Ahuja appl 6.3 aratex roundius
R

N han a frasible flow $G J$ good roundins P
Integralitythm $+\bar{x} \Rightarrow$ fuasble integer flow

Abuja 6.1
seating families at tabes no two of same family at same table.

$7 \times$ flow ot value $\sum_{i \in F} a_{i}(x$ integer $)$ $\prod_{\text {good ruths }} \quad\left(\sum a_{i} \leq \sum \delta_{i}\right)$

Ahuja 6.2

shifts \begin{tabular}{ll|l|}
\hline departmunts \\

$[6,8]$	$[11,12]$	$[7,12]$
$[4,6]$	$[11,12]$	$[7,12]$
$[2,4]$	$[16,12]$	$[5,7]$
	≥ 24	
≥ 13	≥ 32	≥ 22

\& ≥ 19
\end{tabular}

shitt 1,4 dept

claim \exists feasibh intar flow in N

$$
\pi_{3}
$$

I sood scheduh

Ahuja 6.41
optimal coverng of uports events odemn Nybory

$$
\begin{array}{r}
{\left[T_{0} 8: 10\right]} \\
\ddots \underset{\sim}{\longrightarrow} \\
\\
{\left[\begin{array}{lll}
T 0 & 9: 11
\end{array}\right]}
\end{array}
$$

odmn
obtam an acychic gosraph D Claim Dhas a path wover with k

$$
\|_{\|} \text {paths }
$$

we can cover all eventowith k repoitors
k reporters enous 4
 events covered by reporter i

$$
P_{i} i s \text { a pathin } D
$$

$P_{1} \ldots P_{4}$ cover V(D)
soppon $Q_{1} \cdots Q_{r}$ cover $V(Q)$

assisn event, correspundius to $V\left(Q_{i}\right)$ to reporto i

Conclusion
we cans solve the problem by finking a munimom path cover in D

This is a minimum value flow problem.

$$
B J 63.33 \quad N=\left(V_{0} 3_{s} t, A, l \equiv 0, u\right)
$$

(S, \bar{S}) and (T, \bar{T}) ($s, t)-$ cut J
claim: $\sqrt{\Downarrow}$

$$
\frac{v(s, \bar{s})+u(T, \bar{T}) \geq u\left(s_{s} T, \overline{s \pi T}\right)+u(s o T, \overline{s o T})}{T}
$$

S

\bar{S}

$$
\begin{aligned}
& u(s n T, \overline{s n T})+u(s u T \\
&, \overline{s u T}) \\
&=\left(u_{1}+u_{2}+u_{3}\right)+\left(u_{2}+u_{4}+u_{5}\right) \\
& \leq\left(\underline{u}_{2}+u_{3}+u_{s}+u_{7}\right)+\left(u_{1}+u_{2}+u_{4}+u_{6}\right) \\
&= u(s, \bar{s})+u(T, \bar{T})
\end{aligned}
$$

BS 63.34
If $\left(S_{1} \bar{S}\right)$ and $\left(T_{1} \bar{T}\right)$ are minimum (s, t)-cut,
then $(\operatorname{sn} T, \overline{\operatorname{snT}})$ and $($ SOT,$\overline{S O T})$ are also minimum $(2$ flecut)
let $K=u(S, \bar{S})=u(T, \bar{T})$
thin

$$
\begin{aligned}
& k+k=u(s, \bar{s})+u(T, \bar{T}) \\
& \text { by } 3,33 \\
& \geq u(\text { sn, } \overline{\text { sn }})+u(s \cup T, \overline{s u T}) \\
& \geq k+k
\end{aligned}
$$

B) $63.35 \quad N=\left(V_{0} s_{0}, t, A, l=0, \omega\right)$

Let x Sea maxtlow in N
Let $U=\{i \mid \exists(s, i)-p a t h$ in $N(x)\}$
$W=3 j \mid \exists(j, t)$-path in $N(x)\}$

MFMC the $\Rightarrow(U, \bar{u})$ and (\bar{w}, w) are min outs
claim \forall min out (S, \bar{S})
wham $U \subseteq S$ and

$$
\bar{S} W \subseteq \bar{s}
$$

Note if x is a max flow and $(S, \bar{S} \mid$ i) a min cut then

$$
\begin{aligned}
|x|= & x(s, \bar{s}) \\
& -x(\overline{5}, 5)
\end{aligned}
$$

Sofficient th show that

$$
U \leq S
$$

suppon U $U \in$ then $U \cap \bar{s} \neq \varnothing$ (UnS $\neq \varphi$ as $x \in U n S$)

BSG 3.45
scheduhns jodo on identical machims

- n jobs and a nouber of itm tical maturus)
- Jobs has fixed schuluh [si,fi] start time finus time
- If a machim has procesed josi then it mels $t_{i j}$ proesoing time befor itcan provess jobj

Goal: find a schedule that minumies the nombo of machims we un

$$
\begin{gathered}
{\left[s_{i}, f_{i}\right]} \\
\left.\longrightarrow s_{j}, f_{j}\right] \\
j \\
i j \in A \Leftrightarrow f_{i}+t_{i j} \leq s_{j}
\end{gathered}
$$

muimél(u) \#machim,
\mathfrak{j}
Munimizius \#paths covering all vertius in D (acyctic)
t
Findins mu valme intor flaw in associatil network.
$B J G 3.55 \quad G=(V, E)$

Theorem Either G has

Covering V or
$\exists S \subseteq V$ s.t S is independent and $\left|N_{G}(s)\right|<|S|$

If sexist) then no (k):

each e_{i} or c_{j} contribute, a neis hour of S

Step 1 : convert 6 to a disrap D

Claim A:
G has a collection as in (x)
$\stackrel{\pi}{3}$
D has a collection of disjoint ache that cove $V(D)=V$ cycle factor

Claim B D has no cycle factor

$$
\exists S \subseteq V(D) s, f\left|N^{+}(S)\right|<|S|
$$

$\left[N^{+}(S)\right.$ is the rut ot oot-neishbours of $\left.S \mathrm{in} D\right]$ Claim $A+B \Rightarrow$ Theorem:
G has good collection (*) I claim A
D has a couch factor
a claim B
$\forall s$ independent $\left|N_{0}^{+}(s)\right| \geq|s|$
b)

\forall singentin $G\left(\mathbb{N}_{6}(s)|\geq|s|\right.$

Claim B D has no cycefactor
π

$$
\exists S \subseteq V(D) s, t\left|N^{+}(S)\right|<|S|
$$

P : construct N from D :

Not: N has a fasible circulation ${ }^{\Uparrow}$ Dhas a cench factor

OO.OO

D integu
x feasibl circulation $\rightarrow x$ decomponsinto cych flows disjoint ydusinD

Whap no fearllu circulation It Hoffman') the

$$
\exists x \text { s.f } \quad \ell(\bar{x}, x)>u(x, \bar{x})
$$

- No are from $S^{\prime \prime}$ to $S^{\prime} \Rightarrow$ S is independent
- $\left|N_{G}(s)\right|<|s|$

each unizue neishbour p of S give) an onc of capiath I from x h \bar{x}

$$
|s|=l(\bar{x}, x)>u(x, \bar{x}) \geq\left|N_{G}(s)\right|
$$

