
1 Basic Formulations

Solve the following LP models. Observe for each solution whether it is feasible, infeasible, or
unbounded. You can further try to understand the results graphically.

max 3x1+5x2

s.t. x1 ≥ 5

x2 ≤10

x1+2x2 ≥10

x2 ≥ 0

max x1+ x2

s.t. x1+2x2 ≤6

2x1+ x2 ≤8

x1 ≥7

x2 ≥0

max x1+2x2

s.t. x1+ x2 ≤25

2x1+ x2 ≤30

x2 ≤35

x1 , x2 ≥ 0
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2 Maximum Independent Set Problem

Given is a graph G = (V,E) with set of vertices V and set of edges E. The problem is to find
a maximum independent set I ⊂ V , i.e., a set of vertices of maximum cardinality such that,
for every two vertices in I, there is no edge connecting them. This problem can be formulated
as:

max
∑

i∈V

xi (1)

s. t. xi + xj ≤ 1 ∀ij ∈ E (2)

xi ∈ {0, 1} ∀i ∈ V (3)

The objective function (1) maximizes the cardinality of the set I, where xi indicates whether
vertice i ∈ V belongs to I or not. Constraints (2) ensure that adjacent vertices cannot belong
to the independent set.

2.1 Problem Instance

The test instance consists of:

• V = {1, 2, 3, 4, 5, 6, 7}

• E = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 6), (4, 5), (4, 6), (5, 7), (6, 7)}
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3 Assignment Problem

Given are a set of people I and a set of jobs J . The productivity of person i ∈ I working
1 period at job j ∈ J is aij. The problem is to choose an assignment of people to jobs to
maximize the total productivity. An assignment is a choice of numbers, xij, i ∈ I and j ∈ J ,
where xij represents the proportion of time that person i spends on job j. This problem can
be formulated as:

max
∑

i∈I

∑

j∈J

aijxij (4)

s. t.
∑

j∈J

xij ≤ 1 ∀i ∈ I (5)

∑

i∈I

xij ≤ 1 ∀j ∈ J (6)

xij ≥ 0 ∀i ∈ I,∀j ∈ J (7)

The objective function (4) represents the total productivity value that is to maximize. Con-
straints (5) reflect the fact that a person cannot spend more than 100% of his working time,
constraints (6) mean that only one person is allowed on a job at a time, and constraints (7)
say that no one can work a negative amount of time on any job.

3.1 Problem Instance

The test instance consists of:

• I = {1, 2, 3, 4, 5, 6}

• J = {1, 2, 3, 4, 5}

• Productivity in a i× j matrix:

a =

















10 7 8 9 9
12 1 2 1 3
12 7 3 2 3
4 12 4 4 3
5 14 1 2 7
7 13 5 2 7

















3



4 Bin Packing Problem

Given is a set of bins J and a set of items I. Each bin j ∈ J has a capacity cj ≥ 0 attached
and each item i ∈ I has a weight wi ≥ 0 attached. The bin packing problem consists of
packing items into bins, such that the sum of items in a bin does not exceed the bin’s capacity
and such that the total number of used bins is minimized. The bin packing problem can be
formulated as:

min
∑

j∈J

vj (8)

s. t.
∑

j∈J

xij = 1 ∀i ∈ I (9)

cjvj −
∑

i∈I

wixij ≥ 0 ∀j ∈ J (10)

xij ∈ {0, 1} ∀i ∈ I,∀j ∈ J (11)

vj ∈ {0, 1} ∀j ∈ J (12)

The objective function (8) minimizes the number of used bins, where vj ∈ {0, 1} indicates if
bin j is used. Constraints (9) ensure that each item is packed in exactly one bin. The variable
xij ∈ {0, 1} indicates if item i ∈ I is packed in bin j ∈ J . Constraints (10) make sure that the
capacity of a bin is not exceeded by the total weight of items packed into it.

