
ar
X

iv
:1

50
4.

06
80

4v
3

 [c
s.

D
S

]
15

 S
ep

 2
01

5

High Speed Hashing for Integers and Strings

Mikkel Thorup

September 16, 2015

Abstract

These notes describe the most efficient hash functions currently known for hashing integers
and strings. These modern hash functions are often an order of magnitude faster than those
presented in standard text books. They are also simpler to implement, and hence a clear win
in practice, but their analysis is harder. Some of the most practical hash functions have only
appeared in theory papers, and some of them requires combining results from different theory
papers. The goal here is to combine the information in lecture-style notes that can be used by
theoreticians and practitioners alike, thus making these practical fruits of theory more widely
accessible.

1 Hash functions

The concept of truly independent hash functions is extremely useful in the design of randomized
algorithms. We have a large universeU of keys, e.g., 64-bit numbers, that we wish to map ran-
domly to a range[m] = {0, . . . , m−1} of hash values. Atruly random hash functionh : U → [m]
assigns an independent uniformly random variableh(x) to each key inx. The functionh is thus a
|U |-dimensional random variable, picked uniformly at random among all functions fromU to [m].

Unfortunately truly random hash functions are idealized objects that cannot be implemented.
More precisely, to represent a truly random hash function, we need to store at least|U | log2m bits,
and in most applications of hash functions, the whole point in hashing is that the universe is much
too large for such a representation (at least not in fast internal memory).

The idea is to let hash functions contain only a small elementor seed of randomness so that
the hash function is sufficiently random for the desired application, yet so that the seed is small
enough that we can store it when first it is fixed. As an example,if p is prime, a random hash
functionh : [p] → [p] = {0, . . . , p−1} could beh(x) = (ax+b) mod p wherea andb are random
numbers that together form the random seed describing the function. In these notes we will discuss
some basic forms of random hashing that are very efficient to implement, and yet have sufficient
randomness for some important applications.

1

http://arxiv.org/abs/1504.06804v3

1.1 Definition and properties

Definition 1 A hash functionh : U → [m] is a random variable in the class of all functions
U → [m], that is, it consists of a random variableh(x) for eachx ∈ U .

For a hash function, we care about roughly three things:

Space The size of the random seed that is necessary to calculateh(x) givenx,

Speed The time it takes to calculateh(x) givenx,

Properties of the random variable.

In the next sections we will mention different desirable properties of the random variable and
describe how to obtain them efficiently in terms of space and speed.

2 Universal hashing

The concept of universal hashing was introduced by Carter and Wegman in [2]. We wish to
generate a random hash functionh : U → [m] from a key universeU to a set of hash values
[m] = {0, . . . , m− 1}. We think ofh as a random variable following some distribution over func-
tionsU → [m]. We wanth to beuniversalwhich means that for any given distinct keysx, y ∈ U ,
whenh is picked at random (independently ofx andy), we havelow collision probability:

Pr
h
[h(x) = h(y)] ≤ 1/m.

For many applications, it suffices if for somec = O(1), we have

Pr
h
[h(x) = h(y)] ≤ c/m.

Thenh is calledc-universal.
In this chapter we will first give some concrete applicationsof universal hashing. Next we will

show how to implement universal hashing when the key universe is an integer domainU = [u] =
{0, . . . , u− 1} where the integers fit in a machine word, that is,u ≤ 2w wherew = 64 is the word
length. In later chapters we will show how to make efficient universal hashing for large objects
such as vectors and variable length strings.

Exercise 2.1 Is the truly independent hash functionh : U → [m] universal?

Exercise 2.2 If a hash functionh : U → [m] has collision probability0, how large mustm be?

Exercise 2.3Letu ≤ m. Is the identity functionf(x) = x a universal hash function[u] → [m]?

2

2.1 Applications

One of the most classic applications of universal hashing ishash tables with chaining. We have a
setS ⊆ U of keys that we wish to store so that we can find any key fromS in expected constant
time. Letn = |S| andm ≥ n. We now pick a universal hash functionh : U → [m], and then
create an arrayL of m lists/chains so that fori ∈ [m], L[i] is the list of keys that hash toi. Now
to find out if a keyx ∈ U is in S, we only have to check ifx is in the listL[h(x)]. This takes time
proportional to1 + |L[h(x)]| (we add 1 because it takes constant time to look up the list even if
turns out to be empty).

Assume thatx 6∈ S and thath is universal. LetI(y) be an indicator variable which is1 if
h(x) = h(y) and0 otherwise. Then the expected number of elements inL[h(x)] is

Eh[|L[h(x)]|] = Eh

[

∑

y∈S

I(y)

]

=
∑

y∈S

Eh[I(y)] =
∑

y∈S

Pr
h
[h(y) = h(x)] = n/m ≤ 1.

The second equality useslinearity of expectation.

Exercise 2.4 (a) What is the expected number of elements inL[h(x)] if x ∈ S?

(b) What bound do you get ifh is only 2-universal?

The idea of hash tables goes back to [8], and hash tables were the prime motivation for introduction
of universal hashing in [2]. For a text book description, see, e.g., [3,§11.2].

A different applications is that of assigning a uniquesignatures(x) to each key. Thus we
want s(x) 6= s(y) for all distinct keysx, y ∈ S. To get this, we pick a universal hash function
s : U → [n3]. The probability of an error (collision) is calculated as

Pr
s
[∃{x, y} ⊆ S : s(x) = s(y)] ≤

∑

{x,y}⊆S

Pr
s
[s(x) = s(y)] =

(

n

2

)

/n3 < 1/(2n).

