arxiv:1504.06804v3 [cs.DS] 15 Sep 2015

High Speed Hashing for Integers and Strings

Mikkel Thorup
September 16, 2015

Abstract

These notes describe the most efficient hash functionsntlyrienown for hashing integers
and strings. These modern hash functions are often an ofadeagnitude faster than those
presented in standard text books. They are also simplergtement, and hence a clear win
in practice, but their analysis is harder. Some of the masttiwal hash functions have only
appeared in theory papers, and some of them requires corgbigsults from different theory
papers. The goal here is to combine the information in leettiyle notes that can be used by
theoreticians and practitioners alike, thus making theaetigal fruits of theory more widely
accessible.

1 Hash functions

The concept of truly independent hash functions is extrgmséful in the design of randomized
algorithms. We have a large univerS8eof keys, e.g., 64-bit numbers, that we wish to map ran-
domly to a rangém] = {0, ..., m—1} of hash values. Aruly random hash functioh : U — [m]
assigns an independent uniformly random variaijle) to each key inc. The function is thus a
|U|-dimensional random variable, picked uniformly at randonoag all functions front/ to [m)].

Unfortunately truly random hash functions are idealizeggots that cannot be implemented.
More precisely, to represent a truly random hash functieneed to store at leaf| log, m bits,
and in most applications of hash functions, the whole paititaishing is that the universe is much
too large for such a representation (at least not in fastnateanemory).

The idea is to let hash functions contain only a small eleroeseed of randomness so that
the hash function is sufficiently random for the desired @pgibn, yet so that the seed is small
enough that we can store it when first it is fixed. As an examplg,is prime, a random hash
functionh : [p] — [p] = {0,...,p—1} could beh(z) = (az+b) mod p wherea andb are random
numbers that together form the random seed describing tletidun. In these notes we will discuss
some basic forms of random hashing that are very efficienhf@ament, and yet have sufficient
randomness for some important applications.


http://arxiv.org/abs/1504.06804v3

1.1 Definition and properties

Definition 1 A hash functiom» : U — [m] is a random variable in the class of all functions
U — [m], that is, it consists of a random variablgz) for eachz € U.

For a hash function, we care about roughly three things:
Space The size of the random seed that is necessary to caldulajeyivenz,
Speed The time it takes to calculatgx) givenz,
Properties of the random variable.

In the next sections we will mention different desirablepg@udies of the random variable and
describe how to obtain them efficiently in terms of space qeed.

2 Universal hashing

The concept of universal hashing was introduced by Cartdr\@agman in[[2]. We wish to
generate a random hash functibn: U — [m] from a key universé/ to a set of hash values
m] = {0,...,m —1}. We think of, as a random variable following some distribution over func-
tionsU — [m]. We wanth to beuniversalwhich means that for any given distinct keyg, € U,
whenh is picked at random (independently.ofindy), we havdow collision probability

Prin(z) = h(y)] < 1/m.
For many applications, it suffices if for some= O(1), we have
Prlh(z) = h(y)] < ¢/m.

Thenh is calledc-universal

In this chapter we will first give some concrete applicatiohaniversal hashing. Next we will
show how to implement universal hashing when the key unévisran integer domaiti = [u] =
{0,...,u — 1} where the integers fit in a machine word, thatiss 2* wherew = 64 is the word
length. In later chapters we will show how to make efficienivarsal hashing for large objects
such as vectors and variable length strings.

Exercise 2.11s the truly independent hash functibn U — [m] universal?
Exercise 2.21f a hash functiorh : U — [m] has collision probabilityd, how large mustn be?

Exercise 2.3Letu < m. Is the identity functiorf (z) = x a universal hash functiofu] — [m|?



2.1 Applications

One of the most classic applications of universal hashimggh tables with chaining/Ve have a
setS C U of keys that we wish to store so that we can find any key ffHm expected constant
time. Letn = |S| andm > n. We now pick a universal hash functién: U — [m], and then
create an array. of m lists/chains so that far € [m], L[¢] is the list of keys that hash o Now
to find out if a keyr € U isin S, we only have to check i is in the listZ[h(z)]. This takes time
proportional tol + |L[h(z)]| (we add 1 because it takes constant time to look up the list gve
turns out to be empty).

Assume thatr ¢ S and thath is universal. Let/(y) be an indicator variable which ik if
h(z) = h(y) and0 otherwise. Then the expected number of elementginz)] is

Ey[|[L[h(2)]]] = En

ZI@)] = Y BlIw)] = Y Prlh(y) = h(e)] = nfm < 1

yes yes yes

The second equality usésearity of expectation

Exercise 2.4 (a) What is the expected number of elementsir(z)] if x € S?
(b) What bound do you getifis only 2-universal?

The idea of hash tables goes back {o [8], and hash tables espeitne motivation for introduction
of universal hashing in [2]. For a text book description,, €eg., [3,611.2].

A different applications is that of assigning a unigsignatures(z) to each key. Thus we
wants(x) # s(y) for all distinct keysz,y € S. To get this, we pick a universal hash function
s : U — [n3]. The probability of an error (collision) is calculated as

B} €53 s0) =s()] € Y Pils(o) = sl = )/ < 1/C2n)

S
{z,y}CS

The first inequality is ainion bound that the probability of that at least one of multiple events
happen is at most the sum of their probabilities.

