BJG3.56
Theorem (Kömis)
Every re sular biperbiti graph has a perfect matiching P: (Via integrality theorem for max flows) let $G=\left(U_{s} W, E\right)$ de k.regular, that is, $d(v)=k \quad \forall v \in V(G)$ Then $k \cdot|u|=k \cdot|w|$ so $|u|=|w|$

The flow x defincolsy

$$
\begin{aligned}
& \text { The flow } x \text { definudby } \\
& x_{\text {suv }}=1 \quad \forall v \in l l \\
& x_{w t}=1 \\
& \quad \forall w \in W \quad x_{i j}=\frac{1}{k} \quad \forall d^{\prime} \in E(G)
\end{aligned}
$$

is fersibh in N_{G} and has value $|\omega|=|W|$
By the integrality theorem: $N_{G} M_{a}$ a fearibhintier valued flow y of value $|\mathrm{IU}|$. Thus

$$
m=\eta i j \in E \mid y_{i j}=(\} \text { is perfect matching }
$$

$B J 67.27$

claim: $\lambda(D)=k$
P: suppon $d_{p}^{+}(X)<k$ for some $X \leq V\left(D^{\prime}\right)$
we can assume that $s \in X$ since othewn we lookat $\bar{X}=$ Vols) $\backslash X$ and $d^{(}(\bar{X})<k$
cannot have $X=3 s$ s) as $d^{+}(0)=k$
so $X^{\prime}=X$-s is non emp try and

$$
\begin{aligned}
& \quad d_{D}^{+}\left(x^{\prime}\right) \leq d_{D^{\prime}}^{+}(x)<k \quad\{\text { as } \lambda(D) \geq k \\
& {\left[d_{D}^{+}\left(x^{\prime}\right)=d_{D^{\prime}}(x)-d_{D^{\prime}}\left(s, V-x^{\prime}\right)\right]}
\end{aligned}
$$

$B J 67.28$
determine hows many arc) from v_{i} to s we can dilute and shill have
(D) $d^{+}(u) \geq k \forall \varphi \neq u \subset V$

- Only ats containing v_{i} are aftectiel when we dele ares $v_{i} \rightarrow s$.
- If $d^{t}(u)=k+r$ dofor deletion, then we can delete at most r arcs $v_{i} \rightarrow s$
- So we seek $\rho=$ min $\left\{d^{+}(U) \mid v_{i} \in U, U \subset V\right\}$
- By Mangers theorem, for a fixed $t \in V-v_{i}$, $\min \left\{d^{+}(u) \mid v_{i} \in U, \in \notin U\right\}$ is pucinly $\lambda\left(v_{i}, t\right)$ which is the maximum \# of arc-dijount $\left(v_{i}, t\right)$-paths in D
- $\lambda\left(v_{i}, t\right)$ can be found by one max flow calculation in N_{D} which is D with $u_{v_{a} v_{b}}=1$ forallares $v_{a} v_{b}$ and $u_{v_{a} s}=$ current \# of arcs to s

Hence

$$
Q=\min \left\{d^{t}\left(c_{0}\right) \mid v_{i} \in U \subset V\{\right.
$$

$$
\left.=\min \} \lambda\left(v_{i}, t\right) \mid t \in V-v_{i}\right\} \frac{(n-1) \max f l o w}{\text { calculations }}
$$

calculations
and we can delete

$$
r=\min \{k, g-k\} \operatorname{arcs} \text { from } v_{i} \text { to s }
$$ and still entity

$$
d^{+}(u) \geq k, \quad \forall \phi=u<v
$$

and
if $r<h$ then then exist) a sit $U<v$ with $v_{i} \in U$ sit $d^{+}(U)=k$ after wedente r arcs from $v_{i} h s$
In total to find i minimal not arcs from V to s we need $n \cdot(n-1)$ max flow calculations each ot which take $O\left(n^{2 / 3} m\right.$) (why?)
$B 567.30$
we know: (us, sou) is an admusish sphtions

π
$\forall X \subset V$ s.t. $u, v \in X$ wechave

$$
d^{t}(x), d^{-}(x) \geq k+1
$$

How do we find min $\left\{d^{t}(X) \mid u_{1} \in X \subset V\right\}$ (and min fd $\left.(X)\right|_{u, v} \in X \subset v$)?

