Institut for Matematik og Datalogi Syddansk Universitet October 9, 2014 JBJ

$\rm DM517-Fall$ 2014 – Weekly Note7

Special weekly note

As you will be working on the first obligatory assignment in week 43, this weekly note contains information on what we will do in week 44.

Important correction from one of the lectures:

During the first lecture on Turing machines I said something very wrong about PDAs with several stacks: It IS true that a PDA with 2-stacks is more powerfull that a normal PDA, BUT we do not gain any extra computational power by adding even more stacks! In fact, as you will prove at the exercises, A PDA with 2 stacks can simulate any Turing machine and hence their computational power equals that of a Turing machine.

Key points

- 2-PDAs are equivalent to Turing machines (see the exercises below).
- Many different variants of the TM have been defined, and most of them have the same computational power as a normal TM.
- A nondeterministic TM is not more powerful than a standard TM either. However, nondeterministic TM may be exponentially faster (but we don't know whether this is true). This open question is the well known P = NP question.
- A TM is said to **enumerate** a language L if it, when started on an empty tape, prints all strings in L to an attached printer (and no strings that are not in L).

Lecture in week 41, 2014: We covered Sections 3.2 and 3.3. Lecture October 27, 2014:

- We will finish Section 3.2 by taling about Turing machines as enumerators.
- We will also cover Section 4.1 on Decidability.
- We may start on Section 4.2

Exercises October 29, 2014:

- 3.22 (hint show how to use two stack to simulate a Turing machine. Let the first stack contain what is to the left of the tape head and the second the other part).
- Describe in words a 2-PDA for recognizing the language $\{a^n b^n c^n d^n | n \ge 0\}$.
- Show that every 2-PDA can be simulated by a 3-tape Turing machine.
- January 2003 Problem 4 (note that the notation is slightly different from what Sipser uses, but you should be able to figure it out).
- January 2008 problem 4 (Note that a Turing machine calculates a function f if it, starting in configuration q_0w terminates in configuration $q_{accept}f(w)$ for every legal input w).
- January 2009 Problem 4.
- October 2011 Problem 3