) containing only vertices in the set {1, 2, . . . , k}. In this way we
may gradually construct shortest paths based on more and more vertices until
they are based on the entire set of vertices V .

Algorithm 17: Floyd-Warshall’s algorithm

Data: A distance matrix C for a digraph G = (V,E,w). If the edge
(i, j) ∈ E wij is the distance from i to j, otherwise wij =∞. wii

equals 0 for all i
Result: Two n× n-matrices, y and p, containing the length of the

shortest path from i to j resp. the predecessor vertex for j on
the shortest path for all pairs of vertices in {1, ..., n} × {1, ..., n}

yij ← wij , pij ← i for all (i, j) with wij 6=∞, pij ← 0 otherwise.1

for k ← 1 to n do2

for i← 1 to n do3

for j ← 1 to n do4

if i 6= k ∧ j 6= k ∧ yij > yik + ykj then5

yij ← yik + ykj6

pij ← pkj7

The time complexity of Floyd-Warshall’s algorithm is straightforward. The
initialisation sets up the matrices by initialising each entry in each matrix, which
takes O(n2). The algorithm has three nested loops each of which is performed
n times. The overall complexity is hence O(n3).

Theorem 8.1 (Correctness of Floyd-Warshall’s Algorithm) Given a connected,
directed graph G = (V,E,w) with length function w : E → R. The Floyd-
Warshall algorithm will produce a “shortest path matrix” such that for any two
given vertices i and j yij is the shortest path from i to j.

Proof: This proof is made by induction. Our induction hypothesis is that prior
to iteration k it holds that for i, j ∈ v yij contains length of the shortest path
Q from i to j in G containing only vertices in the vertex set {1, ..., k − 1}, and
that pij contains the immediate predecesor of j on Q.
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This is obviously true after the initialisation. In iteration k, the length of Q is
compared to the length of a path R composed of two subpaths, R1 and R2 (see
Figure 8.1).

R1 is a path from i to k path, that is, R1 = 〈i, v1, v2, . . . , vs, k〉 with “interme-
diate vertices” only in {1, ..., k− 1} so va ∈ {1, ..., k− 1}, and R2 is a path from
k to j path with “intermediate vertices” only in {1, ..., k − 1}. The shorter of
these two is chosen.

contains only vertices from {1,..., k−1}

Q

R2

R1

p[i,j]

j

p[k,j]

k

i

Figure 8.1: Proof of the Floyd-Warshall algorithm

The shortest path from i to j in G containing only vertices in the vertex set
{1, ..., k} either

1. does not contain k - and hence is the one found in iteration k − 1, or

2. contains k - and then can be decomposed into an i, k followed by a k, j
path, each of which, by the induction hypothesis, has been found in iter-
ation k − 1.

Hence the update ensures the correctness of the induction hypothesis after iter-
ation k. △

Finally, we note that the Floyd-Warshall algorithm can detect negative length
cycles. It namely computes the shortest path from i to i (the diagonal of the W
matrix) and if any of these values are negative it means that there is a negative
cycle in the graph.
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Chapter 9

Branch and Bound

A large number of real-world planning problems called combinatorial optimiza-
tion problems share the following properties: They are optimization problems,
are easy to state, and have a finite but usually very large number of feasible
solutions. While some of these as e.g. the Shortest Path problem and the Min-
imum Spanning Tree problem have polynomial algorithms, the majority of the
problems in addition share the property that no polynomial method for their
solution is known. Examples here are vehicle routing, crew scheduling, and
production planning. All of these problems are NP-hard.

Branch and Bound is by far the most widely used tool for solving large scale
NP-hard combinatorial optimization problems. Branch and Bound is, however,
an algorithm paradigm, which has to be filled out for each specific problem type,
and numerous choices for each of the components exist. Even then, principles
for the design of efficient Branch and Bound algorithms have emerged over the
years.

In this chapter we review the main principles of Branch and Bound and illus-
trate the method and the different design issues through three examples: the
symmetric Travelling Salesman Problem, the Graph Partitioning problem, and
the Quadratic Assignment problem.

Solving NP-hard discrete optimization problems to optimality is often an im-
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mense job requiring very efficient algorithms, and the Branch and Bound paradigm
is one of the main tools in construction of these. A Branch and Bound algo-
rithm searches the complete space of solutions for a given problem for the best
solution. However, explicit enumeration is normally impossible due to the ex-
ponentially increasing number of potential solutions. The use of bounds for the
function to be optimized combined with the value of the current best solution
enables the algorithm to search parts of the solution space only implicitly.

At any point during the solution process, the status of the solution with respect
to the search of the solution space is described by a pool of yet unexplored
subset of this and the best solution found so far. Initially only one subset exists,
namely the complete solution space, and the best solution found so far is ∞.
The unexplored subspaces are represented as nodes in a dynamically generated
search tree, which initially only contains the root, and each iteration of a classical
Branch and Bound algorithm processes one such node. The iteration has three
main components: selection of the node to process, bound calculation, and
branching. In Figure 9.1, the initial situation and the first step of the process
is illustrated.

The sequence of these may vary according to the strategy chosen for selecting
the next node to process. If the selection of next subproblem is based on the
bound value of the subproblems, then the first operation of an iteration after
choosing the node is branching, i.e. subdivision of the solution space of the node
into two or more subspaces to be investigated in a subsequent iteration. For
each of these, it is checked whether the subspace consists of a single solution, in
which case it is compared to the current best solution keeping the best of these.
Otherwise the bounding function for the subspace is calculated and compared
to the current best solution. If it can be established that the subspace cannot
contain the optimal solution, the whole subspace is discarded, else it is stored
in the pool of live nodes together with it’s bound. This is in [2] called the eager
strategy for node evaluation, since bounds are calculated as soon as nodes are
available. The alternative is to start by calculating the bound of the selected
node and then branch on the node if necessary. The nodes created are then
stored together with the bound of the processed node. This strategy is called
lazy and is often used when the next node to be processed is chosen to be a live
node of maximal depth in the search tree.

The search terminates when there is no unexplored parts of the solution space
left, and the optimal solution is then the one recorded as “current best”.

The chapter is organized as follows: In Section 9.1, I go into detail with ter-
minology and problem description and give the three examples to be used suc-
ceedingly. Section 9.1.1, 9.1.2, and 9.1.3 then treat in detail the algorithmic
components selection, bounding and branching, and Section 9.1.4 briefly com-
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ments upon methods for generating a good feasible solution prior to the start of
the search. I then describe personal experiences with solving two problems using
parallel Branch and Bound in Section 9.2.1 and 9.2.2, and Section 9.3 discusses
the impact of design decisions on the efficiency of the complete algorithm.

9.1 Branch and Bound - terminology and gen-

eral description

In the following I consider minimization problems - the case of maximization
problems can be dealt with similarly. The problem is to minimize a function
f(x) of variables (x1 · · ·xn) over a region of feasible solutions, S :

z = min{f(x) : x ∈ S}

The function f is called the objective function and may be of any type. The set
of feasible solutions is usually determined by general conditions on the variables,
e.g. that these must be non-negative integers or binary, and special constraints
determining the structure of the feasible set. In many cases, a set of potential
solutions, P , containing S, for which f is still well defined, naturally comes to
mind, and often, a function g(x) defined on S (or P ) with the property that
g(x) ≤ f(x) for all x in S (resp. P ) arises naturally. Both P and g are very
useful in the Branch and Bound context. Figure 9.2 illustrates the situation
where S and P are intervals of reals.

I will use the terms subproblem to denote a problem derived from the originally
given problem through addition of new constraints. A subproblem hence corre-
sponds to a subspace of the original solution space, and the two terms are used
interchangeably and in the context of a search tree interchangeably with the
term node. In order to make the discussions more explicit I use three problems
as examples. The first one is one of the most famous combinatorial optimization
problems: the Travelling Salesman problem. The problem arises naturally in
connection with routing of vehicles for delivery and pick-up of goods or persons,
but has numerous other applications. A famous and thorough reference is [11].