The first inequality is aunion bound: that the probability of that at least one of multiple events
happen is at most the sum of their probabilities.

The idea of signatures is particularly relevant when the keys are large, e.g., a key could be a
whole text document, which then becomes identified by the small signature. This idea could also
be used in connection with hash tables, letting the listL[i] store the signaturess(x) of the keys that
hash toi, that is,L[i] = {s(x)|x ∈ X, h(x) = i}. To check ifx is in the table we check ifs(x) is
in L[h(x)].

Exercise 2.5With s : U → [n3] andh : U → [n] independent universal hash functions, for a
givenx ∈ U \ S, what is the probability of afalse positivewhen we searchx, that is, what is the
probability that there is a keyy ∈ S such thath(y) = h(x) ands(y) = s(x) ?

Below we study implementations of universal hashing.

3

2.2 Multiply-mod-prime

Note that ifm ≥ u, we can just leth be the identity (no randomness needed) so we may assume
thatm < u.

The classic universal hash function from [2] is based on a prime numberp ≥ u. We pick a
uniformly randoma ∈ [p]+ = {1, . . . , p− 1} andb ∈ [p] = {0, . . . , p− 1}, and defineha,b : [u] →
[m] by

ha,b(x) = ((ax+ b) mod p) mod m) (1)

Given any distinctx, y ∈ [u] ⊆ [p], we want to argue that for randoma andb that

Pr
a∈[p]+, b∈[p]

[ha,b(x) = ha,b(y)] ≤ 1/m. (2)

In most of our proof, we will consider alla ∈ [p], includinga = 0. Ruling outa = 0, will only be
used in the end to get the tight bound from (2).

We need only one basic fact about primes:

Fact 2.1 If p is prime andα, β ∈ [p]+ thenαβ 6≡ 0 (mod p).

Let x, y ∈ [p], x 6= y be given. For given pair(a, b) ∈ [p]2, define(q, r) ∈ [p]2 by

ax+ b mod p = q (3)

ay + b mod p = r. (4)

Lemma 2.2 Equations (3) and (4) define a 1-1 correspondence between pairs (a, b) ∈ [p]2 and
pairs (q, r) ∈ [p]2.

Proof For a given pair(r, q) ∈ [p]2, we will show that there is at most one pair(a, b) ∈ [p]2

satisfying (3) and (4). Subtracting (3) from (4) modulop, we get

(ay + b)− (ax+ b) ≡ a(y − x) ≡ r − q (mod p), (5)

We claim that there is at most onea satisfying (5). Suppose there is anothera′ satisfying (5).
Subtracting the equations witha anda′, we get

(a− a′)(y − x) ≡ 0 (mod p),

but sincea − a′ andy − x are both non-zero modulop, this contradicts Fact 2.1. There is thus at
most onea satisfying (5) for given(q, r). With thisa, we needb to satisfy (3), and this determines
b as

b = (q − ax) mod p. (6)

Thus, for each pair(q, r) ∈ [p]2, there is at most one pair(a, b) ∈ [p]2 satisfying (3) and (4). On
the other hand, (3) and (4) define a unique pair(q, r) ∈ [p]2 for each pair(a, b) ∈ [p]2. We havep2

4

pairs of each kind, so the correspondence must be 1-1.

Sincex 6= y, by Fact 2.1,
r = q ⇐⇒ a = 0. (7)

Thus, when we pick(a, b) ∈ [p]+ × [p], we getr 6= q.
Returning to the proof of (2), we get a collisionha,b(x) = ha,b(y) if and only ifq ≡ r (mod m),

and we know thatq 6= r. For givenr ∈ [p], there are at most⌈p/m⌉ values ofq ∈ [p] with q ≡ r
(mod m); namelyr′, r′ + m, r′ + 2m, . . . < p for r′ = r mod m. Ruling outq = r leaves us
at most⌈p/m⌉ − 1 values ofq ∈ [p] for each of thep values ofr. Noting that⌈p/m⌉ − 1 ≤
(p +m − 1)/m− 1 = (p− 1)/m, we get that the total number of collision pairs(r, q), r 6= q, is
bounded byp(p− 1)/m. Then our 1-1 correspondence implies that there are at mostp(p− 1)/m
collision pairs(a, b) ∈ [p]+× [p]. Since each of thep(p−1) pairs from[p]+× [p] are equally likely,
we conclude that the collision probability is bounded by1/m, as required for universality.

Exercise 2.6Suppose we for our hash function also considera = 0, that is, for random(a, b) ∈
[p]2, we define the hash functionha,b : [p] → [m] by

ha,b(x) = ((ax+ b) mod p) mod m.

(a) Show that this function may not be universal.

(b) Prove that it is always 2-universal, that is, for any distinct x, y ∈ [p],

Pr
(a,b)∈[p]2

[ha,b(x) = ha,b(y)] < 2/m.

2.2.1 Implementation for 64-bit keys

Let us now consider the implementation of our hashing scheme

h(x) = ((ax) mod p) mod m)

for the typical case of 64-bit keys in a standard imperative programming language such as C. Let’s
say the hash values are20 bits, so we haveu = 264 andm = 220.

Sincep > u = 264, we generally need to reserve more than 64 bits fora ∈ [p]+, so the product
ax has more than 128 bits. To computeax, we now have the issue that multiplication ofw-bit
numbers automatically discards overflow, returning only thew least significant bits of the product.
However, we can get the product of 32-bit numbers, representing them as 64-bit numbers, and
getting the full 64-bit result. We need at least 6 such 64-bitmultiplications to computeax.