The idea of signatures is particularly relevant when theslag large, e.g., a key could be a
whole text document, which then becomes identified by thdlsiggature. This idea could also
be used in connection with hash tables, letting thelljgtstore the signaturegz) of the keys that
hash toi, that is,L[i]| = {s(x)|z € X, h(z) = i}. To check ifz is in the table we check i(z) is
in L[h(z)].

Exercise 2.5Withs : U — [n*] andh : U — [n] independent universal hash functions, for a
givenz € U \ S, what is the probability of dalse positivevhen we search, that is, what is the
probability that there is a key € S such thath(y) = h(x) ands(y) = s(x) ?

Below we study implementations of universal hashing.



2.2 Multiply-mod-prime

Note that ifm > u, we can just let: be the identity (no randomness needed) so we may assume
thatm < u.
The classic universal hash function from [2] is based on m@mumbep > u. We pick a
uniformly randomu € [p|y = {1,...,p—1}andb € [p| = {0,...,p— 1}, and definéy,, : [u] —
[m] by
hap(z) = ((ax + b) mod p) mod m) (1)

Given any distinct:, y € [u] C [p], we want to argue that for randos@andb that

Pr [hap(r) = hap(y)] < 1/m. (2)

a€lpl+, belp]

In most of our proof, we will consider all € [p], includinga = 0. Ruling outa = 0, will only be
used in the end to get the tight bound frdrh (2).
We need only one basic fact about primes:

Fact 2.1 If pis prime andv, 5 € [p|, thena # 0 (mod p).
Letz,y € [p], x # y be given. For given paifa, b) € [p]?, define(q, r) € [p]? by

ar+bmodp = q 3)
T.

ay+bmodp = 4)

Lemma 2.2 Equations[(B) and{4) define a 1-1 correspondence betweean @aib) € [p]? and
pairs (¢, ) € [p]*.

Proof For a given pair(r,q) € [p]?, we will show that there is at most one péir,b) € [p]>
satisfying [8) and (4). Subtractinigl (3) frofd (4) modplove get
(ay +b) — (ax +b) =aly—z)=r—¢q (mod p), (5)

We claim that there is at most onesatisfying [5). Suppose there is anothésatisfying [(5).
Subtracting the equations withanda’, we get

(a—a')(y —z) =0 (mod p),

but sincex — o’ andy — x are both non-zero moduljg this contradicts Fa¢t 2.1. There is thus at
most onex satisfying [(b) for giver(q, ). With thisa, we need to satisfy [3), and this determines
bas

b= (¢ — ax) mod p. (6)

Thus, for each paifq, ) € [p]?, there is at most one pait, b) € [p]* satisfying [3) and[{4). On
the other hand[{3) anfl(4) define a unique Pair) € [p]* for each paii(a, b) € [p]>. We havep?

4



pairs of each kind, so the correspondence must be 1-1. [

Sincex # y, by Facf{2.1,
r=q < a=0. (7

Thus, when we picKa, b) € [p];+ X [p], we getr # q.

Returning to the proof of{2), we get a collisibn,(z) = h,(y) ifand only ifg = r (mod m),
and we know thay # r. For givenr € [p], there are at mogip/m| values ofg € [p] with ¢ = r
(mod m); namelyr’, v + m,r" + 2m,... < p for ' = r mod m. Ruling outq = r leaves us
at most[p/m| — 1 values ofg € [p] for each of thep values ofr. Noting that[p/m]| — 1 <
(p+m—1)/m—1= (p— 1)/m, we get that the total number of collision pairsq), » # ¢, is
bounded by (p — 1)/m. Then our 1-1 correspondence implies that there are at popst 1) /m
collision pairs(a, b) € [p|; x [p]. Since each of the(p— 1) pairs from[p] . x [p] are equally likely,
we conclude that the collision probability is boundedllyn, as required for universality.

Exercise 2.6 Suppose we for our hash function also considet 0, that is, for random(a, b) €
[p]?, we define the hash functidn, : [p] — [m] by

hap(z) = ((ax 4+ b) mod p) mod m.
(a) Show that this function may not be universal.
(b) Prove that it is always 2-universal, that is, for any dist x, y € [p],

Pr [hep(x) = hap(y)] < 2/m.

(a,b)€[p]?

2.2.1 Implementation for 64-bit keys

Let us now consider the implementation of our hashing scheme
h(z) = ((ax) mod p) mod m)

for the typical case of 64-bit keys in a standard imperatinagmamming language such as C. Let’s
say the hash values a26 bits, so we have = 2% andm = 22,

Sincep > u = 2%, we generally need to reserve more than 64 bitsfar[p],, so the product
ax has more than 128 bits. To compute, we now have the issue that multiplication wofbit
numbers automatically discards overflow, returning onértHeast significant bits of the product.
However, we can get the product of 32-bit numbers, represgtitem as 64-bit numbers, and
getting the full 64-bit result. We need at least 6 such 64vhittiplications to compute.