Example 1: The Symmetric Travelling Salesman problem. In Figure 9.3, a
map over the Danish island Bornholm is given together with a distance table
showing the distances between major cities/tourist attractions. The problem of
a biking tourist, who wants to visit all these major points, is to find a tour of
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Figure 9.2: The relation between the bounding function g and the objective
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Figure 9.3: The island Bornholm and the distances between interesting sites

minimum length starting and ending in the same city, and visiting each other
city exactly once. Such a tour is called a Hamilton cycle. The problem is called
the symmetric Travelling Salesman problem (TSP) since the table of distances
is symmetric.

In general a symmetric TSP is given by a symmetric n × n matrix D of non-
negative distances, and the goal is to find a Hamilton tour of minimum length.



148 Branch and Bound

In terms of graphs, we consider a complete undirected graph with n vertices Kn

and non-negative lengths assigned to the edges, and the goal is to determine a
Hamilton tour of minimum length. The problem may also be stated mathemat-
ically by using decision variables to describe which edges are to be included in
the tour. We introduce 0-1 variables xij , 1 ≤ i < j ≤ n, and interpret the value
0 (1 resp.) to mean ”not in tour” (”in tour” resp.) The problem is then

min

n−1
∑

i=1

n
∑

j=i+1

dijxij

such that

i−1
∑

k=1

xki +

n
∑

k=i+1

xik = 2, i ∈ {1, ..., n}

∑

i,j∈Z

xij < |Z| ∅ ⊂ Z ⊂ V

xij ∈ {0, 1}, i, j ∈ {1, ..., n}

The first set of constraints ensures that for each i exactly two variables corre-
sponding to edges incident with i are chosen. Since each edge has two endpoints,
this implies that exactly n variables are allowed to take the value 1. The second
set of constraints consists of the subtour elimination constraints. Each of these
states for a specific subset Z of V that the number of edges connecting ver-
tices in Z has to be less than |Z| thereby ruling out that these form a subtour.
Unfortunately there are exponentially many of these constraints.

The given constraints determine the set of feasible solutions S. One obvious way
of relaxing this to a set of potential solutions is to relax (i.e. discard) the subtour
elimination constrains. The set of potential solutions P is then the family of all
sets of subtours such that each i belongs to exactly one of the subtours in each
set in the family, cf. Figure 9.4. In Section 9.1.1 another possibility is decribed,
which in a Branch and Bound context turns out to be more appropriate.

A subproblem of a given symmetric TSP is constructed by deciding for a subset
A of the edges of G that these must be included in the tour to be constructed,
while for another subset B the edges are excluded from the tour. Exclusion of
an edge (i, j) is usually modeled by setting cij to∞, whereas the inclusion of an
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Figure 9.4: A potential, but not feasible solution to the biking tourist’s problem

edge can be handled in various ways as e.g. graph contraction. The number of
feasible solutions to the problem is (n−1)!/2, which for n = 50 is appr. 3×1062

△

The following descriptions follow [4, 5].

Example 2: The Graph Partitioning Problem. The Graph Partitioning problem
arises in situations, where it is necessary to minimize the number (or weight
of) connections between two parts of a network of prescribed size. We consider
a given weighted, undirected graph G with vertex set V and edge set E , and
a cost function c : E → N . The problem is to partition V into two disjoint
subsets V1 and V2 of equal size such that the sum of costs of edges connecting
vertices belonging to different subsets is as small as possible. Figure 9.5 shows
an instance of the problem:

The graph partitioning problem can be formulated as a quadratic integer pro-
gramming problem. Define for each vertex v of the given graph a variable xv,
which can attain only the values 0 and 1. A 1-1 correspondence between parti-
tions and assignments of values to all variables now exists: xv = 1 (respectively
= 0) if and only if v ∈ V1 (respectively v ∈ V2). The cost of a partition is then

∑

v∈V1,u∈V2

cuvxv(1− xu).
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Figure 9.5: A graph partitioning problem and a feasible solution.

A constraint on the number of variables attaining the value 1 is included to
exclude infeasible partitions.

∑

v∈V

xv = |V |/2.

The set of feasible solutions S is here the partitions of V into two equal-sized
subsets. The natural set P of potential solutions are all partitions of V into two
non-empty subsets.

Initially V1 and V2 are empty corresponding to that no variables have yet been
assigned a value. When some of the vertices have been assigned to the sets (the
corresponding variables have been assigned values 1 or 0), a subproblem has
been constructed.

The number of feasible solutions to a GPP with 2n vertices equals the binomial
coefficient C(2n, n). For 2n = 120 the number of feasible solutions is appr.
9.6× 1034. △

Example 3: The Quadratic Assignment Problem. Here, I consider the Koop-
mans-Beckman version of the problem, which can informally be stated with
reference to the following practical situation: A company is to decide the as-
signment of n of facilities to an equal number of locations and wants to minimize
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Figure 9.6: A Quadratic Assignment problem of size 4.

the total transportation cost. For each pair of facilities (i, j) a flow of commu-
nication fi,j is known, and for each pair of locations (l, k) the corresponding
distance dl,k is known. The transportation cost between facilities i and j, given
that i is assigned to location l and j is assigned to location k, is fi,j · dl, k,
and the objective of the company is to find an assignment minimizing the sum
of all transportation costs. Figure 9.6 shows a small example with 4 facilities
and 4 locations. The assignment of facilities A,B,C, and D on sites 1,2,3, and 4
respectively has a cost of 224.

Each feasible solution corresponds to a permutation of the facilities, and let-
ting S denote the group of permutations of n elements, the problem can hence
formally be stated as

min{
n

∑

i=1

n
∑

j=1

fi,j · dπ(i),π(j) : π ∈ S}.

A set of potential solutions is e.g. obtained by allowing more than one facility
on each location.

Initially no facilities have been placed on a location, and subproblems of the
original problem arise when some but not all facilities have been assigned to
locations.

Again the number of feasible solutions grows exponentially: For a problem with
n facilities to be located, the number of feasible solutions is n!, which for n = 20
is appr. 2.43× 1018. △

The solution of a problem with a Branch and Bound algorithm is traditionally
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described as a search through a search tree, in which the root node corresponds
to the original problem to be solved, and each other node corresponds to a
subproblem of the original problem. Given a node Q of the tree, the children
of Q are subproblems derived from Q through imposing (usually) a single new
constraint for each subproblem, and the descendants of Q are those subproblems,
which satisfy the same constraints as Q and additionally a number of others. The
leaves correspond to feasible solutions, and for all NP-hard problems, instances
exist with an exponential number of leaves in the search tree. To each node
in the tree a bounding function g associates a real number called the bound for
the node. For leaves the bound equals the value of the corresponding solution,
whereas for internal nodes the value is a lower bound for the value of any solution
in the subspace corresponding to the node. Usually g is required to satisfy the
following three conditions:

1. g(Pi) ≤ f(Pi) for all nodes Pi in the tree

2. g(Pi) = f(Pi) for all leaves in the tree

3. g(Pi) ≥ g(Pj) if Pj is the father of Pi

These state that g is a bounding function, which for any leaf agrees with the
objective function, and which provides closer and closer (or rather not worse)
bounds when more information in terms of extra constraints for a subproblem
is added to the problem description.

The search tree is developed dynamically during the search and consists initially
of only the root node. For many problems, a feasible solution to the problem
is produced in advance using a heuristic, and the value hereof is used as the
current best solution (called the incumbent). In each iteration of a Branch
and Bound algorithm, a node is selected for exploration from the pool of live
nodes corresponding to unexplored feasible subproblems using some selection
strategy. If the eager strategy is used, a branching is performed: Two or more
children of the node are constructed through the addition of constraints to the
subproblem of the node. In this way the subspace is subdivided into smaller
subspaces. For each of these the bound for the node is calculated, possibly
with the result of finding the optimal solution to the subproblem, cf. below. In
case the node corresponds to a feasible solution or the bound is the value of an
optimal solution, the value hereof is compared to the incumbent, and the best
solution and its value are kept. If the bound is no better than the incumbent,
the subproblem is discarded (or fathomed), since no feasible solution of the
subproblem can be better that the incumbent. In case no feasible solutions to
the subproblem exist the subproblem is also fathomed. Otherwise the possibility
of a better solution in the subproblem cannot be ruled out, and the node (with



9.1 Branch and Bound - terminology and general description 153

the bound as part of the information stored) is then joined to the pool of live
subproblems. If the lazy selection strategy is used, the order of bound calculation
and branching is reversed, and the live nodes are stored with the bound of their
father as part of the information. Below, the two algorithms are sketched.