ald redarciotanco challoth arc) cap

Find max flows $X_{u t}$ for all $t \in V-\{u, v\}$

If $\min \left\{\left|x_{u t}\right||t \in V-3 u, v|\right\}=k$ then (us,sv) is not admissisle. otherwin find min $\left\{d^{-}(X)|u, v \in X \subset V|\right.$

Find merflows $y_{\text {tu }}$ forall $\left.t \in V-h y, v\right)$
If min $\left\{\left|y_{\epsilon u}\right| \mid t \in V-\left\langle u_{i} v\right|\right\}=k$
then (us,sv) is not admissibl othercuin (us,sv) is admisish.

Ahuja 10.6 $\quad N=(V, A, l \equiv 0, u, b, c)$
Let x and x^{\prime} be distinct fassbl flowsin N

- Then \exists circulation \tilde{x} in $N(x)$ such thst

$$
x^{\prime}=x(1) \tilde{x}
$$

- \tilde{X} decompons in to cych flows $W_{\left(1, W_{L}, . .\right)} W_{p}$ for sone $p \leq m$
All then cychs have poosish thow on all their arc) is $N(x)$ (wihaiatlest $\left.\delta\left(w_{i}\right)\right)$
, Thas $\forall i \in[p)$ the cych \overleftarrow{W}_{i} (Wirevernd) io a cychin N(X')
- Let \bar{x} oc the flow in $N\left(x^{\prime}\right)$ which sunds $\delta\left(W_{i}\right)$ units alows W_{i} for cach $i \in[p]$.
- Then $x=x^{\prime} \oplus \bar{x}$

Abuja 10.9 $\quad N=(V, A, l \equiv 0, c, b, c)$
Let x^{\prime} be feasible in N and let x be apnudo flow $\left(b_{x} \neq b\right)$ in N

- There exist a flow \tilde{x} in $W(x)$ sit. $\quad x^{\prime}=x \oplus \widetilde{x}$
\tilde{x} decompons into so me path flow along path, $P_{1} P_{2} \ldots-\operatorname{Pr}$ and joni cych flows
- Each Pi starbina vertex o with $\delta_{x}(v)<b(v)$ and ends in a vertex wo w (th $b_{x}(\omega)>b(\omega)$
- For each such P_{i} the vevarn path ϵ_{i} (from wot) is in $N\left(X^{\prime}\right)$ as wi rand $\delta\left(P_{i}\right)>0$ onibalons P_{i} in $N(x)$

Ahujas 10.25
constrainal mas flow puilem

Maximiz o

$$
\text { s.t } \quad b_{x}(s)=v=-b_{x}(t), b_{x}(i)=0 \quad \forall i \neq s, t
$$

(■)

$$
\begin{aligned}
& 0 \leq x_{i j} \leq u_{i j} \\
& \sum_{i j \in A} c_{i j} x_{i j} \leq D
\end{aligned}
$$

Normal maxtlow prodem + a bulset
ADoumption: $c_{i j} \geq 0 \quad \forall i j \in f$ and no $(\delta, t)-p a t h$ of cost 0
a) $L e t v^{*} \in \mathbb{Z}$ and Cet x^{*} de optimal($, t, t$-flow of valur v^{*}
 Then X^{*} isa jolution to (D) with bulget $D=z^{*}$: $\left(C_{i j}^{\pi} \geq 0 \quad \forall i j \in N(x)\right)$
suppon \hat{X} is feasibhin N, has cost at most D and han a hishes value than v^{*}. Then $\exists \tilde{x} \in N\left(x^{*}\right)$ s.t $\hat{x}=x^{*} \oplus \tilde{x}$ and $b_{\tilde{x}}(0)=d_{\tilde{x}}(0)-b_{x^{x}}(0)>0$

Thu, $\quad c \hat{x}+c x^{R}=c \hat{x} \leq D$

$$
c \tilde{x}+D \leq D \Rightarrow c \tilde{x} \leq 0
$$

$N(x)$ has no nesative wich a) x^{*} is optima?
since $\delta_{\tilde{x}}(s)>0$ the decompostion of \tilde{x} contans athastone (s, t)-path and each joch path must have

Abuja, 14.4
Given $N=(V \cup\}, t), A, l \equiv 0, l e)$ sit $b_{x^{x}}(0)<v^{0}$ when x^{*} is a max flow

