$B J G 3.48 \quad N=(V, A, l \equiv 0, u, b, c)$
i) asoome: some ares have $u_{i j}=\infty$
claim: There exists a finite ( $\left.x_{p q}<\infty \quad \forall p p e A\right)$ optimal fecrish flow
Then is no ugh $W$ in $N$ with $c(w)<0$ and $u_{i j}=\infty \quad \forall i j \in A(w)$
$\|$ suppon then is a cych $W$ in $N$ worth $c(W)<0$ and $u_{i j}=\infty \quad \forall_{i j} \in A(W)$.
Then $W$ is acycbe of $N(x)$ for evens fruit flow $x$ so $x$ caunotbe options
A soppon that err cych $W$. $f W$ with $C(w) c o$ has at least one are of finite caracals and let y be a finitaflow which is feasish and has finite cost (we a june $\left|c_{i j}\right|<\infty \quad \forall i j \in A$ )
Let $x$ bo an arbiterang feasible flow in $N$
Then $\exists \tilde{y} \in N(y)$ s.t $x=y \oplus \tilde{y}$ when $\tilde{y}$ isaciralation in $N(y)$
$c x=c y+c \tilde{y} \geq c y+\sum_{i=1}^{r} \delta\left(w_{i}\right) c\left(W_{i}\right)$ when
$\tilde{y}$ can oc decomponel into uchelflous alone $w_{1}, \ldots w_{1}, \ldots W_{p}$ with $p \leq m$ and $c\left(W_{i}\right)<0$ for $i \in[r)$ and $c\left(w_{c}\right) \geq 0$ for $i=r+1, \ldots, p$ and $\delta\left(W_{i}\right) i$, the ansmenthus capacity of $W_{i}$ in $N(y)$

Let $R=\left|\sum_{i=1}^{r} \delta\left(w_{i}\right) c\left(w_{i}\right)\right|$. Then $R<\infty$ so we can extend $y$ to a fruit optimal farsish flow $x$ usius at moot $R$ iterations of the csch cancelling algonthom. The flow $x$ will be finish on all ares.
ii) Let $A^{\prime}=\left\{i j \in A \mid u_{i j}<\infty\right\}$ and $V^{\prime}=\{v \mid b(u)>0\}$

$$
K=\sum_{i j \in \in A^{\prime}} u_{i j}+\sum_{v \in V^{i}} b(\mathbb{C})
$$

Assome $N$ has no g, ch w with $c(w)<0$ and $u_{i j}=\infty \quad \forall 0_{j} \in A^{( }(\omega)$.
Then by $i$ ) then existafinit optional( flow $x$ consign a flue deomportion of $x$ into path flow anons $P_{(1, \ldots)} P_{r}$ of value) $\delta_{1, \ldots,}, \delta_{r}$ and $y$ ch flows along $W_{1}, \ldots, W_{q}$ of values $\beta_{1} \ldots \beta_{7}$ $\sum_{i=1}^{r} \delta_{i}=\sum_{v \in V^{\prime}} \delta(v)$ as each $P_{i}$ starting $V^{\prime}$ $\sum_{j=1}^{q} \beta_{j} \leq \sum_{i j \in A^{\prime}} u_{i j}$ as each $W_{j}$ interact $A^{\prime}$ Hence $x_{i j} \leq K$ for ermare $i j \in A$
$B 363.79$
Let $N=(V, A, l \equiv 0, u, b, c)$ have a ferrol flow $X$ :
Prove that $N$ hasa famish flow $x$ for which $\left|A_{x}\right| \leq n-1$ when $n=W \mid$ and

$$
A_{x}=\left\{i j \mid 0<x_{i j}<u_{i j}\right\}
$$

Remark: wo may asome that all flows ar nett flows
wo may a pome that ant

We will show that we can make $x$ set $A_{x}^{\prime}$ han no eyck in the ondirachd sense suppose $A_{x}$ has a mach $C$ :
can $1 A_{x}$ has a direchd ouch $C$


Cisalso acych in $N(X)$ and its residual capacity is $\delta(C)=\min \left\{u_{i j}-x_{i j} \mid i j \in A(C)\right\}$

let $x \in x \oplus \delta(C) \cdot C$ then at least one orc of $C$ leaves $A_{x}$ and no neware
enter) $A_{x}$ since we ed $x_{i j}>0$ on all arcs in $A_{x}$ before. Thus $\mid A_{X} I$ decreased and $x$ is still fairish
Can $2 A_{x}$ has an orimitul cych but no directed cych.