Algorithm 18: Eager Branch and Bound

Data: specify
Result: specify

Incumbent ←∞1

LB(P0) ← g(P0)2

Live ← {(P0, LB(P0))}3

repeat4

Select the node P from Live to be processed5

Live ← Live \ {P}6

Branch on P generating P1, ...Pk7

for 1 ≤ i ≤ k do8

Bound Pi : LB(Pi) := g(Pi)9

if LB(Pi) = f(X) for a feasible solution X and10

f(X) < Incumbent then
Incumbent ← f(X)11

Solution ← X12

Live ← ∅13

if LB(Pi) ≥ Incumbent then14

fathom Pi15

else16

Live := Live ∪{(Pi, LB(Pi))}17

until Live = ∅18

OptimalSolution ← Solution19

OptimalValue ← Incumbent20
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Algorithm 19: Lazy Branch and Bound

Data: specify
Result: specify

Incumbent ←∞1

Live ← {(P0, LB(P0))}2

repeat3

Select the node P from Live to be processed4

Live ← Live \ {P}5

Bound P6

LB(P ) ← g(P )7

if LB(P ) = f(X) for a feasible solution X and f(X) < Incumbent8

then
Incumbent ← f(X)9

Solution ← X10

Live ← ∅11

if LB(Pi) ≥ Incumbent then12

fathom P13

else14

Branch on P generating P1, ...Pk15

for 1 ≤ i ≤ k do16

Live := Live ∪{(Pi, LB(Pi))}17

until Live = ∅18

OptimalSolution ← Solution19

OptimalValue ← Incumbent20

A Branch and Bound algorithm for a minimization problem hence consists of
three main components:

1. a bounding function providing for a given subspace of the solution space a
lower bound for the best solution value obtainable in the subspace,

2. a strategy for selecting the live solution subspace to be investigated in the
current iteration, and

3. a branching rule to be applied if a subspace after investigation cannot be
discarded, hereby subdividing the subspace considered into two or more
subspaces to be investigated in subsequent iterations.

In the following, I discuss each of these key components briefly.
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In addition to these, an initial good feasible solution is normally produced using
a heuristic whenever this is possible in order to facilitate fathoming of nodes as
early as possible. If no such heuristic exists, the initial value of the incumbent
is set to infinity. It should be noted that other methods to fathom solution
subspaces exist, e.g. dominance tests, but these are normally rather problem
specific and will not be discussed further here. For further reference see [8].

9.1.1 Bounding function

The bounding function is the key component of any Branch and Bound algo-
rithm in the sense that a low quality bounding function cannot be compensated
for through good choices of branching and selection strategies. Ideally the value
of a bounding function for a given subproblem should equal the value of the
best feasible solution to the problem, but since obtaining this value is usually
in itself NP-hard, the goal is to come as close as possible using only a limited
amount of computational effort (i.e. in polynomial time), cf. the succeeding
discussion. A bounding function is called strong, if it in general gives values
close to the optimal value for the subproblem bounded, and weak if the values
produced are far from the optimum. One often experiences a trade off between
quality and time when dealing with bounding functions: The more time spent
on calculating the bound, the better the bound value usually is. It is normally
considered beneficial to use as strong a bounding function as possible in order
to keep the size of the search tree as small as possible.

Bounding functions naturally arise in connection with the set of potential solu-
tions P and the function g mentioned in Section 2. Due to the fact that S ⊆ P ,
and that g(x) ≤ f(x) on P , the following is easily seen to hold:

minx∈P g(x) ≤

{

minx∈P f(x)
minx∈S g(x)

}

≤ minx∈S f(x)

If both of P and g exist there are now a choice between three optimization
problems, for each of which the optimal solution will provide a lower bound for
the given objective function. The “skill” here is of course to chose P and/or g
so that one of these is easy to solve and provides tight bounds.

Hence there are two standard ways of converting the NP-hard problem of solv-
ing a subproblem to optimality into a P-problem of determining a lower bound
for the objective function. The first is to use relaxation - leave out some of the
constraints of the original problem thereby enlarging the set of feasible solu-
tions. The objective function of the problem is maintained. This corresponds
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to minimizing f over P . If the optimal solution to the relaxed subproblem
satisfies all constraints of the original subproblem, it is also optimal for this,
and is hence a candidate for a new incumbent. Otherwise, the value is a lower
bound because the minimization is performed over a larger set of values than
the objective function values for feasible solutions to the original problem. For
e.g. GPP, a relaxation is to drop the constraint that the sizes of V1 and V2 are
to be equal.

The other way of obtaining an easy bound calculation problem is to minimize
g over S, i.e. to maintain the feasible region of the problem, but modify the
objective function at the same time ensuring that for all feasible solutions the
modified function has values less than or equal to the original function. Again
one can be sure that a lower bound results from solving the modified problem
to optimality, however, it is generally not true that the optimal solution corre-
sponding to the modified objective function is optimal for the original objective
function too. The most trivial and very weak bounding function for a given
minimization problem obtained by modification is the sum of the cost incurred
by the variable bindings leading to the subproblem to be bounded. Hence all
feasible solutions for the subproblem are assigned the same value by the modified
objective function. In GPP this corresponds to the cost on edges connecting
vertices assigned to V1 in the partial solution with vertices assigned to V2 in
the partial solution, and leaving out any evaluation of the possible costs be-
tween one assigned and one unassigned vertex, and costs between two assigned
vertices. In QAP, an initial and very weak bound is the transportation cost
between facilities already assigned to locations, leaving out the potential costs
of transportation between one unassigned and one assigned, as well as between
two unassigned facilities. Much better bounds can be obtained if these potential
costs are included in the bound, cf. the Roucairol-Hansen bound for GPP and
the Gilmore-Lawler bound for QAP as described e.g. in [4, 5].

Combining the two strategies for finding bounding functions means to minimize
g over P , and at first glance this seems weaker than each of those. However,
a parameterized family of lower bounds may result, and finding the parameter
giving the optimal lower bound may after all create very tight bounds. Bounds
calculated by so-called Lagrangean relaxation are based on this observation -
these bounds are usually very tight but computationally demanding. The TSP
provides a good example hereof.

Example 4: The 1-tree bound for symmetric TSP problems. As mentioned,
one way of relaxing the constraints of a symmetric TSP is to allow subtours.
However, the bounds produced this way are rather weak. One alternative is the
1-tree relaxation.
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Here one first identifies a special vertex, “#1”, which may be any vertex of the
graph. “#1” and all edges incident to this are removed from G, and a minimum
spanning tree Trest is found for the remaining graph. Then the two shortest
edges e1, e2 incident to “#1” are added to Trest producing the 1-tree Tone of G
with respect to “#1”, cf. Figure 9.7.

The total cost of Tone is a lower bound of the value of an optimum tour. The
argument for this is as follows: First note that a Hamilton tour in G consists
of two edges e′1, e

′
2 and a tree T ′

rest in the rest of G. Hence the set of Hamilton
tours of G is a subset of the set of 1-trees of G. Since e1, e2 are the two shortest
edges incident to “#1” and Trest is the minimum spanning tree in the rest of
G, the cost of Tone is less than or equal the cost of any Hamilton tour.

In case Tone is a tour, we have found the optimal solution to our subproblem –
otherwise a vertex of degree at least 3 exists and we have to perform a branching.

The 1-tree bound can be strengthened using the idea of problem transformation:
Generate a new symmetric TSP problem having the same optimal tour as the
original, for which the 1-tree bound is tighter. The idea is that vertices of Tone

with high degree are incident with too many attractive edges, whereas vertices
of degree 1 have too many unattractive edges. Denote by πi the degree of vertex
i minus 2: πi := deg(vi)− 2. Note that the sum over V of the values π equals 0
since Tone has n edges, and hence the sum of deg(vi) equals 2n. Now for each
edge (i, j) we define the transformed cost c′ij to be cij + πi + πj . Since each
vertex in a Hamilton tour is incident to exactly two edges, the new cost of a
Hamilton tour is equal to the current cost plus two times the sum over V of
the values π. Since the latter is 0, the costs of all tours are unchanged, but the
costs of 1-trees in general increase. Hence calculating the 1-tree bound for the
transformed problem often gives a better bound, but not necessarily a 1-tree,
which is a tour.