Next issue is, how do we computeax mod p? For 64-bit numbers we have a general mod-
operation, though it is rather slow, and here we have more than 128 bits.

An idea from [2] is to letp be a Mersenne prime, that is, a prime of the form2q − 1. We can
here use the Mersenne prime289 − 1. The point in using a Mersenne prime is that

x ≡ x mod 2q + ⌊x/2q⌋ (mod p).

5

Exercise 2.7Assuming a language like C supporting 64-bit multiplication, addition, shifts and
bit-wise Boolean operations, but no general mod-operation, sketch the code to compute((ax +
b) mod p) mod m with p = 289 − 1 andm = 220.

2.3 Multiply-shift

We shall now turn to a truly practical universal hashing scheme proposed by Dietzfelbinger et
al. [6], yet ignored by most text books. It generally addresses hashing fromw-bit integers toℓ-bit
integers. We pick a uniformly random oddw-bit integera, and then we computeha : [2

w] → [2d],
as

ha(x) = ⌊(ax mod 2w)/2w−ℓ⌋ (8)

This scheme gains an order of magnitude in speed over the scheme from (1), exploiting operations
that are fast on standard computers. Numbers are stored as bit strings, with the least significant bit
to the right. Integer division by a power of two is thus accomplished by a right shift. For hashing
64-bit integers, we further exploit that64-bit multiplication automatically discards overflow, which
is the same as multiplying modulo264. Thus, withw = 64, we end up with the following C-code:

#include <stdint.h> //defines uint64_t as unsigned 64-bit integer.
uint64_t hash(uint64_t x; uint64_t l; uint64_t a) {
// hashes x universally into l bits using the random odd seed a.

return (a*x) >> (64-l);}

This scheme is many times faster and simpler to implement than the standard multiply-mod-prime
scheme, but the analysis is a more subtle.

It is convenient to think of the bits of a number as indexed with bit 0 the least significant bit.
The scheme is simply extracting bitsw − ℓ, . . . , w − 1 from the productax, as illustrated below.

l

ax

0w−1

(a*x)>>(w−l)

w−

We will prove that multiply-shift is 2-universal, that is, for x 6= y,

Pr
odda∈[2w]

[ha(x) = ha(y)] ≤ 2/2ℓ = 2/m. (9)

We haveha(x) = ha(y) if and only if ax anday = ax+ a(y − x) agree on bitsw − ℓ, . . . , w − 1.
This match requires that bitsw−ℓ, . . . , w−1 of a(y−x) are either all0s or all1s. More precisely,
if we get no carry from bits0, . . . , w − ℓ when we adda(y − x) to ax, thenha(x) = ha(y)
exactly when bitsw − ℓ, . . . , w − 1 of a(y − x) are all0s. On the other hand, if we get a carry
1 from bits 0, . . . , w − ℓ when we adda(y − x) to ax, thenha(x) = ha(y) exactly when bits
w − ℓ, . . . , w − 1 of a(y − x) are all1s. To prove (9), it thus suffices to prove that the probability
that bitsw − ℓ, . . . , w − 1 of a(y − x) are all0s or all1s is at most2/2ℓ.

We will exploit that any odd numberz is relatively prime to any power of two:

Fact 2.3 If α is odd andβ ∈ [2q]+ thenαβ 6≡ 0 (mod 2q).

6

Defineb such thata = 1 + 2b. Thenb is uniformly distributed in[2w−1]. Moreover, definez to be
the odd number satisfying(y − x) = z2i. Then

a(y − x) = z2i + bz2i+1.

= a (y − x)

0w−1 i

100000000z

0w−1 i

100000000

i+w−1

unifom

0w−1 i

000000000bz

i+w−1

iy − x = z 2

+ b z 2i+1

Now, we prove thatbz mod 2w−1 must be uniformly distributed in[2w−1]. First, note that there
is a 1-1 correspondence between theb ∈ [2w−1] and the productsbz mod 2w−1; for if there were
anotherb′ ∈ [2w−1] with b′z ≡ bz (mod 2w−1) ⇐⇒ z(b′ − b) ≡ 0 (mod 2w−1), then this would
contradict Fact 2.3 sincez is odd. But then the uniform distribution onb implies thatbz mod 2w−1

is uniformly distributed. We conclude thata(y − x) = z2i + bz2i+1 has0 in bits0, . . . , i− 1, 1 in
bit i, and a uniform distribution on bitsi+ 1, . . . , i+ w − 1.

We have a collisionha(x) = ha(y) if ax and ay = ax + a(y − x) are identical on bits
w − ℓ, . . . , w − 1. The two are always different in biti, so if i ≥ w − ℓ, we haveha(x) 6= ha(y)
regardless ofa. However, ifi < w−ℓ, then because of carries, we could haveha(x) = ha(y) if bits
w− ℓ, . . . , w− 1 of a(y−x) are either all0s, or all1s. Because of the uniform distribution, either
event happens with probability1/2ℓ, for a combined probability bounded by2/2ℓ. This completes
the proof of (9).

Exercise 2.8Why is it important thata is odd? Hint: consider the case wherex andy differ only
in the most significant bit.

Exercise 2.9Does there exist a keyx such thatha(x) is the same regardless of the random odd
numbera? If so, can you come up with a real-life application where this is a disadvantage?

