Alwy or 19.3
G = (V, A) digraph with spuislowninss, t
cost cij of destroying arc cj
a) find min aust nt of arcs that distoys
al s, E)-paths
(it N = (V, A, RZO, UZC)
Claim min capacity of (s,t)-cut in N
= min cost of a distoying nt
b) May also hill verhius hilling outers i
costs ci. Can handle two via verhis
splithus
$$\frac{2}{2} \frac{c_i}{c_i} = \frac{2}{c_i} \frac{2}{c_i} = \frac{2}{c_i} \frac{2$$

$$d_{D}(u) + d_{Du}(u) + x^{t}(u) - x^{-}(u) \qquad j \neq = j$$

$$= d_{D}(u) + d_{Du}(u) + \frac{j}{2} d_{Du}(u) - \frac{j}{2} d_{Du}(u)$$

$$= d_{D}(u) + \frac{j}{2} (d_{Du}^{t}(u) + d_{Du}(u))$$

$$= d_{D}(u) + \frac{j}{2} d_{C}(u)$$

$$\geq k \qquad by \ the assumption \ to \ the \ theorem$$

BJG 8.64

G=(V,E) for each edge ij we have two costs cijand cji where cij is the cost of orienting theodorija, i-) jand Cji is the cost of orienting it as j->i Goal: ful a k-arc-strong orientation of G of minimum cost (assome 26)=2k so this is a k-arc-strong orientation) let D be the orientation which orients each arc ijeE as i-sj if CijeCji and ans j-si otherwin. let Columb the cost of the orientation. let C'Se the cost function which assists cost [cij-cjil to the arc between i and jin D

Let
$$\times G_1 = I \subseteq we very a$$

then we want
 $d_0(U) + x^{\dagger}(U) - x^{-}(U) \ge k$
 $y = 0$
 $x^{-}(U) - x^{\dagger}(U) \le d_0^{-}(U) - k$
 $o \le x \le l$
Every integer solution $x = 0$ (b) corresponds
to a k-arc - strong orientation D_X
and $c'x = c(D_X) - c(D)$
So every minimon ast intervalued
sobmodule flow corresponds to an
 $ophingle k - arc - strong orientation
 $of G$.$

let D' be an arbitrary orientation of 6
we can obtain any of two orientation D
by versions 200 or mon arcs of D'
we can up a flow
$$x : A - 3 to 13 to$$

show which arcs we rever
 $x G = 1 \in a$ is reversed
By Elmonds branching theorem, so ch
an orientation D of 6 has k are-disj
an orientation D of 6 has k are-disj
out-branchings from r if and only if
 $J_D(U) \ge k \quad \forall \not G \neq U \le V - r \in D$
it D_x denote D' with theorem when
 $x = 1$ reversed. Then
 $J_D(U) = d_D(U) + xt(U) - x(U)$

$$\frac{\sum \operatorname{com} 2018 \operatorname{B} \operatorname{Pioblem} 1}{\operatorname{Given} D = (V_i A) \quad \text{with} \quad d_D^{\dagger}(v_i) + d_D^{\dagger}(v) \quad \text{with} \quad vert V}$$
a) Find ant of anco to reverse such that new disraph's is earling $(d_D^{\dagger}(v) = d_D^{\dagger}(v) \quad \forall v \in V)$
as usual: \times flow in $N = (V_i A_i E = i u = i b)$
 $\times \operatorname{GI} = 1 \quad \text{correct} a$
Then we want
$$d_D^{-}(i) + \sum_{ij \in A} v_{ij} - \sum_{j \in A} v_{ji}^{-} = \frac{d_D^{\dagger}(i) + d_D^{-}(i)}{2} \quad / \forall i \in V$$

$$\int_{X} (i) = \frac{d_D^{\dagger}(i) + d_D^{-}(i)}{2} - d_D^{-}(i) = b(i)$$
Every earling reprint to $v \neq i$ a frankli interpoint to $v \neq i$ a frankli interpoint to $v \neq i$ a frankli interpoint $v \neq i$ a frankli interpoint $v \neq i$ a frankli interpoint $v \neq i$ and $v \neq i$ an

we can find the minimum 6) Hofarco to revern Sygnin each arc acost of 1 then the cost of a frash flow X in N= (V,A, L=0,4=1,8,c=1) i) exactly the number of ancy we revern in D to set an eubrian reorientution. c) Goal: find singlist k such that We can obtain an evelinian reorientation of D without reversions mon than k arcs incident to any vertex i.