- Price for increasing $u_{i j}$ to $u_{i j t l}$ is $\alpha_{i j}$
- Goal: Find cheapest way to incan some capacities sit new notwork $\left.N^{\prime}=(V 0 i s, t), A, l \geq 0, u^{\prime}\right)$ ha,
an (est). flow x of value $b_{x}(s) \geq U^{0}$

$$
\text { - let } c_{i j}\left(x_{i j}\right)=\left\{\begin{array}{l}
0 \text { if } x_{i j} \leq u_{i j} \\
\left(x_{i j}-u_{i j}\right) \cdot \alpha_{i j} \text { if } x_{i j}>u_{i j}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Solve } \begin{array}{l}
\operatorname{man} \sum_{i j \in A} c_{i j}\left(x_{i j}\right) \\
\text { sit } b_{x}(i)=\left\{\begin{array}{cl}
v^{0} & i=s \\
0 & i \neq s_{1} t \\
-v^{0} & i=t
\end{array}\right. \\
0 \leq x_{i j} \leq u_{i j}^{1}
\end{array}
\end{aligned}
$$

when $u_{i j}^{\prime}$ large enough' es. $u_{i j}^{\prime}=v^{0}$
(if $u_{i j}^{\prime} \geq v^{\circ} \quad \forall i j$ then $w a$ can and v° unit from shot)

Abuja 14.5
Given $N=(V, A, l \equiv 0,4, b)$ with no feasish flow we wish to furl a flow x coith $0 \leq x_{i j} \leq u_{i j} \forall \delta j \in A$ which minimizes $\sum_{i \in V}\left(f(i)-d_{x}(i)\right)^{2}$

$$
\text { claim } k=\min _{i n} \sum_{i j} c_{i j}\left(x_{i j}\right)
$$

sit $b_{x} \equiv b^{\prime}$

$$
0 \leq x_{i j} \leq u_{i j}
$$

$$
\begin{aligned}
& b^{\prime}(s)=0 \\
& b^{\prime}(i)=b(i) \quad i c V
\end{aligned}
$$

Solves the problem

$$
\begin{gathered}
c l a i m k=\min _{i n} \sum_{i j} c_{i j}\left(x_{i j}\right) \\
\text { sit } b_{x} \equiv b \\
0 \leq x_{i j} \subseteq u_{i}
\end{gathered}
$$

Solves the protium

- Nyasa feasible solution $\Leftrightarrow K=0$
- Every f(a)ibl flow x^{\prime} in N^{\prime} corresponds to a prulothow x is N couth $f(i)-b_{x}(i)=x_{s i}^{\prime}$ when $d_{x}(i)<b(i)$ and $\delta_{x}(j)-\delta(j)=x_{\delta j}^{\prime}$ when $\delta_{x}(j)>\delta(j)$
and for this x we have

$$
\sum C_{i j}\left(x_{i j}\right)=\sum_{i \in V}\left(f_{i}(i)-\delta_{x}(i)\right)^{2}
$$

So minimizing K solves ours problem

Abuja $14.14 \quad x^{*}$ optimal solution to
convex coot flow problem
$\sqrt{\|}$ Exurcin 14.15
$N\left(x^{*}\right)$ has no ne sstivecych.

- fix a vertex and calculate oboutast path
distances $d()$ from $\left(O(n \log n+m) \begin{array}{c}\text { Dishotan with } \\ \text { Fibluan }\end{array}\right)$
- set $\pi=-d$ then $C_{i j}^{\pi} \geq 0 \quad \forall i j \in N\left(x^{\pi}\right)$
- Then is another optimal solution if and only if $N^{\pi}\left(x^{*}\right)$ hare ooh W sit all ares of W hare reduced cost $=0$

$$
\left(\text { co } c(w)=c^{\pi}(w) \geq 0 \quad \forall w \text { as } c_{i j}^{\pi} \geq 0\right)
$$

- So we just med to check for a directal ch in the joodisment $D^{0}=\left(V, A^{0}\right)$ whir $\left.A^{0}=\left\langle_{i j}\right| c_{i j}^{\pi}=0\right\}$
- This takes $O(n+m)=O(m)$ (assumes $m \geq n$) when π isalualy given if not then we need to fund $\pi \quad(=-d)$ cos above and the it takes time $O(n \operatorname{los} n+m)$