3 Strong universality

We will now considerstrong universality[10]. Forh : [u] → [m], we considerpair-wise eventsof
the form that for given distinct keysx, y ∈ [u] and possibly non-distinct hash valuesq, r ∈ [m], we
haveh(x) = q andh(y) = r. We say a random hash functionh : [u] → [m] is strongly universal
if the probability of every pair-wise event is1/m2. We note that ifh is strongly universal, it is also
universal since

Pr[h(x) = h(y)] =
∑

q∈[m]

Pr[h(x) = q ∧ h(y) = q] = m/m2 = 1/m.

7

Observation 3.1 An equivalent definition of strong universality is that eachkey is hashed uni-
formly into[m], and that every two distinct keys are hashed independently.

Proof First assuming strong universality and consider distinct keysx, y ∈ U . For any hash value
q ∈ [m], Pr[h(x) = q] =

∑

r∈[m] Pr[h(x) = q ∧ h(y) = r] = m/m2 = 1/m, soh(x) is uniform
in [m], and the same holds forh(y). Moreover, for any hash valuer ∈ [m],

Pr[h(x) = q | h(y) = r] = Pr[h(x) = q ∧ h(y) = r]/Pr[h(y) = r]

= (1/m2)/(1/m) = 1/m = Pr[h(x) = q],

soh(x) is independent ofh(y). For the converse direction, whenh(x) andh(y) are independent,
Pr[h(x) = q ∧ h(y) = r] = Pr[h(x) = q] · Pr[h(y) = r], and whenh(x) andh(y) are uniform,
Pr[h(x) = q] = Pr[h(y) = r] = 1/m, soPr[h(x) = q] · Pr[h(y) = r] = 1/m2.

Emphasizing the independence, strong universality is alsocalled2-independence, as it concerns a
pair of two events.

Exercise 3.1Generalize2-independence. What is3-independence?k-independence?

As for universality, we may accept some relaxed notion of strong universality.

Definition 2 We say a random hash functionh : U → [m] is stronglyc-universalif

1. h is c-uniform, meaning for everyx ∈ U and for every hash valueq ∈ [m], we have
Pr[h(x) = q] ≤ c/m and

2. every pair of distinct keys hash independently.

Exercise 3.2 If h is stronglyc-universal, what is the pairwise event probability,

Pr[h(x) = q ∧ h(y) = r]?

Exercise 3.3Argue that ifh : U → [m] is stronglyc-universal, thenh is alsoc-universal.

Exercise 3.4 Is Multiply-Shift stronglyc-universal for any constantc?

3.1 Applications

One very important application of strongly universal hashing is coordinated sampling, which is
crucial to the handling of Big Data and machine learning. Thebasic idea is that we based on small
samples can reason about the similarity of huge sets, e.g., how much they have in common, or how
different they are.

First we consider the sampling from a single setA ⊆ U using a strongly universal hash function
h : U → [m] and a thresholdt ∈ {0, . . . , m}. We now samplex if h(x) < t, which by uniformity
happens with probabilityt/m for anyx. Let Sh,t(A) = {x ∈ A | h(x) < t} denote the resulting

8

sample fromA. Then, by linearity of expectation,E[|Sh,t(A)|] = |A| ·t/m. Conversely, this means
that if we haveSh,t(A), then we can estimate|A| as|Sh,t(A)| ·m/t.

We note that the universality from Section 2 does not in general suffice for any kind of sam-
pling. If we, for example, take the multiplication-shift scheme from Section 2.3, then we always
haveh(0) = 0, so0 will always be sampled if we sample anything, that is, ift > 0.

The important application is, however, not the sampling from a single set, but rather the sam-
pling from different setsB andC so that we can later reason about the similarity, estimatingthe
sizes of their unionB ∪ C and intersectionB ∩ C.

Suppose we for two different setsB andC have found the samplesSh,t(B) andSh,t(C). Based
on these we can compute the sample of the union as the union of the samples, that is,Sh,t(B∪C) =
Sh,t(B) ∪ Sh,t(C). Likewise, we can compute the sample of the intersection asSh,t(B ∩ C) =
Sh,t(B) ∩ Sh,t(C). We can then estimate the size of the union and intersection multiplying the
corresponding sample sizes bym/t.

The crucial point here is that the sampling from different sets can be done in a distributed
fashion as long as a fixedh andt is shared,coordinating the samplingat all locations. This is used,
e.g., in machine learning, where we can store the samples of many different large sets. When a
new set comes, we sample it, and compare the sample with the stored samples to estimate which
other set it has most in common with. Another cool application of coordinated sampling is on
the Internet where all routers can store samples of the packets passing through [7]. If a packet is
sampled, it is sampled by all routers that it passes, and thismeans that we can follow the packets
route through the network. If the routers did not use coordinated sampling, the chance that the
same packet would be sampled at multiple routers would be very small.

Exercise 3.5GivenSh,t(B) andSh,t(C), how would you estimate the size of the symmetric differ-
ence(B \ C) ∪ (C \B)?

Below, in our mathematical reasoning, we only talk about thesampleSh,t(A) from a single set
A. However, as described above, in many applications,A represent a unionB ∪ C or intersection
B ∩ C of different setsB andC.

To get a fixed sampling probabilityt/m for eachx ∈ U , we only need thath : U → [m] is
uniform. This ensures that the estimate|Sh,t(A)|·m/t of |A| is unbiased, that is,E[|Sh,t(A)|ṁ/t] =
|A|. The reason that we also want the pair-wise independence of strong universality is that we
want |Sh,t(A)| to be concentrated around its mean|A| · t/m so that we can trust the estimate
|Sh,t(A)| ·m/t of |A|.

