13.9 Chernoff Bounds

Recall that the vandom variables
$$\times$$
 and Y
are independent if the events $X = c$ and $Y = j$
are independent, that is $p(X = c \land Y = j) = p(X = c) \cdot p(Y = j)$
Consider a collection $X_{1i}X_{2i} - r_i \times u$ of independent
 $0 - 1$ valued (indicator) random variables.
Then with $X = \sum_{i=1}^{n} X_i$ we have
 $E(X) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} P_i$
when $P_i = P(X_i = 1)$
Intuition: If $X_{i_1, \dots, i_n} \times n$ are independent
then fluctuation are likely to can all out
so that X should stay close to $E(X)$
Our goal: derive bounds on
 $p(X > E(X))$ and $p(X < E(X))$
Called Chernoft bounds after their
inventor.

(13.42) Let
$$X_{11}X_{11}, X_{11}$$
 be independent o-1 random vanishes
let $X = \sum X_{i}$ and let $p \ge E(X)$
Then $\forall J \ge 0$ we have $p[X > (1+J)p] < \begin{bmatrix} e^{J} \\ (1+J)^{i+J} \end{bmatrix}^{p}$
proof: We are sequence of transformation
(1) $\forall t \ge 0$ $p[X > (1+J)p] = p[e^{tX} > e^{t(1+J)p}]$
as e^{ty} is monotone increases with y
(2) By Markov's inequality we have for every non-negative
vandom variable Y and positive nomber 8
 $p[Y \ge 8] \le \frac{E(Y)}{8}$ is $8 p[Y \ge 8] \le E(Y)$ (*1
Combining (1) and (*) we get
(3) $p[X \ge (1+J)p] = p[e^{tX} \ge e^{t(1+J)p}] \le e^{-t(1+J)p} E[e^{tX}]$
So we need to be and $E[e^{tX}]$ $in Video$
 $E(e^{tX}) = E(e^{t\sum X_{i}}) = E(e^{\sum E(X_{i})}) = E(\frac{1}{16}e^{tX_{i}}) = \prod E(e^{tX_{i}})$
Has the last equality follows from the fact that

Here the last equality follows from the fact could $X_{11}X_{2} - ... X_{11}$ an independent Recall that Y_{12} independent => $E(Y.Z) = E(Y) \cdot E(Z)$

$$E(e^{t\times i}) = P_i \cdot e^t + (i-P_i) \cdot e^{t\circ} = P_i e^t + (i-P_i) = 1+P_i(e^{t-1})$$
So $E(e^{t\times i}) \leq e^{P_i(e^t-1)}$ as $1+x \leq e^{x}$ when $x \geq 0$
and we set
$$E(e^{t\times}) = \prod_{i=1}^{n} E(e^{t\times i}) \leq \prod_{i=1}^{n} e^{P_i(e^t-1)}$$

$$E(e^{t\times}) = e^{e^{t}} + (i-P_i) = e^{e^{t}} + (i-P_i) = e^{e^{t}}$$

$$E(e^{t\times}) = e^{e^{t}} + (e^{t\times i}) \leq e^{e^{t}} + (i-P_i) = e^{e^{t}}$$

$$E(e^{t\times}) = e^{e^{t}} + (i-P_i) = e^{e^{t}} + (i-P_i) = e^{e^{t}}$$

$$E(e^{t\times}) = e^{e^{t}} + (i-P_i) =$$

Similarly one can show
13.43 let
$$X_1, X_2, ..., X_n$$
 be independent $O-(Vaniable)$
 $X = \sum_{i=1}^{n} X_i$ and let $p \ge E(X)$
Then $Y = 0$ with $0 < 5 < 1$ we have
 $P[X < (1-5)p] < e^{-\frac{1}{2}p\delta^2}$

Easier formulas to use

$$P(X > (1+\delta)p) \leq e^{-\frac{\delta^2}{3}p} \quad \text{when } o < \delta$$

$$P(X < (1-\delta)p) \leq e^{-\frac{\delta^2}{2}p} \quad \text{when } o < \delta < 1$$

$$\begin{aligned} & \left\{ \text{ X ample of application of Churnett bounds} \right. \\ & \left\{ \text{ X = } \text{ theads in } n \text{ flips of a fair coin} \right. \\ & \left\{ \text{ We have been that} \right. \\ & \left[\frac{n}{2} \right] \text{ and } V(X) = \frac{n}{4} \\ & \text{ We want to bound the probability fluct} \\ & \left[X - \frac{n}{2} \right] \geq \frac{n}{4} \\ & \left(s_{2} \right) \times \left(s_{2} \right) \times \left(\frac{n}{4} \right) = \frac{n}{4} \\ & \left(s_{2} \right) \times \left(s_{2} \right) \times \left(\frac{n}{4} \right) = \frac{n}{4} \\ & \left(s_{2} \right) \times \left(\frac{n}{4} \right) = \frac{n}{4} \\ & \left(s_{2} \right) \times \left(\frac{n}{4} \right) = \frac{n}{4} \\ & \left(s_{2} \right) \times \left(\frac{n}{4} \right) = \frac{n}{4} \\ & \left(s_{2} \right) \times \left(\frac{n}{4} \right) = \frac{n}{4} \\ & \left(s_{2} \right) \times \left(\frac{n}{4} \right) = \frac{n}{4} \\ & \left(s_{2} \right) \times \left(\frac{n}{4} \right) = \frac{n}{4} \\ & \left(s_{2} \right) \times \left(\frac{n}{4} \right) = \frac{n}{4} \\ & \left(s_{2} \right) \times \left(\frac{n}{4} \right) = \frac{n}{4} \\ & \left(s_{2} \right) \times \left(\frac{n}{4} \right) = \frac{n}{4} \\ & \left(s_{2} \right) \times \left(s_{2} \right) \\ & \left(s_{2} \right) \times \left(s_{2} \right) \\ & \left(s_{2} \right) \times \left(s_{2} \right) \\ & \left(s_{2} \right) \times \left(s_{2} \right) \\ & \left(s_{2} \right) \\ & \left(s_{2} \right) \times \left(s_{2} \right) \\ & \left(s_{2} \right) \times \left(s_{2} \right) \\ & \left(s_{2} \right) \\ & \left(s_{2} \right) \times \left(s_{2} \right) \\ & \left(s_{2} \right) \\$$

Chebyohu
$$p[[x-\frac{n}{2}|\geq\frac{n}{4}] \leq \frac{4}{n}$$

Chernoft
$$p[[x-\frac{n}{2}] \ge \frac{n}{4}] \le 2 \cdot e^{-\frac{n}{24}}$$

N	24	240	2402
Cheby she	1/6	1/60	1/600
chunsf(0,73	9.10-5	7.4.10-44

New calculation:
Set
$$\mathcal{J} = \sqrt{\frac{Glun}{n}} \quad then \frac{n}{2} \cdot \mathcal{J} = \frac{1}{2} \sqrt{\frac{Glun}{n}}$$

then by chernoft bound
 $p\left[1 \times -\frac{n}{2}\right] \ge \frac{1}{2} \sqrt{\frac{Gulun}{n}} \le 2 \cdot C^{-\frac{1}{3} \cdot \frac{n}{2}} - \frac{\frac{Glun}{n}}{n}$
 $= \frac{2}{n}$
So very unlikely with derivations large
than $\sqrt{\frac{Glun}{n}}$ from $\frac{N}{2}$