The trick may be repeated as many times as one wants, however, for large
instances a tour seldomly results. Hence, there is a trade-off between time and
strength of bound: should one branch or should one try to get an even stronger
bound than the current one by a problem transformation ? Figure 9.7 (c) shows
the first transformation for the problem of Figure 9.7 (b).

9.1.2 Strategy for selecting next subproblem

The strategy for selecting the next live subproblem to investigate usually reflects
a trade off between keeping the number of explored nodes in the search tree low,
and staying within the memory capacity of the computer used. If one always
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selects among the live subproblems one of those with the lowest bound, called
the best first search strategy, BeFS, no superfluous bound calculations take place
after the optimal solution has been found. Figure 9.8 (a) shows a small search
tree - the numbers in each node corresponds to the sequence, in which the nodes
are processed when BeFS is used.

The explanation of the property regarding superfluos bound calculations lies
in the concept of critical subproblems. A subproblem P is called critical if
the given bounding function when applied to P results in a value strictly less
than the optimal solution of the problem in question. Nodes in the search tree
corresponding to critical subproblems have to be partitioned by the Branch and
Bound algorithm no matter when the optimal solution is identified - they can
never be discarded by means of the bounding function. Since the lower bound
of any subspace containing an optimal solution must be less than or equal to the
optimum value, only nodes of the search tree with lower bound less than or equal
to this will be explored. After the optimal value has been discovered only critical
nodes will be processed in order to prove optimality. The preceding argument
for optimality of BeFS with respect to number of nodes processed is valid only
if eager node evaluation is used since the selection of nodes is otherwise based
on the bound value of the father of each node. BeFS may, however, also be used
in combination with lazy node evaluation.

Even though the choice of the subproblem with the current lowest lower bound
makes good sense also regarding the possibility of producing a good feasible
solution, memory problems arise if the number of critical subproblems of a
given problem becomes too large. The situation more or less corresponds to a
breath first search strategy, in which all nodes at one level of the search tree are
processed before any node at a higher level. Figure 9.8 (b) shows the search tree
with the numbers in each node corresponding to the BFS processing sequence.
The number of nodes at each level of the search tree grows exponentially with the
level making it infeasible to do breadth first search for larger problems. For GPP
sparse problems with 120 vertices often produce in the order of a few hundred
of critical subproblems when the Roucairol-Hansen bounding function is used
[4], and hence BeFS seems feasible. For QAP the famous Nugent20 problem
[13] produces 3.6× 108 critical nodes using Gilmore-Lawler bounding combined
with detection of symmetric solutions [5], and hence memory problems may be
expected if BeFS is used.

The alternative used is depth first search, DFS. Here a live node with largest
level in the search tree is chosen for exploration. Figure 9.8 (c) shows the
DFS processing sequence number of the nodes. The memory requirement in
terms of number of subproblems to store at the same time is now bounded
above by the number of levels in the search tree multiplied by the maximum
number of children of any node, which is usually a quite manageable number.
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Figure 9.8: Search strategies in Branch and Bound: (a) Best First Search, (b)
Breadth First Search, and (c) Depth First Search.
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DFS can be used both with lazy and eager node evaluation. An advantage
from the programming point of view is the use of recursion to search the tree
- this enables one to store the information about the current subproblem in an
incremental way, so only the constraints added in connection with the creation of
each subproblem need to be stored. The drawback is that if the incumbent is far
from the optimal solution, large amounts of unnecessary bounding computations
may take place.

In order to avoid this, DFS is often combined with a selection strategy, in which
one of the branches of the selected node has a very small lower bound and the
other a very large one. The idea is that exploring the node with the small
lower bound first hopefully leads to a good feasible solution, which when the
procedure returns to the node with the large lower bound can be used to fathom
the node. The node selected for branching is chosen as the one, for which the
difference between the lower bounds of its children is as large as possible. Note
however that this strategy requires the bound values for children to be known,
which again may lead to superfluous calculations.

A combination of DFS as the overall principle and BeFS when choice is to be
made between nodes at the same level of the tree is also quite common.

In [2] an experimental comparison of BeFS and DFS combined with both eager
and lazy node evaluation is performed for QAP. Surprisingly, DFS is superior
to BeFS in all cases, both in terms of time and in terms of number of bound
calculations. The reason turns out to be that in practice, the bounding and
branching of the basic algorithm is extended with additional tests and calcula-
tions at each node in order to enhance efficiency of the algorithm. Hence, the
theoretical superiority of BeFS should be taken with a grain of salt.

9.1.3 Branching rule

All branching rules in the context of Branch and Bound can bee seen as sub-
division of a part of the search space through the addition of constraints, often
in the form of assigning values to variables. If the subspace in question is sub-
divided into two, the term dichotomic branching is used, otherwise one talks
about polytomic branching. Convergence of Branch and Bound is ensured if the
size of each generated subproblem is smaller than the original problem, and the
number of feasible solutions to the original problem is finite. Normally, the sub-
problems generated are disjoint - in this way the problem of the same feasible
solution appearing in different subspaces of the search tree is avoided.

For GPP branching is usually performed by choosing a vertex not yet assigned
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to any of V1 and V2 and assigning it to V1 in one of the new subproblems
(corresponding to that the variable of the node receives the value 1) and to V2

in the other (variable value equal to 0). This branching scheme is dichotomic,
and the subspaces generated are disjoint.

In case of QAP, an unassigned facility is chosen, and a new subproblem is created
for each of the free location by assigning the chosen facility to the location. The
scheme is called branching on facilities and is polytomic, and also here the
subspaces are disjoint. Also branching on locations is possible.

For TSP branching may be performed based on the 1-tree generated during
bounding. If all vertices have degree 2 the 1-tree is a tour, and hence an optimal
solution to the subproblem. Then no further branching is required. If a node
has degree 3 or more in the 1-tree, any such node may be chosen as the source of
branching. For the chosen node, a number of subproblems equal to the degree
is generated. In each of these one of the edges of the 1-tree is excluded from the
graph of the subproblem ruling out the possibility that the bound calculation
will result in the same 1-tree. Figure 9.9 shows the branching taking place after
the bounding in Figure 9.7. The bound does, however, not necessarily change,
and identical subproblems may arise after a number of branchings. The effect
of the latter is not an incorrect algorithm, but a less efficient algorithm. The
problem is further discussed as an exercise.

9.1.4 Producing an initial solution

Although often not explicitly mentioned, another key issue in the solution of
large combinatorial optimization problems by Branch and Bound is the con-
struction of a good initial feasible solution. Any heuristic may be used, and
presently a number of very good general heuristics as well as a wealth of very
problem specific heuristics are available. Among the general ones (also called
meta-heuristics or paradigms for heuristics), Simulated Annealing, Genetic Al-
gorithms, and Tabu Search are the most popular.

As mentioned, the number of subproblems explored when the DFS strategy for
selection is used depends on the quality of the initial solution - if the heuris-
tic identifies the optimal solution so that the Branch and Bound algorithm
essentially verifies the optimality, then even DFS will only explore critical sub-
problems. If BeFS is used, the value of a good initial solution is less obvious.

Regarding the three examples, a good and fast heuristic for GPP is the Kernighan-
Lin variable depth local search heuristic. For QAP and TSP, very good results
have been obtained with Simulated Annealing.



9.2 Personal Experiences with GPP and QAP 163

A

B

C

D

E

FG

H

Cost of 1-tree = 98

A

B

C

D

E

FG

H

A

B

C

D

E

FG

H

A

B

C

D

E

FG

H

The optimal tour ! Cost of 1-tree = 104

Exclude  (A,H)

Exclude (D,H)
Exclude (H,G)

Figure 9.9: Branching from a 1-tree in a Branch and Bound algorithm for the
symmetric TSP.