Fora ∈ A, letXa be the indicator variable fora being sampled, that isXa = [h(a) < t]. Then
|Sh,t(A)| = X =

∑

a∈A Xa.
Sinceh is strongly universal, for any distinct keysa, b ∈ A, h(a) andh(b) are independent,

but thenXa andXb are also independent random variables. TheXa are thus pairwise independent,
soVar[X] =

∑

a Var[Xa]. Let p = t/m be the common sampling probability for all keys. Also,
let µ = p|A| = E[X] be the expectation ofX. For eachXa, we haveE[Xa] = p, soVar[Xa] =
p(1− p). It follows thatVar[X] = µ(1− p) < µ. By definition, the standard deviation ofX is

σX =
√

Var[X] =
√

µ(1− p). (10)

9

Now, by Chebyshev’s inequality (see, e.g., [9, Theorem 3.3]), for anyq > 0,

Pr[|X − µ| ≥ qσX] ≤ 1/q2. (11)

Exercise 3.6Suppose that|A| = 100, 000, 000 and p = t/m = 1/100. ThenE[X] = µ =
1, 000, 000. Give an upper bound for the probability that|X − µ| ≥ 10, 000. These numbers
correspond to a 1% sampling rate and a 1% error.

3.2 Multiply-mod-prime

The classic strongly universal hashing scheme is a multiply-mod-prime scheme. For some prime
p, uniformly at random we pick(a, b) ∈ [p]2 and defineha,b : [p] → [p] by

ha,b(x) = (ax+ b) mod p. (12)

To see that this is strongly universal, consider distinct keys x, y ∈ [p] and possibly non-distinct
hash valuesq, r ∈ [p], ha,b(x) = q andha,b(x) = r. This is exactly as in (3) and (4), and by
Lemma 2.2, we have a 1-1 correspondence between pairs(a, b) ∈ [p]× [p] and pairs(q, r) ∈ [p]2.
Since(a, b) is uniform in[p]2 it follows that(q, r) is uniform in[p]2, hence that the pair-wise event
ha,b(x) = q andha,b(x) = r happens with probability1/p2.

Exercise 3.7Letm ≤ p. For random(a, b) ∈ [p]2, define the hash functionha,b : [p] → [m] by

ha,b(x) = ((ax+ b) mod p) mod m.

(a) Argueha,b is strongly 2-universal.

(b) In the universal multiply-mod-prime hashing from Section 2, we insisted ona 6= 0, but now
we consider alla ∈ [p]. Why this difference?

3.3 Multiply-shift

We now present a simple generalization from [4] of the universal multiply-shift scheme from Sec-
tion 2 that yields strong universality. As a convenient notation, for any bit-stringz and integers
j > i ≥ 0, z[i, j) = z[i, j − 1] denotes the number represented by bitsi, . . . , j − 1 (bit 0 is the
least significant bit, which confusingly, happens to be rightmost in the standard representation), so

z[i, j) = ⌊(z mod 2j)/2i⌋.

To hash[2w] → [2ℓ] we may pick anyw ≥ w + ℓ − 1. For any pair(a, b) ∈ [w]2, we define
ha,b : [2

w] → [2ℓ] by
ha,b(x) = (ax+ b)[w − ℓ, w). (13)

As for the universal multiply shift, we note that the scheme of (13) is easy to implement with
convenient parameter choices, e.g., withw = 64, w = 32 andℓ = 20, we get the C-code:

10

#include <stdint.h>
// defines uint32/64_t as unsigned 32/64-bit integer.
uint64_t hash(uint32_t x; uint32_t l; uint64_t a; uint64_t b;) {
// hashes x strongly universally into l bits
// using the random seeds a and b.

return (a*x+b) >> (64-l);}

We will prove that the scheme from (13) is strongly universal. In the proof we will reason a lot
about uniformly distributed variables, e.g., ifX ∈ [m] is uniformly distributed andβ is a constant
integer, then(X + β) mod m is also uniformly distributed in[m]. More interestingly, we have

Fact 3.2 Consider two positive integersα andm that are relatively prime, that is,α andm have
no common prime factor. IfX is uniform in[m], then(αX) mod m is also uniformly distributed
in [m]. Important cases are (a) ifα < m andm is prime, and (b) ifα is odd andm is a power of
two.

Proof We want to show that for everyy ∈ [m] there is at most onex ∈ [m] such that(αx) mod
m = y, for then there must be exactly onex ∈ [m] for eachy ∈ [m], and vice versa. Suppose we
had distinctx1, x2 ∈ [m] such that(αx1) mod m = y = (αx2) mod m. Thenα(x2 − x1) mod
m = 0, som is a divisor ofα(x2 − x1). By the fundamental theorem of arithmetic, every positive
integer has a unique prime factorization, so all prime factors ofm have to be factors ofα(x2 − x1)
in same or higher powers. Sincem andα are relatively prime, no prime factor ofm is factor ofα,
so the prime factors ofm must all be factors ofx2 − x1 in same or higher powers. Thereforem
must dividex2 − x1, contradicting the assumptionx1 6≡ x2 (mod m). Thus, as desired, for any
y ∈ [m], there is at most onex ∈ [m] such that(αx) mod m = y.