4.1 Problem Instance

The test instance consists of:

• J = {1, 2, 3, 4, 5}

• I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• c = {25, 20, 23, 27, 24}

• w = {3, 6, 3, 8, 2, 4, 2, 3, 4, 8}
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5 Facility Location Problem 1

Given is a set of depots N and a set of clients M . There is a fixed cost fj ≥ 0 associated
with the use of depot j and a transportation cost cij ≥ 0 if client i is served by depot j. The
problem is to decide which depots to open and which depot serves each client, such that the
sum of fixed and transportation costs is minimized. The facility location problem is formulated
as:

min
∑

i∈M

∑

j∈N

cijxij +
∑

j∈N

fjyj (13)

s. t.
∑

j∈N

xij = 1 ∀i ∈ M (14)

myj −
∑

i∈M

xij ≥ 0 ∀j ∈ N (15)

xij ∈ {0, 1} ∀i ∈ M,∀j ∈ N (16)

yj ∈ {0, 1} ∀j ∈ N (17)

The objective function (13) minimizes the total sum of fixed and transportation costs, where
xij ∈ {0, 1} is a variable indicating if client i ∈ M is served by depot j ∈ N and where
yj ∈ {0, 1} is a variable indicating if depot j ∈ N is open. Constraints (14) ensure that all
clients are served. Constraints (15) make sure that a depot is opened if it serves at least one
client. Here m is a constant equal to the number of clients, i.e., m = |M |.

5.1 Problem Instance

The test instance consists of:

• N = {1, 2, 3, 4}

• M = {1, 2, 3, 4, 5, 6}

• f = {21, 16, 1, 24}

• Edge costs in a m× n matrix:

c =

















6 2 3 4
1 9 4 11
15 2 6 3
9 11 4 8
7 23 2 9
4 3 1 5
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6 Facility Location Problem 2

The facility location problem can also be formulated as:

min
∑

i∈M

∑

j∈N

cijxij +
∑

j∈N

fjyj (18)

s. t.
∑

j∈N

xij = 1 ∀i ∈ M (19)

yj − xij ≥ 0 ∀j ∈ N,∀i ∈ I (20)

xij ∈ {0, 1} ∀i ∈ M,∀j ∈ N (21)

yj ∈ {0, 1} ∀j ∈ N (22)

The objective function (18) minimizes the total sum of fixed and transportation costs, where
xij ∈ {0, 1} is a variable indicating if client i ∈ M is served by depot j ∈ N and where
yj ∈ {0, 1} is a variable indicating if depot j ∈ N is open. Constraints (19) ensure that all
clients are served. Constraints (20) make sure that a depot is opened if it serves at least one
client.

Note that (15) and (20) differ. The interested reader could think about benefits and
drawbacks of the two formulations.

6.1 Problem Instance

The test instance equals that for Facility Location Problem 1.
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7 Network Flow Problem

Given is a graph G = (V,E) with a set of vertices V and a set of edges E. Each vertex
i ∈ V has a demand bi, and the sum of all demands is zero, i.e.,

∑

i∈V bi = 0. Each edge has
attached a cost cij ≥ 0 and a capacity uij > 0. The network flow problem consists of finding
a feasible flow that satisfies all the demands at minimum cost and can be formulated as:

min
∑

(ij)∈E

cijxij (23)

s. t.
∑

(ij)∈E

xij −
∑

(ji)∈E

xji = bi ∀i ∈ V (24)

0 ≤ xij ≤ uij ∀(ij) ∈ E (25)

The objective function (23) minimizes the total flow cost, where xij ≥ 0 is a variable indicating
the amount of flow on edge (ij) ∈ E. Constraints (24) ensure that the demand bi of vertex
i ∈ V is satisfied, and constraints (25) make sure that each variable xij is non-negative and
does not exceed the capacity of edge (ij) ∈ E.

7.1 Problem Instance

The test instance consists of:

• V = {1, 2, 3, 4, 5, 6}

• E = {(1, 2), (1, 4), (2, 3), (3, 1), (3, 2), (3, 5), (3, 6), (4, 5), (5, 1), (5, 3), (6, 5)}

• b = {3, 0, 0,−2, 4,−5}

• c = {8, 5, 4, 3, 8, 6, 2, 5, 6, 4, 3}

• u = {7, 1, 7, 5, 7, 3, 6, 10, 5, 3, 3}
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8 Capacity Planning Problem