Next issue is, how do we compute mod p? For 64-bit numbers we have a general mod-
operation, though it is rather slow, and here we have more 128 bits.

An idea from [2] is to letp be a Mersenne prime, that is, a prime of the faf- 1. We can
here use the Mersenne prird® — 1. The point in using a Mersenne prime is that

r =z mod 27+ |x/27| (mod p).



Exercise 2.7 Assuming a language like C supporting 64-bit multiplicatiaddition, shifts and
bit-wise Boolean operations, but no general mod-operatgketch the code to compute:z +
b) mod p) mod m withp = 289 — 1 andm = 2%,

2.3 Multiply-shift

We shall now turn to a truly practical universal hashing sebgroposed by Dietzfelbinger et
al. [6], yet ignored by most text books. It generally addesdsashing fromw-bit integers ta/-bit
integers. We pick a uniformly random oddbit integera, and then we compute, : [2¢] — [29],
as

ho(z) = |(az mod 2)/2¥ ] (8)

This scheme gains an order of magnitude in speed over thengciem [1), exploiting operations
that are fast on standard computers. Numbers are storetsasrs, with the least significant bit
to the right. Integer division by a power of two is thus accdisted by a right shift. For hashing
64-bit integers, we further exploit théd-bit multiplication automatically discards overflow, whic
is the same as multiplying modu®$*. Thus, withw = 64, we end up with the following C-code:

#include <stdint.h> //defines uint64_t as unsigned 64-bit integer.

uint64_t hash(uint64_t x; uint64_t |; uint64_t a) {

/'l hashes x universally into | bits using the random odd seed a.
return (axx) >> (64-1);}

This scheme is many times faster and simpler to implementttiestandard multiply-mod-prime
scheme, but the analysis is a more subtle.

It is convenient to think of the bits of a number as indexedwit O the least significant bit.
The scheme is simply extracting bits— 7, ..., w — 1 from the product.z, as illustrated below.

w-1 w-l 0
ax (a*x)>>(w-I)

We will prove that multiply-shift is 2-universal, that iQrfz # vy,

Pr  [ho(x) = ha(y)] < 2/2° = 2/m. 9)
oddae[2v]
We haveh,(x) = h,(y) if and only if az anday = az + a(y — =) agree on bitew — ¢, ..., w — 1.
This match requires that bits— ¢, . .. ,w — 1 of a(y — x) are either albs or all1s. More precisely,
if we get no carry from bit9),...,w — ¢ when we addu(y — z) to ax, thenh,(z) = h.(y)
exactly when bitso — 7,... ,w — 1 of a(y — z) are all0os. On the other hand, if we get a carry
1 from bits0,...,w — ¢ when we adt(y — z) to az, thenh,(z) = h,(y) exactly when bits
w—4{,...,w—10fa(y — z) are all1s. To prove[(B), it thus suffices to prove that the probability
that bitsw — ¢,...,w — 1 of a(y — ) are allos or all1s is at mosg/2°.
We will exploit that any odd numberis relatively prime to any power of two:

Fact 2.3 If v is odd ands € [27], thenas # 0 (mod 29).

6



Defineb such thatz = 1 + 2b. Thenb is uniformly distributed in2*~']. Moreover, define to be
the odd number satisfying — ) = 22°. Then

a(y — ) = 22" + bz2".

w-1 i 0

y-x=z2 z 100000000
i+w-1 w-1 i 0

+ bz 2+l bz 000000000
w-1  w-1 i 0

= a(y-x) unifom 100000000

Now, we prove thabz mod 2¥~! must be uniformly distributed if2“~!]. First, note that there
is a 1-1 correspondence between the [2~!] and the productsz mod 2*~!; for if there were
another’ € [2*~1 with 'z = bz (mod 2¥7!) <= 2(0/ —b) =0 (mod 2¥~'), then this would
contradict Fadf 213 sinceis odd. But then the uniform distribution érimplies thathz mod 2%~*
is uniformly distributed. We conclude thaty — x) = 22° + 022 has0 in bits0,...,7 — 1,1 in
bit 7, and a uniform distribution on bits+ 1,...,7 +w — 1.

We have a collisiom,(z) = h.(y) if ax anday = ax + a(y — x) are identical on bits
w—{,...,w—1. The two are always different in bit so ifi > w — ¢, we haveh,(z) # h.(y)
regardless of. However, ifi < w—¢, then because of carries, we could hayér) = h,(y) if bits
w—/,...,w—10fa(y—z) are either alDs, or all1s. Because of the uniform distribution, either
event happens with probability/2¢, for a combined probability bounded By2¢. This completes
the proof of [9).

Exercise 2.8 Why is it important that: is odd? Hint: consider the case whereandy differ only
in the most significant bit.

Exercise 2.9 Does there exist a key such thath,(z) is the same regardless of the random odd
numbera? If so, can you come up with a real-life application wherestisia disadvantage?