Theorem 3.3 Whena, b ∈ [2w] are uniform and independent, then the multiply-shift scheme from
(13) is strongly universal.

Proof Consider any distinct keysx, y ∈ [2w]. We want to show thatha,b(x) andha,b(y) are
independent uniformly distributed variables in[2ℓ].

Let s be the index of the least significant1-bit in (y − x) and letz be the odd number such
that (y − x) = z2s. Sincez is odd anda is uniform in [2w], by Fact 3.2 (b), we have thataz is
uniform in [2w]. Now a(y − x) = az2s has all0s in bits0, .., s− 1 and a uniform distribution on
bitss, .., s+w− 1. The latter implies thata(y − x)[s, .., w− 1] is uniformly distributed in[2w−s].

Consider now any fixed value ofa. Sinceb is still uniform in [2w], we get that(ax + b)[0, w)
is uniformly distributed, implying that(ax + b)[s, w) is uniformly distributed. This holds for any
fixed value ofa, so we conclude that(ax + b)[s, w) anda(y − x)[s, w) are independent random
variables, each uniformly distributed in[2w−s].

Now, sincea(y − x)[0, s) = 0, we get that

(ay + b)[s,∞) = ((ax+ b) + a(y − x))[s,∞) = ((ax+ b)[s,∞) + (a(y − x))[s,∞).

11

The fact thata(y−x)[s, w) is uniformly distributed independently of(ax+b)[s, w) now implies that
(ay+b)[s, w) is uniformly distributed independently of(ax+b)[s, w). However,w ≥ w+ℓ−1 and
s < w sos ≤ w−1 ≤ w−ℓ. Thereforeha,b(x) = (ax+b)[w−ℓ, w) andha,b(y) = (ay+b)[w−ℓ, w)
are independent uniformly distributed variables in[2ℓ].

In order to reuse the above proof in more complicated settings, we crystallize a technical lemma
from the last part:

Lemma 3.4 Let w ≥ w + ℓ − 1. Consider a random functiong : U → [2w] (in the proof of
Theorem 3.3, we would haveU = [2w] andg(x) = ax[0, w)) with the property that there for any
distinctx, y ∈ U exists a positives < w, determined byx andy (and not byg, e.g., in the proof of
Theorem 3.3,s was the least significant set bit iny − x), such that(g(y)− g(x))[0, s) = 0 while
(g(y)− g(x))[s, w) is uniformly distributed in[2w−s]. For b uniform in [2w] and independent ofg,
definehg,b : U → [2ℓ] by

hg,b(x) = (g(x) + b)[w − ℓ, w).

Thenhg,b(x) is strongly universal.

3.4 Vector multiply-shift

Our strongly universal multiply shift scheme generalizes nicely to vector hashing. The goal is to
get strongly universal hashing from[2w]d to 2ℓ. With w ≥ w+ ℓ−1, we pick independent uniform
a0, . . . , ad−1, b ∈ [2w] and defineha0,...,ad−1,b : [2

w]d → [2ℓ] by

ha0,...,ad−1,b(x0, . . . , xd−1) =









∑

i∈[d]

aixi



+ b



 [w − ℓ, w). (14)

Theorem 3.5 The vector multiply-shift scheme from (14) is strongly universal.

Proof We will use Lemma 3.4 to prove that this scheme is strongly universal. We defineg :
[2w]d → [2w] by

g(x0, . . . , xd−1) =





∑

i∈[d]

aixi



 [0, w).

Consider two distinct keysx = (x0, . . . , xd−1) andy = (y0, . . . , yd−1). Let j be an index such that
xj 6= yj and such that the indexs of the least significant set bit is as small as possible. Thusyj−xj

has1 in bit s, and alli ∈ [d] have(yj − xj)[0, s) = 0. As required by Lemma 3.4,s is determined
from the keys only, as required by Lemma 3.4. Then

(g(y)− g(x))[0, s) =





∑

i∈[d]

ai(yi − xi)



 [0, s) = 0

12

regardless ofa0, . . . , ad−1. Next we need to show that(g(y)− g(x))[s, w) is uniformly distributed
in [2w−s]. The trick is to first fix allai, i 6= j, arbitrarily, and then argue that(g(y)− g(x))[s, w) is
uniform whenai is uniform in [2w]. Let z be the odd number such thatz2s = yj − xj . Also, let∆
be the constant defined by

∆2s =
∑

i∈[d],i 6=j

ai(yi − xj).

Now
g(y)− g(x) = (ajz +∆)2s.

With z odd and∆ a fixed constant, the uniform distribution onaj ∈ [2w] implies that(ajz +
∆) mod 2w is uniform in[2w] but then(ajz+∆) mod 2w−s = (g(y)− g(x))[s, w) is also uniform
in [2w−s]. Now Lemma 3.4 implies that the vector multiply-shift scheme from (14) is strongly
universal.

Exercise 3.8Corresponding to the universal hashing from Section 2, suppose we tried withw = w
and just used random odda0, . . . , ad−1 ∈ [2w] and a randomb ∈ [2w], and defined

ha0,...,ad−1,b(x0, . . . , xd−1) =









∑

i∈[d]

aixi



+ b



 [w − ℓ, w).

Give an instance showing that this simplified vector hashingscheme is not remotely universal.

Our vector hashing can also be used for universality, where it gives collision probability1/2ℓ. As
a small tuning, we could skip addingb, but then we would only get the same2/2ℓ bound as we had
in Section 2.

