Discrete Time, Finite, Markov Chain

- A stochastic process $X = \{X(t) : t \in T\}$ is a collection of random variables.
- X(t) = the state of the process at time $t = X_t$.
- X is a *discrete* (*finite*) *space* process if for all *t*, X_t assumes values from a countably infinite (finite) set.
- If T is a countably infinite set we say that X is a discrete time process.

Definition

A discrete time stochastic process $X_0, X_1, X_2, ...$ is a *Markov chain* if

$$Pr(X_t = a_t | X_{t-1} = a_{t-1}, X_{t-2} = a_{t-2}, \dots, X_0 = a_0)$$

$$= Pr(X_t = a_t | X_{t-1} = a_{t-1}) = P_{a_{t-1}, a_t}.$$

Transition probability: $P_{i,j} = \Pr(X_t = j \mid X_{t-1} = i)$ Transition matrix:

$$\mathbf{P} = \begin{pmatrix} P_{0,0} & P_{0,1} & \cdots & P_{0,j} & \cdots \\ P_{1,0} & P_{1,1} & \cdots & P_{1,j} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ P_{i,0} & P_{i,1} & \cdots & P_{i,j} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}.$$

Probability distribution for a given time t:

$$\bar{p}(t) = (p_0(t), p_1(t), p_2(t), \ldots)$$

$$\rho_i(t) = \sum_{j \geq 0} \rho_j(t-1) P_{j,i}$$

$$\bar{p}(t) = \bar{p}(t-1)\mathbf{P}$$
.

For any $n \ge 0$ we define the *n*-step transition probability

$$P_{i,j}^n = \Pr(X_{t+n} = j \mid X_t = i)$$

Conditioning on the first transition from *i* we have

$$P_{i,j}^n = \sum_{k>0} P_{i,k} P_{k,j}^{n-1}.$$
 (1)

Let $P^{(n)}$ be the matrix whose entries are the *n*-step transition probabilities, so that the entry in the *i*th row and *j*th column is $P^n_{i,j}$. Then we have

$$\mathbf{P}^{(n)} = \mathbf{P} \cdot \mathbf{P}^{(n-1)},$$

and by induction on n

$$\mathbf{P}^{(\mathbf{n})} = \mathbf{P}^{\mathbf{n}}.$$

Thus, for any $t \ge 0$ and $n \ge 1$,

$$\bar{p}(t+n) = \bar{p}(t)\mathbf{P}^{\mathbf{n}}.$$

Example

Consider a system with a total of m balls in two containers. We start with all balls in the first container.

At each step we choose a ball uniformly at random from all the balls and with probability 1/2 move it to the other container. Let X_i denote the number of balls in the first container at time i. X_0, X_1, X_2, \ldots defines a Markov chain with the following transition matrix:

$$p_{i,j} = \left\{ egin{array}{ll} rac{m-i}{2m} & j=i+1 \ & & & & & \\ rac{i}{2m} & j=i-1 \ & & & \\ rac{1}{2} & j=i \ & & & \\ 0 & |i-j| > 1 \end{array}
ight.$$

Randomized 2-SAT Algorithm

Given an instance of 2-SAT, that is a formula in conjunctive normalform with exactly two variables per clause, find a Boolean assignment that satisfies all clauses.

Algorithm:

- 1 Start with an arbitrary truth assignment to the variables.
- 2 Repeat till all clauses are satisfied:
 - Pick an unsatisfied clause C.
 - 2 Choose one of its literals uniformly at random and change its value.

What the is the expected run-time of this algorithm? Assume that the formula has a satisfying assignment. Pick one such assignment S.