 $\frac{dd_{D}(i) - d_{D}(i)}{2} = \frac{dd_{D}(i) - d_{D}(i)}{2} \quad \text{arcs at } i \quad \text{Hast}$

In order to Megson how many mon arcs we veren at i, we perform vertex splitting and not balances as follows

 $d_{D}^{-}(c) < d_{D}^{+}(c)$, I C 7) S $\mathcal{L}_{D}(\mathcal{G}) = \mathcal{A}_{D}^{\dagger}(\mathcal{G})$

Example $d_{D}(i) = 8 d_{D}(i) = 2$ So $m(i) = \frac{8-2}{2} = 3 = 3$ must revern at hast 3 arcsati and $b(i) = \frac{d_{D}^{\dagger}(i) + d_{D}(i)}{2} - d_{D}(i) = 5 - 8 = -3$ If we reven mon than 3 orcs at i then we must reven p mon in coming and poutsoins In the new network this corresponds to the following flow ugluks at 21, ill

Now we want to put a cost
$$C_{i't''}(x_{i't''})$$

so that sending k units
on the are $i' - s i''$ is non expensive
than sendres h-1 onits on
all ares $j' - s j'' \qquad j \in V$
set $C_{i't''}(x_{i't''}) = m^2 x_{i't''} + 1$
 $m^{2ktl} > m \cdot m^{2(k-1)+l} = m \cdot m^{2k-l} = m^{2k}$
so non expensive hourd k on the along $i' - s i''$
than k-1 on its along all $j' - s j''$
 $f'(k) = (2k+1)m^{2k}$ and $f''(k) = 2k(2k+1)m^{2k-l}$
so $f'' \ge 0$ always $= s f'(k)$ is incoming alwaps

So we find a frash flow
$$\times$$
 of
 mm with wort $C_{ij}(x_{ij}) = 0$ $\forall ij \in A$
 $C_{i'i''}(x_{i'i''}) = m^{2\times i'i''t}(x_{i'i''}) = m^{2\times i'i''t}(x_{i'i''})$

1:
$$d^{-}(X) \geq q \quad \forall \quad X \Rightarrow (=) deleta both$$

 $mcs \quad s \rightarrow 1$
2: $d^{-}(X) \geq q \quad \forall \quad X \Rightarrow s = 5 deleta both$
 $mcs \quad s \rightarrow 2$
To me this: if $G \in X$ then
 $d^{-}(X) \geq d(s_{1}2) + d(s_{2}6) \geq q$ so
may assome $G \notin X$ if $I \in X$
then $d^{-}(X) \geq d(s_{1}2) + d(e_{1}5) \geq q$
 md if $I \notin X$ then $d^{-}(X) \geq d(s_{1}2) + d(e_{1}5) \geq q$

3:
$$d^{-}(x) \ge 4 + x \ge 3$$
 so duth both error s-3
 $Y: d^{-}(x) \ge 4 + x \ge 4 = 3$ duth both error s-9
 $5: d^{-}(x) \ge 4 + x \ge 5 = 3$ duth both error s-35
 $5: d^{-}(x) \ge 4 + x \ge 5 = 3$ duth both error s-35
 $6: d^{-}(6) = 0$ so keep both error s-36.

The oupportition X, X2, X3, X4, X5 with X2=263 shows that we need 5 arcs

Envially

2

ōς

A: is solved by calculating

$$\Gamma(i) = m'n\{d^{\dagger}(X) \mid i \in X, s \notin X, X \neq V\}$$

we can delet $g = min\{k, \Gamma(G) - k\}$ and
from i hos

For each teV-ic: cal when
$$(j, \epsilon)$$
-flow $X^{(\epsilon)}$
in $D + s \rightarrow \epsilon$ and $u_{ij} = (\forall ij \epsilon A$
Then $r(i) = \min \{|X^{(\epsilon)}|| | \epsilon V - i\}$
by the max flow and cot them.
B: is solved by calculation
 $q = \min \{d^+(X)|\{i_i\}\} \in X \neq V\}$ and
 $\beta = \min \{d^-(X)|\{i_i\}\} \in X \neq V\}$
For $\epsilon \in V - \{i_j\}$? calculate max (i_it) -flow
 $y^{(i_i\epsilon)}$ in $D + i = i = i = i$
and a max $(\epsilon_i \epsilon)$ -flow $2^{(\epsilon_i \epsilon)}$ in
 $D + i = i = i = i$