3.5 Pair-multiply-shift

A cute trick from [1] allows us roughly double the speed of vector hashing, the point being that
multiplication is by far the slowest operation involved. Wewill use exactly the same parameters
and seeds as for (14). However, assuming that the dimensiond is even, we replace (14) by

ha0,...,ad−1,b(x0, . . . , xd−1) =









∑

i∈[d/2]

(a2i + x2i+1)(a2i+1 + x2i)



+ b



 [w − ℓ, w). (15)

This scheme handles pairs of coordinates(2i, 2i + 1) with a single multiplication. Thus, with
w = 64 andw = 32, we handle each pair of32-bit keys with a single64-bit multiplication.

Exercise 3.9 (a bit more challenging)Prove that the scheme defined by (15) is strongly universal.
One option is to prove a tricky generalization of Lemma 3.4 where(g(y)− g(x))[0, s) may not be
0 but can be any deterministic function ofx andy. With this generalization, you can make a proof
similar to that for Theorem 3.5 with the same definition ofj ands.

Above we have assumed thatd is even. In particular this is a case, if we want to hash an array of 64-
bit integers, but cast it as an array of 32-bit numbers. Ifd is odd, we can use the pair-multiplication
for the first⌊d/2⌋ pairs, and then just addadxd to the sum.

13

4 String hashing

4.1 Hashing vector prefixes

Sometimes what we really want is to hash vectors of length up toD but perhaps smaller. As in the
multiply-shift hashing schemes, we assume that each coordinate is from[2w]. The simple point is
that we only want to spend time proportional to the actual lengthd ≤ D. With w ≥ w+ ℓ− 1, we
pick independent uniforma0, . . . , aD−1 ∈ [2w]. For evend, we defineh :

⋃

evend≤D[2
w]d → [2ℓ]

by

ha0,...,aD(x0, . . . , xd−1) =









∑

i∈[d/2]

(a2i + x2i+1)(a2i+1 + x2i)



 + ad



 [w − ℓ, w). (16)

Exercise 4.1Prove that the above even prefix version of pair-multiply-shift is strongly universal.
In the proof you may assume that the original pair-multiply-shift from (15) is strongly universal,
as you may have proved in Exercise 3.9. Thus we are considering two vectorsx = (x0, . . . , xd−1)
andy = (y0, . . . , yd′−1). You should consider both the cased′ = d andd′ 6= d.

4.2 Hashing bounded length strings

Suppose now that we want to hash strings of 8-bit characters,e.g., these could be the words in a
book. Then the nil-character is not used in any of the strings. Suppose that we only want to handle
strings up to some maximal length, say, 256.

With the prefix-pair-multiply-shift scheme from (16), we have a very fast way of hashing strings
of d 64-bit integers, casting them as2d 32-bit integers. A simple trick now is to allocate a single
arrayx of 256/8 = 32 64-bit integers. When we want to hash a strings with c characters, we first
setd = ⌈c/8⌉ (done fast byd=(c+7)>>3). Next we setxd−1 = 0, and finally we do a memory
copy ofs into x (using a statement likememcpy(x,s,c)). Finally, we apply (16) tox.

Note that we use the same variable arrayx every time we want to hash a strings. Let s∗ be the
image ofs created as ac∗ = ⌈c/8⌉ length prefix ofx.

Exercise 4.2Prove that ifs and t are two strings of length at most 256, neither containing the
nil-character, then their imagess∗ and t∗ are different. Conclude that we now have a strongly
universal hash functions for such strings.

Exercise 4.3 Implement the above hash function for strings. Use it in a chaining based hash table,
and apply it to count the number of distinct words in a text (take any pdf-file and convert it to ascii,
e.g., usingpdf2txt).

To get the random numbers defining your hash functions, you can go torandom.org).
One issue to consider when you implement a hash table is that you want the numberm of

entries in the hash array to be as big as a the number of elements (distinct words), which in our

14

case is not known in advance. Using a hash table of some start sizem, you can maintain a count
of the distinct words seen so far, and then double the size when the count reaches, say,m/2.

Many ideas can be explored for optimization, e.g., if we are willing to accept a small false-
positive probability, we can replace each word with a 32- or 64-bit hash value, saying that a word
is new only if it has a new hash value.

Experiments with some different texts: different languages, and different lengths. What happens
with the vocabulary.

The idea now is to check how much time is spent on the actual hashing, as compared with the
real code that both does the hashing and follows the chains inthe hash array. However, if we just
compute the hash values, and don’t use them, then some optimizing compilers, will notice, and just
do nothing. You should therefore add up all the hash values, and output the result, just to force the
compiler to do the computation.

4.3 Hashing variable length strings

We now consider the hashing of a variable length stringsx0x1 · · ·xd where all characters belong
to some domain[u].

We use a the method from [5], which first picks a primep ≥ u. The idea is viewx0, . . . , xd as
coefficients of a degreed polynomial

Px0,...,xd
(α) =

d
∑

i=0

xiα
i mod p

overZp. As seed for our hash function, we pick an argumenta ∈ [p], and compute the hash
function

ha(x0 · · ·xd) = Px0,...,xd
(a).

Consider some other stringy = y0y1 · · · yd′ , d′ ≤ d. We claim that

Pr
a∈[p]

[ha(x0 · · ·xd) = ha(y0 · · · yd′)] ≤ d/p

The proof is very simple. By definition, the collision happens only if a is root in the polynomial
Py0,...,yd′

− Px0,...,xd
. Since the strings are different, this polynomial is not theconstant zero. More-

over, its degree is at mostd. Since the degree is at mostd, the fundamental theorem of algebra
tells us that it has at mostd distinct roots, and the probability that a randoma ∈ [p] is among these
roots is at mostd/p.