Given is a digraph G = (V,E) with set of nodes V and set of arcs E. We have W different
capacity choices that one can install on the arcs. Each choice w = 1, . . . ,W associates a
capacity bw with its cost cw. The traffic requirements are defined by K oriented pairs of
nodes (sk, tk), with sk, tk ∈ V and sk 6= tk, and expected demand dk of pair k = 1, . . . ,K.
We want to determine the capacity planning and the traffic flows that minimize the total
capacity installation cost. Let ywuv be the binary decision variable indicating the capacity
choice w = 1, . . . ,W for the arc uv ∈ E. Let xkuv be the flow variable denoting the amount of
traffic routed on the arc uv ∈ E with respect to the traffic requirement k = 1, . . . ,K. This
problem can be formulated as follows:

min
∑

uv∈E

W
∑

w=1

cwywuv (26)

s.t.
∑

uv∈E

xkuv −
∑

vu∈E

xkvu =











−dk, if v = sk,

dk, if v = tk,

0, otherwise

∀v ∈ V,

k = 1...K
(27)

K
∑

k=1

xkuv ≤

W
∑

w=1

bwywuv ∀uv ∈ E (28)

W
∑

w=1

ywuv = 1 ∀uv ∈ E (29)

xkuv ≥ 0 ∀uv ∈ E, k = 1...K (30)

ywuv ∈ {0, 1} ∀uv ∈ E,w = 1...W (31)

The objective function (26) represents the total capacity installation cost that is to minimize.
The flow conservation property is expressed by (27), guaranteeing that the traffic requirements
are entirely fulfilled. Constraints (28) ensure that the available capacity on each link supports
all the traffic to be routed through it. Finally, the bandwidth selection is determined by (29).

8.1 Problem Instance

The test instance consists of:

• V = {1, 2, 3, 4}

• E = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (3, 1), (3, 2), (3, 4), (4, 1), (4, 3)}

• c = {5, 8}

• b = {10, 20}

• (s, t, d) = {(1, 2, 3), (1, 3, 5), (2, 1, 10), (2, 4, 7), (3, 1, 5), (4, 2, 4), (4, 3, 2)}
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9 Matching Problem

Given is a graph G = (V,E) with a set of vertices V and a set of edges E. Each edge e ∈ E

has a weight we ≥ 0 attached. The notation v ∈ e indicates that edge e is incident to vertex
v. The problem is to find a matching, i.e., a set of disjoint edges, such that the total sum of
edge weights is maximized. The matching problem is formulated as:

max
∑

e∈E

wexe (32)

s. t.
∑

e∈E:v∈e

xe ≤ 1 ∀v ∈ V (33)

xe ∈ {0, 1} ∀e ∈ E (34)

The objective function (32) maximizes the total sum of edge weights, where xe ∈ {0, 1}
indicates if edge e ∈ E is part of the solution. Constraints (33) ensure that each vertex has
at most one out- and ingoing edge.

9.1 Problem Instance

The test instance consists of:

• V = {1, 2, 3, 4, 5}

• E consists of edges such that the graph is complete

• Edge weights in a |V | × |V | matrix:

w =













− 8 10 2 2
8 − 8 10 6
10 8 − 7 8
2 10 7 − 7
2 6 8 7 −
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10 Traveling Salesman Problem

Given is a graph G = (V,E) consisting of a set of vertices V and a set of edges E. Each
edge (ij) ∈ E has an edge cost cij ≥ 0 attached. The traveling salesman problem consists of
finding a simple path such that each vertex is visited exactly once and such that the traveling
salesman returns to his starting point. The goal is to find such a path such that the total sum
of edge costs is minimized. The traveling salesman problem is formulated as:

min
∑

(ij)∈E

cijxij (35)

s. t.
∑

j∈V

xij = 1 ∀i ∈ V (36)

∑

j∈V

xji = 1 ∀i ∈ V (37)

∑

(ij)∈E:i,j∈S

xij ≤ |S| − 1 ∀S ⊂ V : 2 ≤ |S| ≤ |V | − 1 (38)

xij ∈ {0, 1} ∀(ij) ∈ E (39)

The objective function (35) minimizes the total travel cost, where xij ∈ {0, 1} is a variable
indicating if edge (ij) ∈ E is visited by the traveling salesman. Constraints (36) and (37)
ensure that the traveling salesman leaves and enters each vertex. Constraints (38) eliminate
sub tours, i.e., that the resulting path consists of a number of small cycles.

10.1 Problem Instance

The test instance consists of:

• V = {1, 2, 3, 4, 5, 6}

• The graph is complete, hence E consists of edges connecting all pairs of vertices

• Edge costs in a |V | × |V | matrix:

c =

















− 9 2 8 12 11
9 − 7 19 10 32
2 7 − 29 18 6
8 19 29 − 24 3
12 10 18 24 − 19
11 32 6 3 19 −
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