3 Strong universality

We will now consideistrong universality10]. Forh : [u] — [m], we considepair-wise eventsf
the form that for given distinct keys, y € [u] and possibly non-distinct hash valugs € [m], we
haveh(z) = g andh(y) = r. We say a random hash functién [u] — [m] is strongly universal
if the probability of every pair-wise eventigm?. We note that if is strongly universal, it is also
universal since

Pr(h(z) = h(y)] = Y Prib(x) = q A h(y) = ¢] = m/m* = 1/m.
q€[m]



Observation 3.1 An equivalent definition of strong universality is that eday is hashed uni-
formly into[m], and that every two distinct keys are hashed independently.

Proof First assuming strong universality and consider distiegsk:;, y € U. For any hash value
q € [m], Prlh(z) = q] = 3, ¢ Prlh(z) = ¢ A h(y) = 1] = m/m? = 1/m, soh(z) is uniform
in [m], and the same holds fary). Moreover, for any hash valuec [m],

Prii(z) = q [ hy) = r] = Pr[h(x) = ¢ A h(y) = r]/ Prh(y) = 7]
= (1/m?)/(1/m) = 1/m = Pr[h(z) = q],

soh(z) is independent of(y). For the converse direction, wheiiz) andh(y) are independent,
Prlh(z) = ¢ A h(y) = r] = Pr[h(z) = ¢ - Pr[h(y) = r], and whem(z) andh(y) are uniform,
Pr[h(z) = q] = Pr[h(y) = r] = 1/m, soPr[h(z) = q| - Pr[h(y) = 7] = 1/m>. n
Emphasizing the independence, strong universality is@#ed2-independences it concerns a
pair of two events.

Exercise 3.1 Generalize2-independence. What 3sindependence®-independence?

As for universality, we may accept some relaxed notion afrgjruniversality.
Definition 2 We say a random hash functién U — [m)] is stronglyc-universalif

1. h is c-uniform, meaning for everyr € U and for every hash valug € [m], we have
Pr[h(xz) = ¢] < ¢/m and

2. every pair of distinct keys hash independently.
Exercise 3.21f h is stronglyc-universal, what is the pairwise event probability,
Prh(z) = g A h(y) = r]?
Exercise 3.3Argue that ifh : U — [m)] is stronglyc-universal, therh is alsoc-universal.

Exercise 3.4 1s Multiply-Shift strongly-universal for any constarnt?

3.1 Applications

One very important application of strongly universal haghis coordinated samplingwhich is
crucial to the handling of Big Data and machine learning. basic idea is that we based on small
samples can reason about the similarity of huge sets, ew.ntuch they have in common, or how
different they are.

First we consider the sampling from a single 4et U using a strongly universal hash function
h : U — |m] and a threshold € {0, ..., m}. We now sample: if h(z) < t, which by uniformity
happens with probability/m for anyz. LetS;,,(A) = {x € A | h(x) < t} denote the resulting

8



sample fromA. Then, by linearity of expectatiod[| Sy, :(A)|] = |A|-t/m. Conversely, this means
that if we haveS), ;(A), then we can estimatel| as|S;, ;(A)| - m/t.

We note that the universality from Sectioh 2 does not in garngirffice for any kind of sam-
pling. If we, for example, take the multiplication-shiftteame from Sectioh 2.3, then we always
haveh(0) = 0, so0 will always be sampled if we sample anything, that ig, if 0.

The important application is, however, not the samplingnfr@ single set, but rather the sam-
pling from different setsB andC' so that we can later reason about the similarity, estimatiag
sizes of their uniorB U C' and intersectiols N C.

Suppose we for two different sefsandC' have found the samplés, ;(B) andS; .(C'). Based
on these we can compute the sample of the union as the unibe s&mples, thatis;, ;,(BUC) =
Sn(B) U Sp(C). Likewise, we can compute the sample of the intersectiof,aéB N C) =
Sni(B) N Sp(C). We can then estimate the size of the union and intersectidtiplying the
corresponding sample sizes hy't.

The crucial point here is that the sampling from differertsssan be done in a distributed
fashion as long as a fixédandt is shared¢coordinating the samplingt all locations. This is used,
e.g., in machine learning, where we can store the samplesaoy mifferent large sets. When a
new set comes, we sample it, and compare the sample withdrelgamples to estimate which
other set it has most in common with. Another cool applicatd coordinated sampling is on
the Internet where all routers can store samples of the papkessing through [7]. If a packet is
sampled, it is sampled by all routers that it passes, andrthens that we can follow the packets
route through the network. If the routers did not use coai#id sampling, the chance that the
same packet would be sampled at multiple routers would besreall.

Exercise 3.5GivensS), ;(B) andS, +(C'), how would you estimate the size of the symmetric differ-
ence(B\ C)U(C\ B)?

Below, in our mathematical reasoning, we only talk aboutstmpleS; ;(A) from a single set
A. However, as described above, in many applicatignsgpresent a unio® U C' or intersection
BN C of different setsB andC'.

To get a fixed sampling probability/ for eachz € U, we only need that : U — [m] is
uniform. This ensures that the estimgig,(A)|-m/t of | A| is unbiased, that i€[|.S;, ,(A)|m/t] =
|A|. The reason that we also want the pair-wise independenceanfgsuniversality is that we
want | Sy, ;(A)| to be concentrated around its mejaf] - ¢/m so that we can trust the estimate
|Sht(A)| - m/t of | Al.

