
Institut for Matematik og Datalogi
Syddansk Universitet

November 14, 2023
JBJ

DM551/MM851 – Fall 2023 – Weekly Note 10

Prerequisite test to get access to exam

The test is available in itslearning and from the home page so please spend 5-10 minutes
in the near future to get it done (the deadline is November 30 at 18:00 but please do it soon).

Stuff covered in week 46
This is a prediction as the Thurday lecture is still in the future.

• Cormen sections 5.1-5.3

• I gave more examples of the usefulness of flows based on the notes on Weekly note 9.

• I showed how to solve the exercises on flows in the last 4 bullets from Weekly note 9

• If there is time I will also cover Kleinberg and Tardos 13.6 and Cormen 11.3.3

Lectures in week 47

• Kleinberg and Tardos 13.6 and Cormen 11.3.3 (if it was not covered in Week 46).

• Cormen Section 11.5 on perfect hashing

• I will tell you about a very useful probabilistic datastructure called count-min-sketch
(see notes below) which uses hashing to answer questions about streams of data and
many other things. For some material on this see the links on the bottom of the
homepage. You can find much more via Google and I will also write a bit about it
soon.

• Some further stuff on Hashing.

• If there is time, I show how to solve Problem 5, January 2010.

Exercises in week 47

• Cormen Section 5.3: 5.3-4, 5.3-5, 5.3-7

• Cormen Problem 5-2

• January 2013 Problems 3

• Kleinberg-Tardos Problems 13.9, 13.10 and 13.13.

1

Notes on Count-min-sketch

Let S be a (possibly very long or even infinite) stream of data. Our goal is to estimate
frequencies of elements that occour often in S.

Let b, ℓ be integers to be determined later, let H be a universal family of hash functions
from the universe U that contains all possible elements which may occur in the stream to
the set of integers {1, 2, . . . , b} and let h1, h2, . . . , hℓ be distinct members from H chosen
randomly. Below we say that the functions hi above are universal by which we mean
that they are randomly chosen from the universal family H. Using these hash functions
we build an ℓ× b array M of counters. Initially Mi,j = 0 for all i ∈ [ℓ], j ∈ [b].

We process the stream (as it arrives) by proceeding as follows with the current element x
from S: For every i ∈ [ℓ] we increase the counter Mi,hi(x) by one. So each new element of
S increases the value of exactly ℓ entries of M .

Assume now that we have processed the first n elements of the stream S and denote by Sn

the ordered sequence consisting of the first n elements in S (for example if
S = A,B,A,C,B,A,D,B,A,B,C,A,B,C,D,, then S7 = A,B,A,C,B,A,D).

What can we say about the frequencies, fx, of those elements x that occur at least once in
Sn based on just our array of counters?

Let x be a fixed element occuring in Sn and let us first see what the counterMi,hi(x) actually
counts. For convenience we denote Mi,hi(x) by Zi,x. Note that this is a random variable
because hi is randomly chosen from H. Let the indicator variable Ii,x be defined as follows
(on the elements of Sn)

Ii,x(y) =

{
1 if hi(x) = hi(y)
0 otherwise

Now we can express Zi,x as follows

Zi,x = fx +
∑

{y∈Sn|y ̸=x}

fy · Ii,x(y)

It follows that Zi,x is an upper bound on fx (it counts all occurences of x and of every
element y ̸= x which is hashed to the same cell as x by hi). Let us determine the expected
value of Zi,x. For this we use that p(Ii,x(y) = 1) ≤ 1

b
as hi is universal. We will also use

that the sum of the frequencies of all elements occuring at least once in Sn is n.

2

E[Zi,x] = E[fx +
∑

{y∈Sn|y ̸=x}

fy · Ii,x(y)]

= E[fx] + E[
∑

{y∈Sn|y ̸=x}

fy · Ii,x(y)]

= fx +
∑

{y∈Sn|y ̸=x}

fy · E[Ii,x(y)]

≤ fx +
∑

{y∈Sn|y ̸=x}

fy ·
1

b

= fx +
1

b

∑
{y∈Sn|y ̸=x}

fy

≤ fx +
n

b
(1)

So, in expectation, the count Zi,z for fx is off by at most n
b
. Since n can be huge and we

use only a fixed set of b counters, we cannot expect a better estimate than something de-
pending on n. Recall that Markov’s inequality implies that the probability that a random
variable is at least twice its expectation is at most 1/2. Hence (considering the random
variable Zi,x − fx) we get from (1) that

p[Zi,x − fx ≥ 2n

b
] ≤ 1/2 (2)

Of course the same analysis hold for all values i ∈ [ℓ] so setting f̂x = mini∈[ℓ] Zi,x we get
an upper bound for fx and since the hash functions h1, h2, . . . , hℓ are independent of each
other1 we get from (2) that

p[f̂x − fx ≥ 2n

b
] ≤ (1/2)ℓ (3)

Now suppose that we are given values ϵ and δ where we want the probability that our
estimate f̂x is off by more that ϵn is at most δ. Using the calculations above, we can
calculate useful values of b and ℓ based on ϵ and δ: It follows from (3) that if we take b = 2

ϵ

and ℓ = log2(
1
δ
), then

p[f̂x − fx ≥ ϵn] ≤ δ (4)

Hence, using b ·ℓ = 2
ϵ
· log2(1δ) counters (the size of the array M) we can achieve the desired

accuracies independently of n which could be huge. For example, suposse we want to
estimate the frequency of those elements that occur with a frequency of at least 1 % and

1Actually here we need a stronger property of H to guarantee that (3) holds, namely that H is a
so-called strongly universal family of hash functions, but we will not define this here for simplicity.

3

we want this estimate to be off by at least 0.01% with probability at most 1
1000

. Taking

ϵ = 10−4 and δ = 10−3 we get that p[f̂x − fx ≥ n
10000

] ≤ 1
1000

will hold if we use 10 different
hash functions, each hashing to {1, . . . , 20000} so in total we need only 200000 counters to
achieve this accuracy!

4