Let X_i be the number of variables with the correct assignment according to the assignment S after iteration i of the algorithm. Let n be the number of variables.

$$Pr(X_i = 1 \mid X_{i-1} = 0) = 1$$

For $1 \le t \le n-1$,

$$Pr(X_i = t + 1 \mid X_{i-1} = t) \ge 1/2$$

$$Pr(X_i = t - 1 \mid X_{i-1} = t) \le 1/2$$

To obtain an upper bound on the expected number of steps, consider assume that we have

$$Pr(X_i = 1 \mid X_{i-1} = 0) = 1$$

for $1 \le t \le n-1$,

$$Pr(X_i = t + 1 \mid X_{i-1} = t) = 1/2$$

$$Pr(X_i = t - 1 \mid X_{i-1} = t) = 1/2$$

and

$$Pr(X_i = n | X_{i-1} = n) = 1$$

Let D_t be the expected number of steps to termination when we have t incorrect variable assignments.

$$D_n = 1 + D_{n-1}.$$

$$D_t = 1 + \frac{1}{2}D_{t+1} + \frac{1}{2}D_{t-1}$$

We "guess"

$$D_t = t(2n-t)$$

$$D_0 = 0$$
.

Inserting our guess in the formula for D_t we obtain

$$D_t = 1 + \frac{1}{2}(t+1)(2n-t-1) + \frac{1}{2}(t-1)(2n-t+1) =$$

$$1 + \frac{1}{2}(2nt+2n-t^2-t-t-1+2nt-2n-t^2+t+t-1) =$$

$$1 + 2nt-t^2 - 1 = t(2n-t).$$

$$D_n = 1 + D_{n-1} = 1 + (n-1)(2n-n+1) = n^2 = n(2n-n).$$

Theorem

Assuming that the formula has a satisfying assignment the expected number of steps to find that assignment is $O(n^2)$.

Theorem

There is a one-sided error randomized algorithm for the 2-SAT problem that terminates in $O(n^2 \log n)$ time, with high probability returns an assignment when the formula is satisfiable, and always returns "UNSATISFIABLE" when no assignment exists.

Proof.

By Markov's inequality, the probability that the algorithm does not find a good truth assignment in at most $2n^2$ steps when one exists is bounded by $\frac{1}{2}$. Since this is independent of where we start the algorithm, the probability that it still has not found a good truth assignment after $2n^2 \log n$ steps is at most $\frac{1}{2}^{\log n} = \frac{1}{n}$.

A randomized 3-SAT algorithm

Given a formula with exactly 3 variables per clause, find a Boolean assignment that satisfies all clauses.

Algorithm:

- 1 Start with an arbitrary assignment.
- 2 Repeat till all clauses are satisfied:
 - 1 Pick an unsatisfied clause C.
 - 2 Pick a random litteral in the clause C and switch its value.

NB: 3-SAT is NPC so we should not expect our algorithm to be polynomial, even if there is a valid truth assignment.

We first try to analyze in the same way as for the 2-SAT algorithm: Assume the formula is satisfiable and that S is a fized satisfying assignment.Let A_i the assignment after i steps and let X_i denote the number of variables whose values is the same in A_i as in S.

$$Pr(X_{i+1} = j + 1 | X_i = j) \ge \frac{1}{3}$$

 $Pr(X_{i+1} = j - 1 | X_i = j) \le \frac{2}{3}$

If we assume equalities above and solve as for 2-SAT, we will get (with D_t being the expected number of steps to termination when we have t incorrect variable assignments), then we get

$$D_t = 2^{n+2} - 2^{t+2} - 3(n-t)$$

$$D_0 = \Theta(2^n)$$

This is not good since there are only 2^n truth assignments to try.

The problem is that the number of variables that agree with *S* becomes smaller over time with high probability.

- If we start from a random truth assignment, then w.h.p. this agrees with $\frac{S}{n}$ in $\frac{n}{2}$ variables (this is the expectation).
- Once we start the algorithm, we tend to move towards 0 rather than n correct variables. Hence we are better off restarting the process several times and taking only a small number of steps (3n works as we shall see) before restarting.

