13.9 Chernoff Bounds

Recall that the random variables X and Y are independent if the wests $X=i$ and $Y=j$ are indepmont, that is $p(X=i a Y=j)=p(X=i) \cdot p(Y=j)$ Consider a collection $X_{1}, X_{2}, \ldots, X_{n}$ of independent 0-1 value (indicator) random variables.
Then with $X=\sum_{i=1}^{n} x_{i}$ we have

$$
E(X)=\sum_{i=1}^{n} E\left(X_{i}\right)=\sum_{i=1}^{n} p_{i}
$$

when $p_{i}=p\left(X_{i}=1\right)$
Intuition: If x_{1}, \ldots, x_{n} ar independent then fluctuation ar likely to cancel out so that X should stayclon to $E(X)$

Our goal: derive bounds on

$$
p(x>E(x)) \text { and } p(x<E(x)
$$

called chernoft bounds after their inventor.
(13.42) Let $x_{1}, x_{2}, \ldots, x_{n}$ be independent $0-1$ random variables Let $X=\sum X_{i}$ and let $\mu \geq E(X)$
Then $\forall \delta>0$ we have $p[x>(1+\delta) \mu]<\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}$
proof: Wi una sequenu of transformations
(1) $\forall t>0 \quad p[X>(1+J) \mu]=p\left[e^{t X}>e^{t(1+\delta) \mu}\right]$ as $e^{t y}$ is monotone increasing with y
(2) By Markov's inequality we have for every nou-negetue random variable Y and pooitue numbs 8

$$
p[Y>\gamma] \leq \frac{E(Y)}{8} \text { so } \quad \gamma p[Y>\gamma] \leq E(Y) \text { 米| }
$$

Combining (1) and ($*$) we set
(3) $p[x>(1+\delta) \mu]=p\left[e^{t X}>e^{t(1+\delta) \rho}\right] \leq e^{-t(1+\delta) \mu} E\left[e^{t x}\right]$ minus forgotten in Video
So we need to bound $E\left[e^{t x}\right]$

$$
\begin{aligned}
& E\left(e^{t x}\right)=E\left(e^{t \sum x_{i}}\right)=E\left(e^{\sum t x_{i}}\right)=E\left(\prod_{i=1}^{n} e^{t x_{i}}\right)=\prod_{i=1}^{n} E\left(e^{t x_{i}}\right) \\
&
\end{aligned}
$$

Her the last equality follows from the fact that $X_{1,} X_{L} \ldots X_{n}$ ar n independent
Recall that Y, z inclement $\Rightarrow E(Y \cdot Z)=E(Y) \cdot E(z)$

$$
E\left(e^{t x_{i}}\right)=p_{i} \cdot e^{t}+\left(1-p_{i}\right) \cdot e^{t \cdot 0}=p_{i} e^{t}+\left(1-p_{i}\right)=1+p_{i}\left(e^{t}-1\right)
$$

So $E\left(e^{t x_{i}}\right) \leq e^{p_{i}\left(e^{t}-1\right)}$ as $1+x \leq e^{x}$ when $x \geq 0$
and we set

$$
\begin{aligned}
& \text { and we set } \\
& \begin{aligned}
E\left(e^{t x}\right)=\prod_{i=1}^{n} E\left(e^{t x_{i}}\right) & \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{t}-1\right)} \\
& =e^{\sum p_{i}\left(e^{t}-1\right)} \\
\text { Eforsotfen } & =e^{\left(e^{t}-1\right) \sum p_{i}} \\
& \leqslant e^{\left(e^{t}-1\right) \mu} \text { as } \quad \sum p_{i}=E(X) \leq \mu
\end{aligned}
\end{aligned}
$$

Inserting this in $p[x>(1+\delta) p] \leq e^{-t(1+\delta) \mu} \cdot E\left(e^{t x}\right)$ we set

$$
p[x>(1+\delta) \mu] \leq e^{-t(1 t \delta) \mu} \cdot e^{\left(e^{t}-1\right) \mu}
$$

This holds for all $t>0$ so takins $t=\ln (1+\delta)$ we get

$$
\text { l) for all } t>0 \text { so takins } \begin{aligned}
p[x>(1+\delta) \mu] & \leq e^{-\ln (1+\delta) \cdot(1+\delta) \mu} \cdot e^{\left(e^{\ln (1+\delta)}-1\right) \mu} \\
& =(1+\delta)^{-(1+\delta) \mu} \cdot e^{(1+\delta-1) \mu} \\
& =\left[\frac{e^{\delta}}{(1+\delta(1+\delta)}\right]^{\rho}
\end{aligned}
$$