9.2 Personal Experiences with GPP and QAP

The following subsections briefly describe my personal experiences using Branch
and Bound combined with parallel processing to solve GPP and QAP. Most of
the material stems from [3, 4] and [5]. Even though parallelism is not an integral
part of Branch and Bound, I have chosen to present the material, since the key
components of the Branch and Bound are unchanged. A few concepts from
parallel processing is, however, necessary.

Using parallel processing of the nodes in the search tree of a Branch and Bound
algorithm is a natural idea, since the bound calculation and the branching in
each node is independent. The aim of the parallel procesing is to speed up
the execution time of the algorithm, To measure the success in this aspect,
the speed-up of adding processors is measured. The relative speed-up using p
processors is defined to be the processing time T (1) using one processor divided
by the processing time T (p) using p processors:

S(p) = T (1)/T (p)
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The ideal value of S(p) is p - then the problem is solved p times faster with p
processors than with 1 processor.

An important issue in parallel Branch and Bound is distribution of work: in
order to obtain as short running time as possible, no processor should be idle
at any time during the computation. If a distributed system or a network
of workstations is used, this issue becomes particularly crucial since it is not
possible to maintain a central pool of live subproblems. Various possibilities for
load balancing schemes exist - two concrete examples are given in the following,
but additional ones are described in [7].

9.2.1 Solving the Graph Partitioning Problem in Parallel

GPP was my first experience with parallel Branch and Bound, and we imple-
mented two parallel algorithms for the problem in order to investigate the trade
off between bound quality and time to calculate the bound. One - called the
CT-algorithm - uses an easily computable bounding function based on the prin-
ciple of modified objective function and produces bounds of acceptable quality,
whereas the other - the RH-algorithm - is based on Lagrangean relaxation and
has a bounding function giving tight, but computationally expensive bounds.

The system used was a 32 processor IPSC1/d5 hypercube equipped with Intel
80286 processors and 80287 co-processors each with 512 KB memory. No dedi-
cated communication processors were present, and the communication facilities
were Ethernet connections implying a large start-up cost on any communication.

Both algorithms were of the distributed type, where the pool of live subproblems
is distributed over all processors, and as strategy for distributing the workload
we used a combined “on demand”/”on overload” strategy. The “on overload”
strategy is based on the idea that if a processor has more than a given thresh-
old of live subproblems, a number of these are sent to neighbouring processors.
However, care must be take to ensure that the system is not floated with com-
munication and that flow of subproblems between processors takes place during
the entire solution process. The scheme is illustrated in Figure 9.10.

Regarding termination, the algorithm of Dijkstra et. al. [6] was used. The
selection strategy for next subproblem were BeFs for the RH-algorithm and
DFS for the CT-algorithm. The first feasible solution was generated by the
Kernighan-Lin heuristic, and its value was usually close to the optimal solution
value.

For the CT-algorithm, results regarding processor utilization and relative speed-
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Figure 9.10: Illustration of the on overload protocol. (a) is the situation, when a
processor when checking finds that it is overloaded, and (b) shows the behaviour
of a non-overloaded processor

No. of proc. 4 8 16 32
CT time (sec) 1964 805 421 294

proc. util. (%) 97 96 93 93
no. of bound calc. 449123 360791 368923 522817

RH time (sec) 1533 1457 1252 1219
proc. util. (%) 89 76 61 42
no. of bound calc. 377 681 990 1498

Table 9.1: Comparison between the CT- and RH-algorithm on a 70 vertex
problem with respect to running times, processor utilization, and number of
subproblems solved.

up were promising. For large problems, a processor utilization near 100% was
observed, and linear speed-up close to the ideal were observed for problems
solvable also on a single processor. Finally we observed that the best speed-up
was observed for problems with long running times. The RH-algorithm behaved
differently – for small to medium size problems, the algorithm was clearly inferior
to the CT-algorithm, both with respects to running time, relative speed-up and
processor utilization. Hence the tight bounds did not pay off for small problems
– they resulted idle processors and long running times.

We continued to larger problems expecting the problem to disappear, and Figure
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Figure 9.11: Relative speed-up for the CT-algorithm and the RH-algorithm for
a 70 vertex problem.

9.11 and Table 9.1 shows the results for a 70-vertex problem for the CT- and RH-
algorithms. We found that the situation did by no means improve. For the RH
method it seemed impossible to use more than 4 processors. The explanation
was found in the number of critical subproblems generated, cf. Table 9.2. Here
it is obvious that using more processors for the RH-method just results in a
lot of superfluous subproblems being solved, which does not decrease the total
solution time.

9.2.2 Solving the QAP in Parallel

QAP is one of my latest parallel Branch and Bound experiences. The aim of the
research was in this case to solve the previously unsolved benchmark problem
Nugent20 to optimality using a combination of the most advanced bounding
functions and fast parallel hardware, as well as any other trick we could find
and think of.

We used a MEIKO system consisting of 16 Intel i860 processors each with 16
MB of internal memory. Each processor has a peak performance of 30 MIPS
when doing integer calculation giving an overall peak performance of approxi-
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CT-algorithm RH-algorithm
No. Vert. Cr. subpr. B. calc. Sec. Cr. subpr. B. calc. Sec.

30 103 234 1 4 91 49
40 441 803 2 11 150 114
50 2215 3251 5 15 453 278
60 6594 11759 18 8 419 531
70 56714 171840 188 26 1757 1143
80 526267 901139 931 19 2340 1315

100 2313868 5100293 8825 75 3664 3462
110 8469580 15203426 34754 44 3895 4311
120 – – – 47 4244 5756

Table 9.2: Number of critical subproblems and bound calculations as a function
of problem size.

mately 500 MIPS for the complete system. The performance of each single i860
processor almost matches the performance of the much more powerful Cray 2
on integer calculations, indicating that the system is very powerful.

The processors each have two Inmos T800 transputers as communication pro-
cessors. Each transputer has 4 communication channels each with bandwidth
1.4 Mb/second and start-up latency 340 µs. The connections are software pro-
grammable, and the software supports point-to-point communication between
any pair of processors. Both synchronous and asynchronous communication are
possible, and also both blocking and non-blocking communication exist.

The basic framework for testing bounding functions was a distributed Branch
and Bound algorithm with the processors organized as a ring. Workload distri-
bution was kept simple and based on local synchronization. Each processor in
the ring communicates with each of its neighbours at certain intervals. At each
communication the processors exchange information on the respective sizes of
subproblem pools, and based here-on, subproblems are sent between the proces-
sors. The speed-up obtained with this scheme was 13.7 for a moderately sized
problem with a sequential running time of 1482 seconds and a parallel running
time with 16 processors of 108 seconds.

The selection strategy used was a kind of breadth first search. The feasibility
hereof is intimately related to the use of a very good heuristic to generate the
incumbent. We used simulated annealing, and as reported in [5], spending less
than one percent of the total running time in the heuristic enabled us to start
the parallel solution with the optimal solution as the incumbent. Hence only
critical subproblems were solved. Regarding termination detection, a tailored
algorithm were used for this purpose.
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Mautor & Roucairol Fac. br. w. symmetry
Problem No. nodes. Time (s) No. nodes. Time (s)
Nugent 15 97286 121 105773 10
Nugent 16.2 735353 969 320556 34
Nugent 17 – – 24763611 2936
Nugent 18 – – 114948381 14777
Nugent 20 – – 360148026 57963
Elshafei 19 575 1.4 471 0.5
Armour & Buffa 20 531997 1189 504452 111

Table 9.3: Result obtained by the present authors in solving large standard
benchmark QAPs. Results obtained by Mautor and Roucairol is included for
comparison.

Problem Dynamic dist. Init. subpr. per proc. Static dist.
Nugent 8 0.040 1 0.026
Nugent 10 0.079 1 0.060
Nugent 12 0.328 6 0.381
Nugent 14 12.792 24 13.112
Nugent 15 10.510 41 11.746
Nugent 16 35.293 66 38.925

Table 9.4: Result obtained when solving standard benchmark QAPs using static
workload distribution. Results obtained with dynamic distribution are included
for comparison.