A modified algorithm

Modified 3-SAT Algorithm:

- **1** Repeat *m* times (alternatively: till all clauses are satisfied):
- 2 Start with uniformly random assignment.
- **3 Repeat** up to **3** *n* times, terminating if a satisfying assignment is found:
 - 1 Pick an unsatisfied clause C.
 - 2 Pick a random litteral in the clause C and switch its value.

Analogy to a particle move on the integer line

Consider a particle moving on the integer line: with probability $\frac{1}{3}$ it moves up by one and with probability $\frac{2}{3}$ it moves down by one. Then the probability of exatly k moves down and j+k moves up is:

$$\binom{j+2k}{k} \left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)^{j+k}$$

Let q_j denote the probability that the algorithm reaches a satisfying assignment within 3n steps when the initial (random) assignment disagreed with S on j variables.

$$q_j \ge \max_{k=0,...,j} {j+2k \choose k} (\frac{2}{3})^k (\frac{1}{3})^{j+k}$$

In particular, with k = j we have:

$$q_j \geq \binom{3j}{j} \left(\frac{2}{3}\right)^j \left(\frac{1}{3}\right)^{2j}$$

Using Stirlings formula, one can get (when j > 0)

$$\binom{3j}{j} \ge \frac{c}{\sqrt{j}} (\frac{27}{4})^j$$

$$q_{j} \geq {3j \choose j} {(\frac{2}{3})^{j}} {(\frac{1}{3})^{2j}}$$

$$\geq \frac{c}{\sqrt{j}} {(\frac{27}{4})^{j}} {(\frac{2}{3})^{j}} {(\frac{1}{3})^{2j}}$$

$$\geq \frac{c}{\sqrt{j}} \frac{1}{2^{j}}$$

Let q be the probability of reaching a satisfying assignment within 3n steps starting from the random initial assignment (in one round):

$$q \geq \sum_{j=0}^{n} \Pr(\text{start with } j \text{ mismatches with } S)q_{j}$$

$$\geq \frac{1}{2^{n}} + \sum_{j=1}^{n} \binom{n}{j} (\frac{1}{2})^{n} \frac{c}{\sqrt{j}} \frac{1}{2^{j}}$$

$$\geq \frac{c}{\sqrt{n}} (\frac{1}{2})^{n} \sum_{j=1}^{n} \binom{n}{j} (\frac{1}{2})^{j} (1)^{n-j}$$

$$= \frac{c}{\sqrt{n}} (\frac{1}{2})^{n} (\frac{3}{2})^{n}$$

$$= \frac{c}{\sqrt{n}} (\frac{3}{4})^{n}$$

If S exists, the number of times we have to repeat the initial random assignments is a geometric random variable with parameter q. The expected number of repetitions is $\frac{1}{q}$. Hence, the expected number of repetitions is $\frac{\sqrt{n}}{c} \left(\frac{4}{3}\right)^n$ so the expected number of steps until a solution is found is $O(n^{\frac{3}{2}} \left(\frac{4}{3}\right)^n)$ If a denotes the expected number of steps above, then, by

If a denotes the expected number of steps above, then, by Markov's inequality, the probability that we need more than 2a steps is at most $\frac{1}{2}$ so if we repeat the outer loop (picking a new random assignment) 2ab times, then the probability that no solution is found when one exists is at most 2^{-b} .

Classification of States

Definition

State j is accessible from state i if for some integer $n \ge 0$, $P_{i,j}^n > 0$. If two states i and j are accessible from each other we say that they communicate, and we write $i \leftrightarrow j$.

In the graph representation $i \leftrightarrow j$ if and only if there are directed paths connecting i to j and j to i.

The communicating relation defines an equivalence relation. That is, the relation is

- **1** Reflexive: for any state i, $i \leftrightarrow i$;
- 2 Symmetric: if $i \leftrightarrow j$ then $j \leftrightarrow i$; and
- 3 Transitive: if $i \leftrightarrow j$ and $j \leftrightarrow k$, then $i \leftrightarrow k$.

Definition

A Markov chain is *irreducible* if all states belong to one communicating class.