Ahuja 14.15
Claim x^{*} is optimal sol to convex oost flow pows
$N\left(x^{*}\right)$ (detinul in rection 1 4.9)
has no ne sative cych.
V: If W is negative oych in $N\left(x^{*}\right)$ then $c x<c x^{*}$ when
$x=x^{*} \oplus \delta(\omega) \cdot W$ contractiug opt of x^{*}
\#: A osoun $N\left(x^{*}\right)$ hus no nesative cych and let x bc fasidbin N
— (so $\delta_{x} \equiv \delta_{x^{x}}$)
Then $Z_{\text {cychs }} w_{11} w_{2} \ldots w_{w_{1}}$ in $N\left(x^{x}\right)$ such that $x=x^{*} \oplus \sum f\left(w_{i}\right) \cdot W$
Thus $C(x)-C\left(x^{x}\right)=C_{N\left(x^{*}\right)}\left(\sum_{i} \delta\left(w_{i}\right) \cdot w_{i}\right) \quad \cos \ln N\left(x^{*}\right)$

$$
\begin{gather*}
c(x)-c\left(x^{*}\right)=\sum_{\left\{\left[C_{i j}\left(x_{i j}\right)-c_{i j}\left(x_{i j}^{*}\right)\right]-\sum_{\{i j}\left[x_{i j}^{*}\right\}\right.}\left[C_{i j}\left(x_{i j}^{*}\right)-C_{i j}\left(x_{i j}\left\langle x_{i j}^{x}\right\}\right\rangle\right. \tag{**}
\end{gather*}
$$

For eacharc contrioutions to (x) $x_{i j}-x_{i j} x_{i}$ at least as (arge as $\delta\left(W_{p}\right)$ forall W_{p} s.t ije W_{p} so the contribution from the costot W_{p} to such anarc ij $i)$ at most $\delta\left(W_{p}\right) \cdot \frac{\left.C\left(x_{i j}\right)-C\left(x_{i j}\right)^{x}\right)}{x_{i j}-x_{i j}^{x}}$

For an arc ij contributing to (*x)
the difterna $x_{i j}{ }^{k}-x_{i j}$ is at least as lain as $\delta\left(W_{q}\right)$ for each W_{q} such that the are $j i \in W_{q}$ so contribution from W_{f} to δj sat most

$$
\delta\left(W_{q}\right) \cdot \frac{c\left(x_{i j}\right)-c\left(x_{i j}^{x}\right)}{x_{i j}^{k}-x_{i j}}
$$

In both cans, the cost paid for ij on W_{p} or W_{q} i) leos than or equal to $\delta\left(w_{p}\right)\left(\delta\left(w_{q}\right)\right)$ unit of the differmu $\left|x_{i j}-x_{i j}^{z}\right|$

Concharion

$$
\begin{aligned}
c(x)-c\left(x^{x}\right) & \geq \sum \delta\left(W_{p}\right) c\left(W_{p}\right) \\
& \geq 0 \text { as } N\left(x^{x}\right) \text { has no negativecych. }
\end{aligned}
$$

Ahuja 14.17 capacit's xalius alsonthon claim if $c_{i j}^{\pi} \geq 0 \quad \forall i j \in N(x, 2 \Delta)$ then oncot $c_{i j}^{\pi}, c_{j i}^{\pi}$ most be non-reschue in $N(x, s)$

. ${ }^{\text {U }}$

$$
\begin{aligned}
& \Delta\left(c_{i j}^{\pi}+c_{j i}^{\pi}\right)=c_{i j}\left(x_{i j}+\Delta\right)+c_{i j}\left(x_{i j}-\Delta\right)-2 c_{i j}\left(x_{i j}\right)<0 \\
& \| c_{i j}\left(x_{i j}\right)+\Delta \alpha_{2}+c_{i j}\left(x_{i j}\right)-\Delta \alpha_{1}-2 c_{j}\left(x_{i j}\right)<0 \\
& \Delta\left(\alpha_{2}-\alpha_{1}\right)<0
\end{aligned}
$$

imf(-) $)$ ibh a) $c_{i j}()$ is a convex forchon so $a_{2} \geq \alpha_{1}$