Fora € A, let X, be the indicator variable far being sampled, that i¥, = [h(a) < t]. Then
S = X =30 X

Sinceh is strongly universal, for any distinct keysb € A, h(a) andh(b) are independent,
but thenX, and X, are also independent random variables. Khjare thus pairwise independent,
soVar[X] = ) Var[X,]. Letp = t/m be the common sampling probability for all keys. Also,
let © = p|A| = E[X] be the expectation ok. For eachX,, we haveE|X,] = p, soVar[X,] =
p(1 — p). Itfollows thatVar[ X ] = u(1 — p) < u. By definition, the standard deviation &f is

ox = V/Var[X] = \/u(l —p). (10)

9



Now, by Chebyshev’s inequality (see, e.al, [9, Theorem)3t8i anyq > 0,

PrX — u| > qox] < 1/¢°. (11)

Exercise 3.6 Suppose thatA| = 100,000,000 andp = ¢t/m = 1/100. ThenE[X]| = u =
1,000, 000. Give an upper bound for the probability theX’ — x| > 10,000. These numbers
correspond to a 1% sampling rate and a 1% error.

3.2 Multiply-mod-prime

The classic strongly universal hashing scheme is a multipdg-prime scheme. For some prime
p, uniformly at random we picka, b) € [p]* and defineu,;, : [p] — [p] by

hap(z) = (ax 4+ b) mod p. (12)

To see that this is strongly universal, consider distingiske y € [p] and possibly non-distinct
hash valueg, r € [p], hop(x) = qg andh,,(x) = r. This is exactly as in((3) andl(4), and by
Lemmd2Z.2, we have a 1-1 correspondence between (pairs € [p] x [p] and pairgq,r) € [p]*.
Since(a, b) is uniform in[p)? it follows that(q, r) is uniform in[p]?, hence that the pair-wise event
hap(z) = g andh,,(z) = r happens with probability/p?.

Exercise 3.7Letm < p. For random(a, b) € [p]?, define the hash functidn, ;, : [p] — [m] by
hap(z) = ((ax 4+ b) mod p) mod m.
(a) Argueh, is strongly 2-universal.

(b) In the universal multiply-mod-prime hashing from Saxi, we insisted on # 0, but now
we consider alk € [p]. Why this difference?

3.3 Multiply-shift

We now present a simple generalization from [4] of the urggemultiply-shift scheme from Sec-
tion[2 that yields strong universality. As a convenient tiotg for any bit-stringz and integers
j>1i>0,z[i,j) = z[i,7 — 1] denotes the number represented by bits.,j — 1 (bit 0 is the
least significant bit, which confusingly, happens to betngbst in the standard representation), so

2[i,7) = | (2 mod 29)/2'].

To hash[2*] — [2¢] we may pick anyw > w + ¢ — 1. For any pair(a,b) € [w]?, we define
hayp : [2%] — [2] by

hop(z) = (ax + b)[w — ¢, ). (13)
As for the universal multiply shift, we note that the schenfidlI®) is easy to implement with
convenient parameter choices, e.g., With- 64, w = 32 and/ = 20, we get the C-code:

10



#i ncl ude <stdint. h>
/] defines uint32/64_t as unsigned 32/64-bit integer.
uint64_t hash(uint32_t x; uint32_t |; uint64_t a; uint64_t b; ) {
/'l hashes x strongly universally into | bits
/1l using the random seeds a and b.
return (axx+b) >> (64-1);}

We will prove that the scheme froiin_(13) is strongly universathe proof we will reason a lot
about uniformly distributed variables, e.g. Xf € [m] is uniformly distributed and is a constant
integer, ther(X + ) mod m is also uniformly distributed ifyn]. More interestingly, we have

Fact 3.2 Consider two positive integers andm that are relatively prime, that isy andm have

no common prime factor. IX is uniform in[m], then(aX) mod m is also uniformly distributed
in [m]. Important cases are (a) f < m andm is prime, and (b) it is odd andmn is a power of

two.

Proof We want to show that for every € [m] there is at most one € [m| such that«x) mod

m = y, for then there must be exactly ome= [m| for eachy € [m], and vice versa. Suppose we
had distinctr;, z2 € [m] such thatax;) mod m = y = (azz) mod m. Thena(zy — x1) mod

m = 0, som is a divisor ofa(z, — 7). By the fundamental theorem of arithmetic, every positive
integer has a unique prime factorization, so all prime fecctd have to be factors af(zy, — 1)

in same or higher powers. Singeand« are relatively prime, no prime factor ot is factor ofa,

so the prime factors afi must all be factors of, — x; in same or higher powers. Therefare
must dividex, — x4, contradicting the assumptian # z, (mod m). Thus, as desired, for any
y € [m], there is at most one € [m| such thataz) mod m = y. ]

Theorem 3.3 Whena, b € [2*] are uniform and independent, then the multiply-shift sehé&om
([@3) is strongly universal.

Proof Consider any distinct keys,y € [2*]. We want to show thak, ,(z) and h,;(y) are
independent uniformly distributed variables|24].

