
Stationary Distributions

p̄(t + 1) = p̄(t)P

Definition

A stationary distribution (also called an equilibrium distribution) of
a Markov chain is a probability distribution π̄ such that

π̄ = π̄P.



Theorem

Any finite, irreducible, and aperiodic (ergodic) Markov chain has
the following properties:

1 The chain has a unique stationary distribution
π̄ = (π0, π1, . . . , πn);

2 For all j and i , the limit limt→∞ Pt
j ,i exists and it is

independent of j ;

3 πi = limt→∞ Pt
j ,i = 1

hi,i
.



• For any distribution vector p̄

π̄ = lim
t→∞

p̄Pt .

•
1

πi
= hi ,i =

∞∑
t=1

t · r ti ,i



Proof

We use:

Lemma

For any irreducible, ergodic Markov chain, and for any state i , the
limit limt→∞ Pt

i ,i exists, and

lim
t→∞

Pt
i ,i =

1

hi ,i
.



Using the fact that limt→∞ Pt
i ,i exists, we now show that for any j

and i limt→∞ Pt
j ,i = limt→∞ Pt

i ,i = 1
hi,i
.

For j 6= i we have Pt
j ,i =

∑t
k=1 r

k
j ,iP

t−k
i ,i .

For t ≥ t1,
∑t1

k=1 r
k
j ,iP

t−k
i ,i ≤

∑t
k=1 r

k
j ,iP

t−k
i ,i = Pt

j ,i .

Since the chain is irreducible
∑∞

t=1 r
t
j ,i = 1. For any ε > 0 there

exists (a finite) t1 = t1(ε) such that
∑t1

t=1 r
t
j ,i ≥ 1− ε.

lim
t→∞

Pt
j ,i ≥ lim

t→∞

t1∑
k=1

rkj ,iP
t−k
i ,i =

t1∑
k=1

rkj ,i lim
t→∞

Pt
i ,i

= lim
t→∞

Pt
i ,i

t1∑
k=1

rkj ,i ≥ (1− ε) lim
t→∞

Pt
i ,i .



Similarly,

Pt
j ,i =

t∑
k=1

rkj ,iP
t−k
i ,i ≤

t1∑
k=1

rkj ,iP
t−k
i ,i + ε,

lim
t→∞

Pt
j ,i ≤ lim

t→∞
(

t1∑
k=1

rkj ,iP
t−k
i ,i + ε)

=

t1∑
k=1

rkj ,i lim
t→∞

Pt−k
i ,i + ε

≤ lim
t→∞

Pt
i ,i + ε.

For any pair i and j

lim
t→∞

Pt
j ,i = lim

t→∞
Pt
i ,i =

1

hi ,i
.



Let

πi = lim
t→∞

Pt
j ,i =

1

hi ,i
.

We show that π̄ = (π0, π1, . . . ) forms a stationary distribution.
For every t ≥ 0, Pt

i ,i ≥ 0, and thus πi ≥ 0. For any t ≥ 0,∑n
i=0 P

t
j ,i = 1, and thus

1 = lim
t→∞

n∑
i=0

Pt
j ,i =

n∑
i=0

lim
t→∞

Pt
j ,i =

n∑
i=0

πi ,

and π is a proper distribution. Now,

Pt+1
j ,i =

n∑
k=0

Pt
j ,kPk,i .

Letting t →∞ we have

πi =
n∑

k=0

πkPk,i ,

proving that π̄ is a stationary distribution.



Suppose that there was another stationary distribution φ̄.

φi =
n∑

k=0

φkP
t
k,i ,

and taking the limit as t →∞ we have

φi =
n∑

k=0

φkπi = πi

n∑
k=0

φk .

Since
∑n

k=0 φk = 1, we have φi = πi for all i , or φ̄ = π̄.



Computing the Stationary Distribution

1. Solve the system of linear equations π̄P = π̄.

2. Solving equilibrium equations.

Theorem

Let S be a set of states of a finite, irreducible, aperiodic Markov
chain. In the stationary distribution, the probability that the chain
leaves the set S equals the probability that it enters S.

Proof.

(Only for single states.) For any state i :

n∑
j=0

πjPj ,i = πi = πi

n∑
j=0

Pi ,j

∑
j 6=i

πjPj ,i =
∑
j 6=i

πiPi ,j .



Theorem

Consider a finite, irreducible, and ergodic Markov chain on n states
with transition matrix P. If there are non-negative numbers
π̄ = (π0, . . . , πn) such that

∑n
i=0 πi = 1, and for any pair of states

i , j ,
πiPi ,j = πjPj ,i ,

then π̄ is the stationary distribution corresponding to P.

Proof.

n∑
i=0

πiPi ,j =
n∑

i=0

πjPj ,i = πj .

Thus π̄ satisfies π̄ = π̄P, and
∑n

i=0 πi = 1, and π̄ must be the
unique stationary distribution of the Markov chain.



Theorem

Any irreducible aperiodic Markov chain belongs to one of the
following two categories:

1 The chain is ergodic. For any pairs of states i and j, the limit
limt→∞ Pt

j ,i exists and is independent of j . The chain has a
unique stationary distribution πi = limt→∞ Pt

j ,i > 0.
or

2 No state is positive recurrent. For all i and j, limt→∞ Pt
j ,i = 0,

and the chain has no stationary distribution.



Example: A Simple Queue

Discrete time queue.
At each time step, exactly one of the following occurs:

• If the queue has fewer than n customers, then with probability
λ a new customer joins the queue.