Then

$$\alpha = \min \{|b^{(i,\ell)}| | t \in V - (i,j)\} \}$$

 $\beta = \min \{(2^{(i,\ell)}) | t \in V - (i,j)\} \}$
and (i, s, j) is a lowissible
precisely when $\alpha, \beta > k$
b) By Wash - Williams on interior theorem
 $r^{k}(0) < co \in \mathcal{I}$ UMG(D) is
 $\lambda | u - e \partial n - write the
 $\gamma = (0) \mod frought by from theorem$
 $\alpha \mod cost feastble submodules theorem
 $\gamma = wst pap.$$$

Interpret X: A -> hords in
N = (V, A, L=0, U=1) by reversions
ij if and only of Xij = l
then republicly disrupt D'has indusre

$$d_{D}(U) = d_{D}(U) + x^{t}(U) - x(U)$$

So we want an integer X s.t
 $d_{D}(U) + x^{t}(U) - x(U) \ge k$
 $y = (U) - x^{t}(U) \le d_{D}(U) - k = b(U)$

and O ≤ × ≤ 1 We down b) that rh(D) < cos (=> h(umG(D)) ≥ 2h and By the Edmonds - Gile, then then is a feasble integer × whenever then is a feasble integer × whenever then is a feasble rol. Set Ci = 1 and finding a min cost feasible woodules flow × gives us rh(D) a) the cost of such an X.

Problem 3 Exam 2018B $D = (V, A, \omega) \quad \omega : V \rightarrow R$ 9) Given Nas follows Wi make S = W = W = 0 Wall originalares have as - kap. We proved that if X is a closur thun (Xuss, VIXosty) is an (s,t)-cut and $w(X) + u(s, \overline{s}) = constant$ so finding a min aut (S,S) SIVer ura max closum S-4s}, We can fora o tobe in our cloun by nothing Usu=00 instead of Usu=wlu) We can for a o'not to be in our closur by setting uset = co

Now we can find a maximum
waint clonen X with X # Ø,V
by vorning throws all pairs of
dished verhigs v, v while forcing
v to be in the Clonen and v not to
be in the Clonen and v not to
be in the Clonen.
(12) max flow calculations so
$$O(n^{5})$$
 with
FiFo pfp
b) Goal find max f 1×1 | d& =0, X # V?
Solution: set w(v) = 1 to and
find a max weight closen X # Ø,V
then this X gives max above.
Roming time $O(n^{5})$ as above

C) Suppon
$$d^{t}(X) = d^{t}(Y) = 0$$

and $X \cup Y \notin V$. Then
 $0 \pm 0 = d^{t}(X) \cdot d^{t}(Y)$
 $\geq d^{t}(X \cup Y) \pm d^{t}(X \cap Y)$
 $\geq 0 \pm 0$
So $d^{t}(X \cup Y) = 0$
A) $D = (V, A)$ $X_{\sigma}^{t} = j \omega [\exists (v, \omega) - path in D]$
 $X_{\sigma} = j \geq [\exists (z, \sigma) - path in D]$
 $X_{\sigma} = j \geq [\exists (z, \sigma) - path in D]$
If $d^{t}(X) = 0$ and $\sigma \in X$ then
 $X_{\sigma}^{t} \leq X$ as otherwish
then is an arc from
 $X \cap X_{\sigma}^{t}$ to $X_{\sigma}^{t} \setminus X \notin J$ $d^{t}(X) = 0$
 $X_{\sigma} = \chi = 0$

Condunion

X is the complement of Some X5 and this Xu han IXU < Xu Yuev given X₅₁ ···· X₅₀ we can fud X in tim O(n) So O(n(n+m)) in bohil i.e much faste than the flow band method in b)

a

let r, r, r, - r, be the roots of the Nontrial out-tree in D'= (V, A')
if D has an out-bracking B^t s.t A^l S A(B^t) then B^t must enter any out-tree T^t when r; ts by an arc into r; ->->

by an arc into ri s and arc into ri s a solution of the contex Zi contract each V(T+) to one vertex Zi

When out-mishbours is the set of out-neighbours of the nt V(Tt) and when in-mishbours are the in-neighbours of ri in V(V(Tt)) let D* be the regulting disraph

D has the desired out-downdows, Bt (containing all arcs of A') if and only if D* has an out-brunching from s. The cost of such an out-branching in Dis the corresponding out-branching in Dr the cost of + ZC(a) so minimizing cost of branching in D is the same as mingmizins branching in Ot $a \in A'$