Let s be the index of the least significattbit in (y — x) and letz be the odd number such
that (y — x) = 22°. Sincez is odd anda is uniform in[2%], by Fac{3.2 (b), we have that is
uniform in [2*]. Now a(y — z) = a22° has allos in bits0, .., s — 1 and a uniform distribution on
bits s, .., s +w — 1. The latter implies thai(y — x)]s, .., w — 1] is uniformly distributed inN2”—=].

Consider now any fixed value ef Sinceb is still uniform in [27], we get thataz + b)[0, W)
is uniformly distributed, implying thatax + b)[s, w) is uniformly distributed. This holds for any
fixed value ofa, so we conclude thatux + b)[s,w) anda(y — z)[s,w) are independent random
variables, each uniformly distributed 2’ —].

Now, sincea(y — )0, s) = 0, we get that

(ay + b)[s,00) = ((ax + b) + a(y — x))[s,00) = ((ax + b)[s, 00) + (a(y — x))[s, 00).

11



The fact that(y—x)[s, w) is uniformly distributed independently @iz+0b)[s, w) now implies that
(ay+Db)[s,w) is uniformly distributed independently ¢iz+b)[s, w). Howeverw > w+¢—1 and

s <wsos < w—1 <w—,. Thereforeh, ;(x) = (ax+b)[w—¢,w) andh, ,(y) = (ay+b)[w—{, W)
are independent uniformly distributed variables2j. [

In order to reuse the above proof in more complicated sedtiwg crystallize a technical lemma
from the last part:

Lemma 3.4 Letw > w + ¢ — 1. Consider a random functiop : U — [2%] (in the proof of
Theoreni 313, we would havé = [2*] and g(z) = ax[0,w)) with the property that there for any
distinctx, y € U exists a positive < w, determined by: andy (and not byy, e.g., in the proof of
Theorem[:3]3s was the least significant set bit in— ), such thatg(y) — g(x))[0, s) = 0 while
(9(y) — g(x))[s,w) is uniformly distributed if2*~*]. For b uniform in[2*] and independent af,
defineh,, : U — [2‘] by

healx) = (9(z) + b)[w - ).

Thenh, () is strongly universal.

3.4 Vector multiply-shift

Our strongly universal multiply shift scheme generalize&ly to vector hashing. The goal is to
get strongly universal hashing froj2°]¢ to 2¢. Withw > w + ¢ — 1, we pick independent uniform
ao, - - -, aq-1,b € [2] and defindr, o, ,»: [2¥]¢ — [2] by

hao,...,ad,l,b(an Ce ,[L’d_l) = ( (Z CI,Z{L'Z‘) + b) [ﬁ — E,E) (14)

1€[d]

Theorem 3.5 The vector multiply-shift scheme from(14) is strongly arsal.

Proof We will use Lemmd_3]4 to prove that this scheme is stronglyemsal. We defing :
2] = [27] by

g(xg, ... 1) = (Z aixZ) [0, ).
1€[d]

Consider two distinct keys = (zo,...,x4-1) andy = (yo, - .., yq4—1). Letj be an index such that
x; # y; and such that the indexof the least significant set bit is as small as possible. Thusr;
hast1 in bit s, and all; € [d] have(y; — z;)[0, s) = 0. As required by Lemmia_3.4,is determined
from the keys only, as required by Lemmal3.4. Then

(9(y) — 9(x))[0,5) = (Z ai(yi — xi)) [0,5) =

1€[d]

12



regardless ofig, . . ., aq—1. Next we need to show thég(y) — g(z))[s, w) is uniformly distributed
in [2¥~#]. The trick is to first fix alla;, i # j, arbitrarily, and then argue thé&f(y) — g(z))[s, w) is
uniform wheng; is uniform in[2”]. Let = be the odd number such that® = y,; — ;. Also, letA
be the constant defined by

A2° = Z al(yl - l’j).

i€[d),ij
Now
9(y) — g(x) = (a;2 + A)2°.
With z odd andA a fixed constant, the uniform distribution an € [27] implies that(a;z +
A) mod 2% is uniform in[2”] but then(a;z + A) mod 2”~° = (g(y) — g(z))[s, W) is also uniform
in [2“7%]. Now Lemmd_3.4 implies that the vector multiply-shift screefrom (14) is strongly
universal. n

Exercise 3.8 Corresponding to the universal hashing from Sedtion 2, eappve tried witht = w
and just used random oddg, . .., a;—; € [2*] and a randond € [2*], and defined

hao,...,adfl,b(.flfo, e ,xd_l) = ( (Z CI,Z'ZE'Z‘) —+ b) [w — €7 w)
1€[d]

Give an instance showing that this simplified vector haskgigeme is not remotely universal.

Our vector hashing can also be used for universality, whegiwes collision probabilityl /2¢. As
a small tuning, we could skip addigbut then we would only get the sara€2* bound as we had
in Sectiori 2.

3.5 Pair-multiply-shift

A cute trick from [1] allows us roughly double the speed ofteethashing, the point being that
multiplication is by far the slowest operation involved. Wal use exactly the same parameters
and seeds as fdr (1L4). However, assuming that the dimersgeven, we replacé (14) by

ha07...’ad717b($0, Ce ,.Td_l) = ( ( Z (a2i —+ 1’22‘4_1)(&2@'4_1 + 1’22)) —+ b) [w — 6,@) (15)

i€[d/2]

This scheme handles pairs of coordinates 2: + 1) with a single multiplication. Thus, with
w = 64 andw = 32, we handle each pair 82-bit keys with a singl&4-bit multiplication.