Now, for a fast implementation using Horner’s rule, it is better to reverse the order of the
coefficients, and instead use the polynomial

Px0,...,xd
(a) =

d
∑

i=0

xd−ia
i mod p

Then we computePx0,...,xd
(a) using the recurrence

15

• H0
a = x0

• H i
a = (aH i−1

a + xi) mod p

• Px0,...,xd
(a) = Hd

a .

With this recurrence, we can easily update the hash value if new characterxd+1 is added to the end
of the stringxd+1. It only takes an addition and a multiplication modulop. For speed, we would
let p be a Mersenne prime, e.g.289 − 1.

Recall from the discussed in Section 2.2.1 that the multiplication modulo a prime like289 − 1
is a bit complicated to implement.

The collision probabilityd/p may seem fairly large, but assume that we only want hash values
in the rangem ≤ p/d, e.g, form = 232 andp = 289 − 1, this would allow for strings of length
up to257, which is big enough for most practical purposes. Then it suffices to compose the string
hashing with a universal hash function from[p] to [m]. Composing with the previous multiply-
mod-prime scheme, we end up using three seedsa, b, c ∈ [p], and then compute the hash function
as

ha,b,c(x0, . . . , xd) =

((

a

(

d
∑

i=0

xd−ic
i

)

+ b

)

mod p

)

mod m.

Exercise 4.4Assuming that strings have length at mostp/m, argue that the collision probability
is at most2/m.

Above we can letu be any value bounded byp. With p = 289 − 1, we could useu = 264 thus
dividing the string into64-bit characters.

Exercise 4.5 Implement the above scheme and run it to get a32-bit signature of a book.

Major speed-up The above code is slow because of the multiplications moduloMersenne primes,
one for every 64 bits in the string.

An idea for a major speed up is to divide you string into chunksX0, . . . , Xj of 32 integers
of 64 bits, the last chunk possibly being shorter. We want a single universal hash functionr :
⋃

d≤32[2
64]d → [264]. A good choice would be to use our strongly universal pair-multiply-shift

scheme from (16). It only outputs 32-bit numbers, but if we use two different such functions, we
can concatenate their hash values in a single 64-bit number.

Exercise 4.6Prove that ifr has collision probabilityP , and if(X0, . . . , Xj) 6= (Y0, . . . , Yj′), then

Pr[(r(X0), . . . , r(Xj) = (r(Y0), . . . , r(Yj′))] ≤ P.

The point above is that in the above is thatr(X0), . . . , r(Xj) is 32 times shorter thanX0, . . . , Xj.
We can now apply our slow variable length hashing based on Mersenne primes to the reduced
stringr(X0), . . . , r(Xj). This only addsP to the overall collision probability.

Exercise 4.7 Implement the above tuning. How much faster is your hashing now?

16

Splitting between short and long strings When implementing a generic string hashing code,
we do not know in advance if it is going to be applied mostly to short or to long strings. Our
scheme for bounded length strings from Section 4.2 is fasterthen the generic scheme presented
above for variable length strings. In practice it is a good idea to implement both: have the scheme
from Section 4.2 implemented for strings of length up to somed, e.g.,d could be 32 64-bit integers
as in the above blocks, and then only apply the generic schemeif the length is aboved.

Major open problem Can we get something simple and fast like multiply-shift to work directly
for strings, so that we do not need to compute polynomials over prime fields?

Acknowledgment

I would like to thank Eva Rotenberg for coming with many good comments and proposals for the
text, including several exercises.

References

[1] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: fast and secure
message authentication. InProc. 19th CRYPTO, pages 216–233, 1999.

[2] J. Carter and M. Wegman. Universal classes of hash functions. J. Comp. Syst. Sci., 18:143–
154, 1979. Announced at STOC’77.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to algorithms. MIT
Press, McGraw-Hill, 3 edition, 2009.

[4] M. Dietzfelbinger. Universal hashing andk-wise independent random variables via integer
arithmetic without primes. InProc. 13th STACS, LNCS 1046, pages 569–580, 1996.

[5] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions are reliable
(extended abstract). InProc. 19th ICALP, LNCS 623, pages 235–246, 1992.

[6] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable randomized
algorithm for the closest-pair problem.J. Algorithms, 25:19–51, 1997.

[7] N. G. Duffield and M. Grossglauser. Trajectory sampling with unreliable reporting.
IEEE/ACM Trans. Netw., 16(1):37–50, 2008.

[8] A. I. Dumey. Indexing for rapid random access memory systems.Computers and Automation,
5(12):6–9, 1956.

[9] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, 1995.

[10] M. Wegman and J. Carter. New hash functions and their usein authentication and set equality.
J. Comp. Syst. Sci., 22:265–279, 1981.

17

	1 Hash functions
	1.1 Definition and properties

	2 Universal hashing
	2.1 Applications
	2.2 Multiply-mod-prime
	2.2.1 Implementation for 64-bit keys

	2.3 Multiply-shift

	3 Strong universality
	3.1 Applications
	3.2 Multiply-mod-prime
	3.3 Multiply-shift
	3.4 Vector multiply-shift
	3.5 Pair-multiply-shift

	4 String hashing
	4.1 Hashing vector prefixes
	4.2 Hashing bounded length strings
	4.3 Hashing variable length strings