The main results of the research are indicated in Table 9.3. We managed to solve
previously unsolved problems, and for problems solved by other researchers, the
results clearly indicated the value of choosing an appropriate parallel system for
the algorithm in question.

To get an indication of the efficiency of so-called static workload distribution in
our application, an algorithm with static workload distribution was also tested.
The results appear in Table 9.4. The subproblems distributed to each proces-
sor were generated using BeFS sequential Branch and Bound until the pool of
live subproblems were sufficiently large that each processors could get the re-
quired number of subproblems. Hence all processors receive equally promising
subproblems. The optimal number of subproblems pr. processors were deter-
mined experimentally and equals roughly (p − 8)4/100, where p is the number
of processors.
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9.3 Ideas and Pitfalls for Branch and Bound

users.

Rather than giving a conclusion, I will in the following try to equip new users of
Branch and Bound - both sequential and parallel - with a checklist correspond-
ing to my own experiences. Some of the points of the list have already been
mentioned in the preceding sections, while some are new.

• The importance of finding a good initial incumbent cannot be overesti-
mated, and the time used for finding such one is often only few percentages
of the total running time of the algorithm.

• In case an initial solution very close to the optimum is expected to be
known, the choice of node selection strategy and processing strategy makes
little difference.

• With a difference of more than few percent between the value of the initial
solution and the optimum the theoretically superior BeFS Branch and
Bound shows inferior performance compared to both lazy and eager DFS
Branch and Bound. This is in particular true if the pure Branch and
Bound scheme is supplemented with problem specific efficiency enhancing
test for e.g. supplementary exclusion of subspaces, and if the branching
performed depends on the value of the current best solution.

9.4 Supplementary Notes

9.5 Exercises

1. Finish the solution of the biking tourist’s problem on Bornholm.

2. Give an example showing that the branching rule illustrated in Figure
9.9 may produce nodes in the search tree with non-disjoint sets of feasi-
ble solutions. Devise a branching rule, which ensures that all subspaces
generated are disjoint.

3. Solve the symmetric TSP instance with n = 5 and distance matrix

(ce) =









− 10 2 4 6
− − 9 3 1
− − − 5 6
− − − − 2
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by Branch and Bound using the 1-tree relaxation to obtain lower bounds.

4. Solve the asymmetric TSP instance with n = 4 and distance matrix

(cij) =









− 6 4 17
12 − 7 20
19 9 − 14
19 19 5 −









by Branch and Bound using an assignment relaxation to obtain bounds.

5. Consider the GPP as described in Example 1. By including the term

λ (
∑

v∈V

xv − |V |/2)

in the objective function, a relaxed unconstrained problem with modified
objective function results for any λ. Prove that the new objective is less
than or equal to the original on the set of feasible solutions for any λ.
Formulate the problem of finding the optimal value of λ as an optimization
problem.

6. A node in a Branch and Bound search tree is called semi-critical if the
corresponding bound value is less than or equal to the optimal solution of
the problem. Prove that if the number of semi-critical nodes in the search
tree corresponding to a Branch and Bound algorithm for a given problem
is polynomially bounded, then the problem belongs to P.

Prove that this holds also with the weaker condition that the number of
critical nodes is polynomially bounded.

7. Consider again the QAP as described in Example 3. The simplest bound
calculation scheme is described in Section 2.1. A more advanced, though
still simple, scheme is the following:

Consider now partial solution in which m of the facilities has been assigned
to m of the locations. The total cost of any feasible solution in the subspace
determined by a partial solution consists of three terms: costs for pairs
of assigned facilities, costs for pairs consisting of one assigned and one
unassigned facility, and costs for pairs of two unassigned facilities. The
first term can be calculated exactly. Bounds for each of the two other terms
can be found based on the fact that a lower bound for a scalar product
(a1, ..., ap) ·(bπ(1), ..., bπ(p)), where a and b are given vectors of dimension p
and π is a permutation of {1, ..., p}, is obtained by multiplying the largest
element in a with the smallest elements in b, the next-largest in a with
the next-smallest in b etc.
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For each assigned facility, the flows to unassigned facilities are ordered
decreasingly and the distances from the location of the facility to the
remaining free locations are ordered increasingly. The scalar product is
now a lower bound for the communication cost from the facility to the
remaining unassigned facilities.

The total transportation cost between unassigned facilities can be bounded
in a similar fashion.

(a)

Consider the instance given in Figure 6. Find the optimal solution to the
instance using the bounding method described above.

(b)

Consider now the QAP, where the distances between locations are given
as the rectangular distances in the following grid:

1 2 3

4 5 6

The flows between pairs of facilities are given by

F =

















0 20 0 15 0 1
20 0 20 0 30 2
0 20 0 2 0 10
15 0 2 0 15 2
0 30 0 15 0 30
1 2 10 2 30 0

















Solve the problem using Branch and Bound with the bounding function
described above, the branching strategy described in text, and DFS as
search strategy.

To generate a first incumbent, any feasible solution can be used. Try prior
to the Branch and Bound execution to identify a good feasible solution.
A solution with value 314 exists.

8. Consider the 0-1 knapsack problem:

max
∑n

j=1 cjxj

s.t.
∑n

j=1 ajxj ≤ b

x ∈ Bn

with aj , cj > 0 for j = 1, 2, . . . , n.
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(a) Show that if the items are sorted in relation to their cost/weight-
ratio then the LP relaxation can be established as xj = 1 for j =

1, 2, . . . , r − 1, xr = (b −
∑r−1

j=1 aj)/ar and xj = 0 for j > r where r

is defined by such that
∑r−1

j=1 aj ≤ b and
∑r

j=1 aj > b.

(b) Solve the instance

max 17x1 + 10x2 + 25x3 + 17x4

5x1 + 3x2 + 8x3 + 7x4 ≤ 12
x ∈ B4

by Branch and Bound.
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Appendix A

A quick guide to GAMS –

IMP

To login at IMM from the GBAR is easy:

1. Login at your favorite xterminal at the GBAR.

2. Start a xterm. (Click on the middle mouse-buttom, select terminals and
then terminal).

3. In that xterm write:

• ssh -l nh?? serv1.imm.dtu.dk

where nh?? correspond to your course login name. You will be prompted
for a password.

Alternatives to serv1.imm.dtu.dk are

• serv2.imm.dtu.dk

• serv3.imm.dtu.dk

• sunfire.imm.dtu.dk

You now have a shell-window working at IMM. Remember to change password
at IMM with the
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passwd

command.

To write a file at IMM start an emacs editor at IMM by writing (in the xterm
working at IMM):

emacs &

To start cplex write (in the xterm working at IMM):

cplex64

You can start more xterms to work at IMM in the same way.

CPLEX can be run in interactive mode or used as a library callable from e.g.
C, C++ or Java programs. In this course we will only use CPLEX in interactive
mode.

To start a CPLEX session type cplex and press the enter-key. You will then
get an introductory text something like:

ILOG CPLEX 9.000, licensed to "university-lyngby", options: e m b q

Welcome to CPLEX Interactive Optimizer 9.0.0

with Simplex, Mixed Integer & Barrier Optimizers

Copyright (c) ILOG 1997-2003

CPLEX is a registered trademark of ILOG

Type ’help’ for a list of available commands.

Type ’help’ followed by a command name for more

information on commands.

CPLEX>

To end the session type quit and press the enter-key. Please do not quit CPLEX
by closing the xterm window before having exited CPLEX. At IMM we have 20
licenses, so at most 20 persons can run CPLEX independently of each other. If
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you quit by closing the xterm window before leaving CPLEX in a proper manner
it will take the license manager some time to recover the CPLEX license.

CPLEX solves linear and integer programming problems. These must be entered
either through the built-in editor of CPLEX or by entering the problem in ”your
favorite editor”, saving it to a file, and then reading the problem into CPLEX
by typing

read <filename.lp>.

The file has to have extension .lp and the contents has to be in the lp-format.
A small example is shown below.

\Problem

name: soejle.lp

Minimize

obj: x1 + x2 + x3 + x4

Subject To

c1: x1 + 2 x3 + 4 x4 >= 6

c2: x2 + x3 >= 3

End

The first line is a remark and it stretches the entire line. Subject to can be
replaced with st. The text written in the start of each line containing the
objective function or constraints is optional, so obj: can be omitted.