Exercise 3.9 (a bit more challenging)Prove that the scheme definedbyi (15) is strongly universal.
One option is to prove a tricky generalization of Lenima 3.4y (y) — g(z))[0, s) may not be

0 but can be any deterministic function.-ondy. With this generalization, you can make a proof
similar to that for Theorer 3|5 with the same definitiory ahd s.

Above we have assumed thas even. In particular this is a case, if we want to hash aryarfré4-
bit integers, but cast it as an array of 32-bit numberd.isfodd, we can use the pair-multiplication
for the first|d/2] pairs, and then just adg,z, to the sum.

13



4  String hashing

4.1 Hashing vector prefixes

Sometimes what we really want is to hash vectors of lengtloup but perhaps smaller. As in the
multiply-shift hashing schemes, we assume that each awatedis from[2*]. The simple point is
that we only want to spend time proportional to the actuajlled < D. Withw > w+ ¢ — 1, we
pick independent uniformy, ..., ap_; € [27]. For evend, we defineh : Jgong< pl2¥]¢ — [2°]
by

hao ..... ap (1’0, e ,.Td_l) = ( ( Z (CLQi -+ x2i+1)(a2i+1 + .TQZ)) -+ ad) [w — 6,@) (16)

i€(d/2]

Exercise 4.1 Prove that the above even prefix version of pair-multipliftsh strongly universal.
In the proof you may assume that the original pair-multighjft from [15) is strongly universal,
as you may have proved in Exercisel 3.9. Thus we are considevimvectorse = (zo, ..., T4 1)
andy = (yo, - .., ys—1)- You should consider both the cage= d andd’ # d.

4.2 Hashing bounded length strings

Suppose now that we want to hash strings of 8-bit charaaegs,these could be the words in a
book. Then the nil-character is not used in any of the striBggpose that we only want to handle
strings up to some maximal length, say, 256.

With the prefix-pair-multiply-shift scheme frorin ([16), weveea very fast way of hashing strings
of d 64-bit integers, casting them ag 32-bit integers. A simple trick now is to allocate a single
arrayz of 256/8 = 32 64-bit integers. When we want to hash a stringith ¢ characters, we first
setd = [¢/8] (done fast byd=( c+7) >>3). Next we setr, ; = 0, and finally we do a memory
copy ofs into = (using a statement likeenctpy( X, s, c) ). Finally, we apply[(15) ta.

Note that we use the same variable arragvery time we want to hash a stringLet s* be the
image ofs created as & = [¢/8] length prefix ofz.

Exercise 4.2Prove that ifs andt are two strings of length at most 256, neither containing the
nil-character, then their images* and¢* are different. Conclude that we now have a strongly
universal hash functions for such strings.

Exercise 4.3Implement the above hash function for strings. Use it in arihg based hash table,
and apply it to count the number of distinct words in a texké¢tany pdf-file and convert it to ascii,
e.g., usingpdf 2t xt ).

To get the random numbers defining your hash functions, yogeodor andom or g).

One issue to consider when you implement a hash table is thatwant the numbem of
entries in the hash array to be as big as a the number of eler(eigtinct words), which in our

14



case is not known in advance. Using a hash table of some start:s you can maintain a count
of the distinct words seen so far, and then double the size Wigecount reaches, say,/2.

Many ideas can be explored for optimization, e.g., if we aiténg to accept a small false-
positive probability, we can replace each word with a 32- 8¢l§it hash value, saying that a word
is new only if it has a new hash value.

Experiments with some different texts: different langsagad different lengths. What happens
with the vocabulary.

The idea now is to check how much time is spent on the actubifgsas compared with the
real code that both does the hashing and follows the chaitisarmash array. However, if we just
compute the hash values, and don't use them, then some miptyjraompilers, will notice, and just
do nothing. You should therefore add up all the hash valued caitput the result, just to force the
compiler to do the computation.

4.3 Hashing variable length strings

We now consider the hashing of a variable length strings - - - ©4 where all characters belong
to some domaifu).

We use a the method froml[5], which first picks a prime . The idea is viewt, . . ., z, as
coefficients of a degre¢polynomial

Pxo ..... T4 (a) - Z xiai mod p

=0

overZ,. As seed for our hash function, we pick an argument [p|, and compute the hash
function

ha<x0 e ‘xd) = P:BO ~~~~~ wd(CL)'
Consider some other string= yoy: - - - ya, d < d. We claim that

Prlhafiro - a) = hayo- - -yw)) < d/p

The proof is very simple. By definition, the collision happemly if a is root in the polynomial
Pyo....yy — Pro,...zq- Since the strings are different, this polynomial is not¢bastant zero. More-
over, its degree is at mogt Since the degree is at magtthe fundamental theorem of algebra
tells us that it has at moatdistinct roots, and the probability that a randara [p| is among these
roots is at most/p.