• If the queue is not empty, then with probability µ the head of
the line is served and leaves the queue.

• With the remaining probability the queue is unchanged.



Xt = the number of customers in the queue at time t.

Pi ,i+1 = λ if i < n

Pi ,i−1 = µ if i > 0

Pi ,i =


1− λ if i = 0
1− λ− µ if 1 ≤ i ≤ n − 1
1− µ if i = n.

The Markov chain is irreducible, finite, and aperiodic, so it has a
unique stationary distribution π̄.



We use π̄ = π̄P to write

π0 = (1− λ)π0 + µπ1,

πi = λπi−1 + (1− λ− µ)πi + µπi+1, 1 ≤ i ≤ n − 1,

πn = λπn−1 + (1− µ)πn.

πi = π0

(
λ

µ

)i

Adding the requirement
∑n

i=0 πi = 1, we have

n∑
i=0

πi =
n∑

i=0

π0

(
λ

µ

)i

= 1,



π0 =
1∑n

i=0

(
λ
µ

)i .
For all 0 ≤ i ≤ n,

πi =

(
λ
µ

)i
∑n

i=0

(
λ
µ

)i . (1)



Use cut sets to compute the stationary probability:
For any i , the transitions i → i + 1 and i + 1→ i are a cut-set.

λπi = µπi+1.

By induction

πi = π0

(
λ

µ

)i

.



Removing the limit on n, the Markov chain is no longer finite.
The Markov chain has a countably infinite state space. It has a
stationary distribution if and only if the following set of linear
equations has a solution with all πi > 0:

π0 = (1− λ)π0 + µπ1

πi = λπi−1 + (1− λ− µ)πi + µπi+1, , i ≥ 1.

If λ < µ, then

πi =

(
λ
µ

)i
∑∞

i=0

(
λ
µ

)i =

(
λ

µ

)i (
1− λ

µ

)

is a solution of the above system of equations.
If λ > µ, no stationary distribution, each state in the Markov chain
is transient.
If λ = µ there is no stationary distribution, and the queue length
will become arbitrarily long, but now the states are null recurrent.



Random Walks on Undirected Graph

Let G = (V ,E ) be a finite, undirected, and connected graph.

Definition

A random walk on G is a Markov chain defined by the movement
of a particle between vertices of G . In this process, the place of
the particle at a given time step is the state of the system. If the
particle is at vertex i , and i has d(i) outgoing edges, then the
probability that the particle follows the edge (i , j) and moves to a
neighbor j is 1/d(i).



Lemma

A random walk on an undirected graph G is aperiodic if and only if
G is not bipartite.

Proof.

If the graph is bipartite then the random walk is periodic, with a
period d = 2.
If the graph is not bipartite, then it has an odd cycle, and by
traversing that cycle we have an odd length path from any vertex
to itself. Since we also have a path of even length 2 from any
vertex to itself, the walk cannot be periodic.



Theorem

A random walk on G converges to a stationary distribution π,
where

πv =
d(v)

2|E |
.

Proof.

Since
∑

v∈V d(v) = 2|E |,

∑
v∈V

πv =
∑
v∈V

d(v)

2|E |
= 1,

and πv is a proper distribution over v ∈ V .
Let N(v) be the set of neighbors of v . The relation π̄ = π̄P gives

πv =
∑

u∈N(v)

d(u)

2|E |
1

d(u)
=

d(v)

2|E |



hv ,u denotes the expected number of steps to reach u from v .

Corollary

For any vertex u in G,

hu,u =
1

πu
=

2|E |
d(u)

.



Lemma

If (u, v) ∈ E, then hv ,u < 2|E |.

Proof.

Let N(u) be the set of neighbors of vertex u in G . We compute
hu,u in two different ways.

2|E |
d(u)

= hu,u =
1

d(u)

∑
w∈N(u)

(1 + hw ,u).

Hence

2|E | =
∑

w∈N(u)

(1 + hw ,u),

and we conclude that hv ,u < 2|E |.



Definition

The cover time of a graph G is the maximum over all vertices of
the expected time to visit all nodes of the graph starting the
random walk from that vertex.

Lemma

The cover time of G = (V ,E ) is bounded above by 4|V | · |E |.

Proof.

Choose a spanning tree on G , and an Eulerian cycle on the
spanning tree.
Let v0, v1, . . . , v2|V |−2 = v0 be the sequence of vertices in the cycle.

2|V |−3∑
i=0

hvi ,vi+1 + hv2|V |−2,v1 < (2|V | − 2)2|E | < 4|V | · |E |,



Application: An s − t Connectivity Algorithm

Given an undirected graph G = (V ,E ), and two vertices s and t in
G .
Let n = |V | and m = |E |.
We want to determine if there is a path connecting s and t.
Easily done in O(m) time and Ω(n) space.
s − t Connectivity Algorithm

• Start a random walk from s.

• If the walk reaches t within 4n3 steps, return that there is a
path. Otherwise, return that there is no path.



Theorem

The algorithm returns the correct answer with probability 1/2, and
it only errs by saying that there is no path from s to t when there
is such a path.

Proof.

If there is no path, the algorithm returns the correct answer.
If there is a path, the expected time to reach t from s, is bounded
by 4nm < 2n3.
By Markov’s inequality, the probability that a walk takes more than
4n3 steps to reach s from t is at most 1/2.

The algorithm must keep track of its current position, which takes
O(log n) bits, and the number of steps taken in the random walk,
which also takes only O(log n) bits (since we count up to only 4n3).