After having entered a problem, it can be solved by giving the command optimize

at the CPLEX> prompt and press enter. To see the result, the command display solution variables

and press enter is used, ”-” indicating that the values of all variables are to be
displayed.

CPLEX writes a log-file, which records the events of the session. An example of
the log-file corresponding to the solution of the example above is shown below.
The events of the session has been:

cplex <enter>

read soejle.lp <enter>

optimize <enter>

display solution variables - <enter>

quit <enter>
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and the resulting log-file looks like:

Log started (V6.5.1) Tue Feb 15 10:24:58 2000

Problem ’soejle.lp’ read.

Read time = 0.00 sec.

Tried aggregator 1 time.

LP Presolve eliminated 0 rows and 1 columns.

Reduced LP has 2 rows, 3 columns, and 4 nonzeros.

Presolve time = 0.00 sec.

Iteration log . . .

Iteration: 1 Infeasibility = 3.000000

Switched to devex.

Iteration: 3 Objective = 3.000000

Primal - Optimal: Objective = 3.0000000000e+00

Solution time = 0.00 sec. Iterations = 3 (2)

Variable Name Solution Value

x3 3.000000

All other variables in the range 1-4 are zero.

Now let us take our initial problem and assume that we want x1 and x2 to be
integer variables between 0 and 10. That the variables are non-negative are
implicitely assumed by CPLEX, but we need to state the upper bound and the
integrality condition. In this case our program will look like:

\Problem

name: soejle.lp

Minimize

obj: x1 + x2 + x3 + x4

Subject To

c1: x1 + 2 x3 + 4 x4 >= 6

c2: x2 + x3 >= 3

Bounds

x1<=10

x2<=10

Integer
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x1

x2

End

Bounds is used to declare bounds on variables, and the section afterwards,
Integer states that x1 and x2 must be integer solutions. The bounds sec-
tion must be placed before the section declaring the integer variables. It does
not seem intuitive nevertheless if you do not state a bounds part CPLEX will
assume the integer variables to be binary. If you want the integer variable
to have no upper bound you can x2<=INF in the bounds section.

The command help shows the possible commands in the current situation. Also,
CPLEX provides help if the current command is not sufficient to uniquely to
determine an action. As an example, if one types display CPLEX will respond
with listing the options and the question ”Display what ?” CPLEX also offers
possibilities to change parameters in a problem already entered - these possibil-
ities may be investigated by entering help as the first command after having
entered CPLEX.
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Appendix B

Extra Assignments

Question 1

You have just been employed as a junior OR consultant in the consulting form
Optimal Solutions. The first task that lands on your desk is a preliminary
study for a big manufacturing company Rubber Duck. The company has
three factories F1, F2 and F3 and four warehouses W1, W2, W3 and W4. In
the current setup of their supply chain products are transported from a factory
to a warehouse via a cross-dock. A cross-dock is a special form of warehouse
where goods are only stored for a very short time. Goods arrive at a cross-dock,
is then possibly repacked and then put on trucks for their destination. It is
used in order to consolidate the transportation of goods. Rubber Duck uses two
cross-docks, CD1 and CD2, in their operations.

The availability of trucks defines an upper limit on how many truck loads we
can transport from a factory to a cross-dock and from a cross-dock to a ware-
house. Table B.1 show the transportation capacities measured in truck loads
from factory to cross-dock, and from cross-dock to warehouse.
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F1 F2 F3
CD1 34 28 27
CD2 40 40 22

W1 W2 W3 W4
CD1 30 24 22 —
CD2 — 26 12 58

Table B.1: Capacities in the Rubber Duck supply chain measured in truck loads.
Note that it is not possible to supply warehouse W4 from cross-dock CD1 and
warehouse W1 from cross-dock CD2.

Question 1.1

We want to determine how much Rubber Duck at most can get through their
supply chain from the factories to the warehouses. Therefore give a maximum
flow formulation of it. Draw a graph showing the problem as a maximum flow
problem. Your network should have 11 vertices: a source (named 0), a vertex for
each factory, cross-dock and warehouse, and a sink (named 11). The graph must
contain all information necessary when formulation a maximum flow problem.

Question 1.2

Solve the maximum flow problem using the augmenting path algorithm. Show
the flow graphically on a figure of the network. Write the value of the maximum
flow and list each of the augmenting paths. Find a minimum cut and list the
vertices in the minimum cut.

Question 1.3

Just as you are about to return a small report on your findings to your manager a
phone call from a planner from Rubber Ducks logistics department reveals some
new information. It turns out that there is a limit on how much each of the
cross-docks can handle. This can be viewed as an extension to the maximum
flow model. Let cv be the maximum number of truck loads which can pass
through an internal vertex v. Given a flow xuv from vertex u to vertex v, the
flow capacity of vertex v can be expressed as

∑

(u,v)∈E xuv ≤ cv.

Describe how to modify a network so that this new extension can be handled
as a maximum flow problem in a modified network.
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Given that the capacity of cross-dock CD1 is 72 truck loads and of CD2 is
61 truck loads introduce the modifications and solve the new maximum flow
problem. Show the flow graphically on a figure of the network. Write the value
of the maximum flow and list each of the augmenting paths. Find a minimum
cut and list the vertices in the minimum cut.

Question 2

Your success on the first assignment quickly lands you another case. A medium
sized company with branches geographically distributed all over Denmark has
approached Optimal Solutions. The company you are going to work for has
decided to build an intra-net based on communication capacity leased from a
large telecommunication vendor, Yellow. This operator has a back-bone network
connecting a number of locations, and you can lease communication capacity
between individual pairs of points in the back-bone network and in that way
build your own network. Fortunately, all branches are located in one of the
locations of the back-bone network, however, not all locations house a branch
of the company.

The pricing policy of Yellow is as follows: Each customer individually buys
in on a set connections chosen by the customer. The price is calculated as
the sum of the prices for the individual connections. Each customer is offered
a ”customized” price for each connections, and these prices (although usually
positive) may be negative to reflect a discount given by Yellow.

Figure B.1 shows a small example, where 3 branches have to be connected in a
network with 6 locations.

Your task is to analyze the situation of the company and determine which con-
nections to lease in order to establish the cheapest intranet. Yellow guarantees
that the connections will always be operative. You do therefore not have to
consider failure protection.

Question 2.1

Formulate a general mathematical programming model for the optimization
problem of establishing the cheapest intra-net, given that all costs are non-
negative. The model should have a decision variable for each connection, and a
set of constraints expressing that for each partition of the set of locations into
two non-empty subsets with a branch in each, at least one connection joining



184 Extra Assignments

6

10

9
9

4

5

5

6
7

5

Figure B.1: An example of a telecommunications network - the branches to be
connected of are the black vertices.

the two subset must be chosen.

Can the model be used also when prices may be negative? Would you recom-
mend the use of the model for large companies with hundreds of branches?

Question 2.2

Use the model to solve the example problem of Figure B.1 using CPLEX with
0-1 variables. Solve the model also when the integrality constraints on the vari-
ables are removed. Comment on the two solutions obtained and their objective
function values.

Question 2.3

An alternative to solving the problem to optimality is to use a method, which
gives a good (but not necessarily optimal) solution fast. Such a method is called
a heuristic.

As you realize the proximity of the problem to the minimum spanning tree you
hit upon the following idea inspired by Prims algorithm: Start by choosing
(randomly) a branch. Let us call it b0. Now for each other branch compute
the shortest distance to b0. The branch with the shortest distance to b0 will
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be denoted b1. Then add the connections on the path from b1 to b0 to the set
of selected connections. In each of the subsequent iterations we continue this
approach. Determine the unconnected branch bi with the shortest distance to
the tree already generated, that is, find an unconnected branch the shortest
distance to any location that has been selected.

The process is terminated when all branches are added to the tree, that is, all
branches are connected.

Obviously, the “killer” part of the described algorithm is the shortest path
calculations. However, there are two problems: 1) the network is not directed,
and 2) there may be edges of negative length. How would you cope with the
non-directedness of the network, and which shortest path algorithm would you
suggest to use given that negative edge lengths are present?