Lemma

A finite Markov chain is irreducible if and only if its graph representation is a strongly connected graph.

 $r_{i,j}^t =$ the probability that starting at state i the first transition to state j occurred at time t, that is,

$$r_{i,j}^t = \Pr(X_t = j \text{ and for } 1 \leq s \leq t-1, X_s \neq j \mid X_0 = i).$$

Definition

A state is recurrent if $\sum_{t\geq 1} r_{i,i}^t = 1$, and it is transient if $\sum_{t\geq 1} r_{i,i}^t < 1$. A Markov chain is recurrent if every state in the chain is recurrent.

The expected time to return to state i when starting at state j:

$$h_{j,i} = \sum_{t>1} t \cdot r_{j,i}^t$$

Definition

A recurrent state i is positive recurrent if $h_{i,i} < \infty$. Otherwise, it is null recurrent.

Example - null recurrent states

States are the positive numbers.

$$P_{i,j} = \begin{cases} \frac{i}{i+1} & j = i+1\\ 1 - \frac{i}{i+1} & j = 1\\ 0 & \text{otherwise} \end{cases}$$

The probability of not having returned to state 1 within the first t steps is

$$\prod_{j=1}^{t} \frac{j}{j+1} = \frac{1}{t+1}.$$

The probability of never returning to state 1 from state 1 is 0, and state 1 is recurrent.

$$r_{1,1}^t = \frac{1}{t(t+1)}.$$

$$h_{1,1} = \sum_{t=1}^{\infty} t \cdot r_{1,1}^t = \sum_{t=1}^{\infty} \frac{1}{t+1} = \infty$$

State 1 is null recurrent.

Lemma

In a finite Markov chain,

- 1 At least one state is recurrent;
 - 2 All recurrent states are positive recurrent.

Definition

A state j in a discrete time Markov chain is *periodic* if there exists an integer $\Delta > 1$ such that $\Pr(X_{t+s} = j \mid X_t = j) = 0$ unless s is divisible by Δ . A discrete time Markov chain is *periodic* if any state in the chain is periodic. A state or chain that is not periodic is *aperiodic*.

Definition

An aperiodic, positive recurrent state is an *ergodic* state. A Markov chain is *ergodic* if all its states are ergodic.

Corollary

Any finite, irreducible, and aperiodic Markov chain is an ergodic chain.

Example: The Gambler's Ruin

- Consider a sequence of independent, two players, fair gambling games.
- In each round a player wins a dollar with probability 1/2 or loses a dollar with probability 1/2.
- W^t = the number of dollars won by player 1 up to (including) step t.
- If player 1 has lost money, this number is negative.
- $W^0 = 0$. For any t, $E[W^t] = 0$.
- Player 1 must end the game if she loses ℓ_1 dollars $(W^t = -\ell_1)$; player 2 must terminate when she loses ℓ_2 dollars $(W^t = \ell_2)$.
- Let q be the probability that the game ends with player 1 winning \(\ell_2\) dollars.
- If $\ell_2 = \ell_1$, then by symmetry q = 1/2. What is q when $\ell_2 \neq \ell_1$?

 $-\ell_1$ and ℓ_2 are recurrent states. All other states are transient. Let

 P_i^t be the probability that after t steps the chain is at state i.

For
$$-\ell_1 < i < \ell_2$$
, $\lim_{t \to \infty} P_i^t = 0$.

$$\lim_{t\to\infty}P^t_{\ell_2}=q.$$

$$\lim_{t\to\infty} P_{\ell_1}^t = 1 - q.$$

$$\mathbf{E}[W^t] = \sum_{i=-\ell_1}^{\ell_2} i P_i^t = 0$$

$$\lim_{t\to\infty} \mathbf{E}[W^t] = \ell_2 q - \ell_1 (1-q) = 0.$$

$$\mathsf{E}[\mathit{VV}^*] = \ell_2 q - \ell_1 (1 - q) =$$

 $q = \frac{\ell_1}{\ell_1 + \ell_2}.$