Now, for a fast implementation using Horner’s rule, it istbeetto reverse the order of the
coefficients, and instead use the polynomial

Then we computé’,,,

-----

15



[ ] H((z) = X
e H' = (aH:'+ ;) modp
za(@) = Hle'

.....

With this recurrence, we can easily update the hash valuewfaharacter . ; is added to the end
of the stringz,4,. It only takes an addition and a multiplication modgloFor speed, we would
let p be a Mersenne prime, e.g®’ — 1.

Recall from the discussed in Section 212.1 that the mut@pion modulo a prime liké® — 1
is a bit complicated to implement.

The collision probabilityl/p may seem fairly large, but assume that we only want hash value
in the rangen < p/d, e.g, form = 232 andp = 2% — 1, this would allow for strings of length
up to2%7, which is big enough for most practical purposes. Then fices to compose the string
hashing with a universal hash function frgpj to [m|. Composing with the previous multiply-
mod-prime scheme, we end up using three seetls: € [p|, and then compute the hash function

as 4
hape(To, ..., Ta) = ((a (Z :cd_ic’) + b) mod p) mod m.
=0

Exercise 4.4 Assuming that strings have length at mpgt:, argue that the collision probability
is at mos/m.

Above we can let, be any value bounded hy With p = 2% — 1, we could usa:; = 25 thus
dividing the string intd4-bit characters.

Exercise 4.5Implement the above scheme and run it to gé2-#it signature of a book.

Major speed-up The above code is slow because of the multiplications madelsenne primes,
one for every 64 bits in the string.

An idea for a major speed up is to divide you string into chuiks. .., X, of 32 integers
of 64 bits, the last chunk possibly being shorter. We wantnglsiuniversal hash function :
Uyes[264¢ — [254. A good choice would be to use our strongly universal paittiply-shift
scheme from[{16). It only outputs 32-bit numbers, but if we twso different such functions, we
can concatenate their hash values in a single 64-bit number.

Exercise 4.6 Prove that ifr has collision probability?, and if (X, . .., X;) # (Yo, ..., Y} ), then
Pr[(r(Xo),...,7(X;) = (r(Yo),...,r(Yj))] < P.

The point above is that in the above is thaX), ..., 7(X;) is 32 times shorter thai, ..., Xj.
We can now apply our slow variable length hashing based ors&m@e primes to the reduced
stringr(Xy), ..., r(X;). This only adds” to the overall collision probability.

Exercise 4.7 Implement the above tuning. How much faster is your hashimg?n

16



Splitting between short and long strings When implementing a generic string hashing code,
we do not know in advance if it is going to be applied mostly hors or to long strings. Our
scheme for bounded length strings from Seclion 4.2 is faktar the generic scheme presented
above for variable length strings. In practice it is a goaghitb implement both: have the scheme
from Sectior 4.2 implemented for strings of length up to saeg.,d could be 32 64-bit integers
as in the above blocks, and then only apply the generic scifeheslength is above.

Major open problem Can we get something simple and fast like multiply-shift twrkvdirectly
for strings, so that we do not need to compute polynomials pime fields?

Acknowledgment

| would like to thank Eva Rotenberg for coming with many goadenents and proposals for the
text, including several exercises.

References

[1] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Roggw UMAC: fast and secure
message authentication. Rroc. 19th CRYPT(pages 216-233, 1999.

[2] J. Carter and M. Wegman. Universal classes of hash fonstiJ. Comp. Syst. S¢il8:143—
154, 1979. Announced at STOC'77.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Steiriroduction to algorithms MIT
Press, McGraw-Hill, 3 edition, 2009.

[4] M. Dietzfelbinger. Universal hashing aridwise independent random variables via integer
arithmetic without primes. IProc. 13th STACS, LNCS 104tages 569-580, 1996.

[5] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippengeal{omial hash functions are reliable
(extended abstract). Broc. 19th ICALP, LNCS 623%ages 235-246, 1992.

[6] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Renen. A reliable randomized
algorithm for the closest-pair problerd. Algorithms 25:19-51, 1997.

[7] N. G. Duffield and M. Grossglauser. Trajectory samplingthwunreliable reporting.
IEEE/ACM Trans. Netw16(1):37-50, 2008.

[8] A.Il. Dumey. Indexing for rapid random access memorysys.Computers and Automation
5(12):6-9, 1956.

[9] R. Motwani and P. RaghavaiRandomized Algorithm&£ambridge University Press, 1995.

[10] M. Wegman and J. Carter. New hash functions and theiirugethentication and set equality.
J. Comp. Syst. S¢i22:265-279, 1981.

17



	1 Hash functions
	1.1 Definition and properties

	2 Universal hashing
	2.1 Applications
	2.2 Multiply-mod-prime
	2.2.1 Implementation for 64-bit keys

	2.3 Multiply-shift

	3 Strong universality
	3.1 Applications
	3.2 Multiply-mod-prime
	3.3 Multiply-shift
	3.4 Vector multiply-shift
	3.5 Pair-multiply-shift

	4 String hashing
	4.1 Hashing vector prefixes
	4.2 Hashing bounded length strings
	4.3 Hashing variable length strings