However, you realize that it may be easier to solve the problem regarding nega-
tive edge lengths by changing the problem to reflect that it is always beneficial
to choose an edge of negative cost, even though you don’t need the connection.
Describe the corresponding problem transformation, whereby you end up with
a network with only non-negative edges lengths.

You now are in the position that you may choose any of the shortest path
algorithms touched upon in the course. In Figure B.2, the network of your
clients company is shown. Which connections should be leased, if these are
determined with the method just described with b0 chosen to be A? Show the
sequence in which the locations are considered, and the connections added in
each iteration.

Question 3

As a result of you analysis Rubber Duck has decided to implement a supply chain
optimization IT-system. They have specifically asked for your involvement in the
project. You have been put in charge of the rather large project of implementing
the IT-system and the corresponding organizational changes.

You immediately remember something about project management from you
engineering studies. To get into the tools and the way of thinking, you decide
to solve a small test case using PERT/CPM.

The available data is presented in Table B.2.
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Activity Imm. pred. Normal time Crash time Unit cost when
(Di) (dj) shortening

e0 2 1 7
e1 e0 3 2 7
e2 e1 2 1 5
e3 e1 4 2 2
e4 e2, e3 4 1 6
e5 e0 9 2 2
e6 e4, e5 6 2 9

Table B.2: Data for the activities of the test case.

Question 3.1

Find the duration of the project if all activities are completed according to their
normal times.

In Hillier and Lieberman Section 22.5, a general LP model is formulated allowing
one to find the cheapest way to shorten a project.

Question 3.2

Formulate the model for the test project and state the dual model.

Question 3.3

For each activity i there is a variable xi. Furthermore there are also two con-
strains, “xi ≥ 0” and “xi ≤ Di − di”. Denote the dual variables of the latter
gi. Argue that if di < Di, then either gi is equal to 0 or xi = Di − di in any
optimal solution.

Question 3.4

What is the additional cost of shortening the project time for the test case to
16?
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Background for the first project.

For convenience, the background from the first project is repeated below.

You are employed by the consulting firm Optimal Solutions and one of your
customers are a medium sized company with branches geographically distributed
all over Denmark. The company has decided to build an intra-net based on
communication capacity leased from a large telecommunication vendor, Yellow.
This operator has a back-bone network connecting a number of locations, and
you can lease communication capacity between individual pairs of points in the
back-bone network and in that way build you own network. Fortunately, all
branches are located in one of the locations of the back-bone network, however,
not all locations house a branch of the company.

The pricing policy of Yellow is as follows: Each customer individually buys in
on a set connections chosen by the customer. The price is the the sum of the
prices for the individual connections. Each customer is offered a ”customized”
price for each connections, and these prices (although usually positive) may be
negative to reflect a discount given by Yellow.

You are now hired to analyzed the situation of the company and determine
which connections to lease in order to establish the cheapest intranet. Yellow
guarantees that the connections will always be operative, so failure protection
is not an issue.

Background for the second project.

After having reviewed your solution to the first project, the company comes back
with the following comments: 1) As you have pointed out, the pricing strategy of
Yellow seems odd in that connections with negative prices are “too attractive”.
2) Though good solutions found quickly are valuable, its is necessary to be able
also to find the optimal solution to the problem, even if this may be quite time
consuming.

Question 4.1

In order to prepare for possible changes in the pricing strategy a model must
be built, in which the intra-net solution proposed must be a connected network.
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Formulate such a mathematical model.

Question 4.2

It now turns out that Yellow has also discovered the flaw in their original pricing
strategy. They have informed you that a new price update will arrive soon. Until
then you decide to continue your experiments on some other data you got from
your client. The network is shown in Figure B.3 on page 193.

You decide to try to solve the problem using Branch & Cut based on your
mathematical model from Question 2.1 of the first project. You initially set up
an LP with objective function and the bounds “xij ≤ 1” in CPLEX and add
only one constraint, namely that the number of connections chosen must be at
least 4. You then solve the problem using CPLEX. What is the result? Identify
a constraint, which must be fulfilled by an optimal integer solution, but which
is currently not fulfilled. Add this constraint and solve the revised problem.
Comment on the result.

Question 4.3

The constraints in your mathematical model express that no cut in the network
with capacity less than one (where “capacity” is measured by the sum over
x-values on edges across the cut) separating two branch nodes must exist.

In order to apply Branch & Cut, you need a separation routine, i.e. an algorithm,
which given a potential solution returns a violated inequality if such one exists.
Explain how a maximum flow algorithm can be used as separation routine and
estimate the complexity of this approach.

Question 4.4

You suddenly come to think about Gomory cuts. Maybe these are applicable?
You realize that using CPLEX in interactive mode, it is not possible to extract
the updated coefficients in a tableau row, but you can extract the updated coef-
ficients in the objective function (the reduced costs). Is it in theory possible to
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generate a Gomory cut from the updated coefficients in the objective function?
If so, what is the result for the resulting LP-tableau from question 1.2?

Question 5

Your boss suddenly runs into your room and cries: “Drop everything - I have an
urgent job for you. We need to win this new client. Find the best assignment
of persons to jobs in the following situation:

I have 5 persons and 5 jobs, a profit matrix N showing in entry (i, j) the profit
earned from letting person i do job j, and a cost matrix O showing the cost of
educating person i for job j (the matrices are shown below). The educational
budget is 18, and exactly one person has to be assigned to each job.”

N =













4 10 6 5 4
0 8 2 8 1
3 10 5 6 6
2 9 4 8 4
1 8 4 9 3













O =













4 5 6 5 3
5 8 24 3 6
4 10 8 3 5
2 9 2 10 8
2 5 3 1 4













You decide to solve the problem to optimality using Branch-and-Bound.

You first convert the problem to a cost minimization problem, which you then
solve. The lower bound computation should be done using Lagrangian relaxation
as described in the next section, i.e. you have to use the objective value of the
assignment problem resulting from the relaxation of the budget constraint with
a non-negative multiplier. In order to explain the method to your boss, you
have to explain why any non-negative multiplier gives rise to a lower bound for
your given problem.
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Suggested line of work for each question

Question 4.1

Consider an edge {i, j}. You have to ensure that “if xij = 1 then i must not be
separated form any set containing all branches”. How to model constraints of
the type “xj = 0 implies xi = 0” is described in Hillier and Lieberman - figure
out how to express “xj = 1 implies xi = 1” and use the idea in connection with
the usual connectedness constraints know from the first project.

Question 4.2

In Branch-and-Cut, you first solve the LP relaxation, and as for TSP, this has
exponentially many constraints. You should find one violated constraint by
inspection, add it to the system, resolve, and describe the effect.

Question 4.3

As for TSP, Max Flow can be used based on that the x-values are interpreted
as capacities. But you have to take care that only cuts separating two branch
vertices are taken into consideration.

Question 4.4

The basic calculations leading to the classical Gomory cut from a chosen cut-
row, i, with non-integral right hand side starts with the equation corresponding
to the i’th row of the Simplex tableau. Start out assuming that the objective
function value is non-integral, write out the “objective function equation” and
check if all steps in the derivation procedure are valid.

Question 5

Converting the profit maximization problem to a cost minimization problem
with non-negative cost is done by multiplying all values in the profit matrix
by −1 and adding the largest element of the original profit matrix to each
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element. Formulation of the Lagrangian relaxation can be done by subtracting
the right-hand side of the budget constraint from the left-hand side, multiplying
the difference with λ and adding the term to the objective function. Collecting
terms to get the objective function coefficient for each xij , you get an assignment
problem for each fixed value of λ. Choose a value of λ, e.g. 1, and solve the
assignment problem. If the budget constraint is not fulfilled, then try to increase
λ and resolve. If an optimal solution cannot be found through adjustments of
λ (what are the conditions, under which an optimal solution to the relaxed
problem is also optimal for the original problem?), choose a variable to branch
on and create two new subproblems, each of which is treated as the original
problem.
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Figure B.2: The intra-network problem of your company. The black locations
correspond to your branches to be connected.
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Figure B.3: An example intra-network problem from your client. The black
locations correspond to your branches to be connected.