Similarly one can show
13.43 let $x_{1}, x_{2}, \ldots, x_{n}$ be independent $0-1$ variables
$X=\sum_{i=1}^{n} x_{i}$ and let $p \geq E(X)$
Then $\forall \delta$ with $0<\delta<1$ we have

$$
p[X<(1-\delta) \mu]<e^{-\frac{1}{2} \mu \delta^{2}}
$$

Easier formulas to cen

$$
\begin{aligned}
& \text { Easier formulas to cen } \\
& p(X>(1+\delta) p) \leq e^{-\frac{\delta^{2}}{3} p} \quad \text { whee } o<\delta \\
& p(X<(1-\delta) \mu) \leq e^{-\frac{\delta^{2}}{2} p} \quad \text { when } 0<\delta<1
\end{aligned}
$$

Example of application of Chernoft bounds
$X=$ \#ha de in n flips of a fair coin
We have seen that

$$
E(x)=\frac{n}{2} \text { and } V(x)=\frac{n}{4}
$$

We want to bound the probability that

$$
\left.\left|x-\frac{n}{2}\right| \geq \frac{n}{4} \quad \text { (so } \quad x \leq \frac{n}{4} \text { or } x \geq \frac{3 n}{4}\right)
$$

By chebybher:

$$
\begin{aligned}
& \text { By che byblev: } \\
& p\left[\left|x-\frac{n}{2}\right| \geq \frac{n}{4}\right] \leq \frac{V(x)}{\left(\frac{n}{4}\right)^{2}}=\frac{\frac{n}{4}}{\left(\frac{n}{4}\right)^{2}}=\frac{4}{n}
\end{aligned}
$$

By chernott:

$$
\begin{aligned}
p\left(x-\frac{n}{2} \geq \frac{n}{4}\right) & =p\left(x \geq\left(1+\frac{1}{2}\right) \frac{n}{2}\right) \\
& \leq e^{-\left(\frac{1}{2}\right)^{2} \cdot \frac{1}{3} \cdot \frac{n}{2}}=e^{-\frac{n}{24}} \\
p\left(x-\frac{n}{2} \leq \frac{n}{4}\right) & =p\left(x \leq\left(1-\frac{1}{2}\right) \cdot \frac{n}{2}\right) \\
& \leq e^{-\left(\frac{1}{2}\right)^{2} \cdot \frac{1}{2} \cdot \frac{n}{2}}=e^{-\frac{n}{16}}
\end{aligned}
$$

So $p\left[\left|x-\frac{n}{2}\right| \geq \frac{n}{4}\right] \leq e^{-\frac{n}{24}}+e^{-\frac{n}{16}} \leq 2 \cdot e^{-\frac{n}{24}}$

Chebyolus $p\left[\left|x-\frac{n}{2}\right| \geq \frac{n}{4}\right] \leq \frac{4}{n}$

Chernoft $p\left[\left|x-\frac{n}{L}\right| \geq \frac{n}{4}\right] \leq 2 \cdot e^{-\frac{n}{24}}$

n	24	240	2400
cheryshes	$1 / 6$	$1 / 60$	$1 / 600$
chenofl	0,73	$9 \cdot 10^{-5}$	$74 \cdot 10^{-44}$

New calculation:
set $\delta=\sqrt{\frac{\ln n}{n}}$ then $\frac{n}{2} \cdot \delta=\frac{1}{2} \sqrt{\text { Gnlan }}$ then by chernoft dound

$$
\begin{aligned}
& \text { then by chernoft bound } \\
& \begin{aligned}
p\left[\left|x-\frac{n}{2}\right| \geq \frac{1}{2} \sqrt{\text { Gulnn }}\right) & \leq 2 \cdot e^{-\frac{1}{3} \cdot \frac{n}{2} \cdot \frac{6 \ln n}{n}} \\
& =\frac{2}{n}
\end{aligned}
\end{aligned}
$$

So very unlibely wath devivations larg than $\frac{\sqrt{6 \ln n}}{n}$ from $\frac{n}{2}$