Let $\delta_{f}=\min \left\{u_{i j}-x_{i j} \mid i \hat{j}\right.$ forward cont on mentation $\{$

$$
\begin{aligned}
& \delta_{f}=\min \left\{u_{i j}-x_{i j} \mid\right. \text { oj for wand } \\
& \delta_{\delta}=\min \left\{x_{i j} \mid\right. \text { dj bach wand cont animation? } \\
& \delta \in \min \left\{\delta_{f_{i}} \delta_{b} \mid\right.
\end{aligned}
$$

Let $C_{f}$ oc the crrectad cychin $N(x)$ which corresponds to travarins $C$ in the fixed direction.
Then $\delta\left(C_{f}\right)=\delta$ so $X^{*} \in X \oplus \delta^{\delta}: C_{f}$ is feasible and $\left|A_{x^{*}}\right| \subset\left|A_{x}\right|$
Both in Can 1 and in Can 2 wa could decrease the number of ares $i j$ with $0<x_{i j}<U_{i j}$ so then exist a feasibh flow $x$ sit $A_{x}$ has no yah and thus $H_{x} 1 \leq n-1 \quad \omega_{c}$

Abuja 8.7

$$
\left.\left.\mathbb{N}=\left(V_{0}\right\} s, t\right\}, A, l \equiv 0, u\right) \quad u_{i j}=1 \text { when } \begin{aligned}
& i \neq s \wedge j \neq t \leq
\end{aligned}
$$

Qi does this change comphrity of Dinic's algonthm?
A: we know from Exam 2020 poos. 4.3 that it does not change complexity. we prove it a sain below.
BJG lemma 3.7.2 still holds a) we may a 500 m owl ausumbins path have capacity 1 [If $s \rightarrow t$ is an arc we start by fellinsit complitly and cows id $N$ minus this are $]$



Each of tha cut) (islo.... $V_{i}, V_{i t 1}$.... 0 ith)
have capacity at moot $\left|V_{i}\right||\cdot| V_{i+1} \mid$ so

* $*\left|x^{*}\right| \leq\left|V_{i}\right| \cdot\left|v_{i+1}\right|$ for $i=1,2 \ldots, \omega^{w-2}$ when $x^{*}$ isa maxtlow

$$
\begin{align*}
& n=|V| \geq 2+\sum_{i=1}^{\omega-2}\left|v_{i}\right| \geq 2+\left\lvert\, \frac{\omega-2}{2} \int \cdot \sqrt{\left|x^{x}\right|}\right. \\
& \|^{\|} \\
& 2 n-4 \geq(\omega-2) \sqrt{\left|x^{x}\right|} \\
& \|^{\|} \leq \frac{2 n-4}{\sqrt{\left|x^{x}\right|}}+2
\end{align*}
$$

So lemana 3.7 .3 in $B) 6$ hol 9 , with suall chans
proof of modificd rersion of BJG Thm 3.7.4

- $q=\#$ phansin Dinic $J=\left[n^{2 / 3}\right]$
- $0 \equiv x^{(0)}, x^{(1)} \ldots x^{(g)}$ flows in algonthm and $K=\left|x^{q}\right|$ (value of maxtlow)
- choon js.t $k-|x| j \mid>J$

$$
k-\left|x x^{j+1)}\right| \leq J
$$

- Then value of max flow $x^{*}$ in $N\left(x^{\prime \prime}\right)$ is at hast $J$ so

$$
\operatorname{dist}_{N\left(x^{(j)}\right)}\left(s_{c} t\right) \leq \frac{2 n-4}{\sqrt{n^{2 / 3}}}+2=O\left(n^{2 / 3}\right)
$$

- Restof proot isas ovisialal poot on pap L23in BJG.
If one morererhemay be incident to ares of cap $>1$ then wicheann (II) by a content so als shill has Jame compluxity.

Ahuja 8.8 $\quad N=\left(V_{0} s_{1}, t, A, l \equiv 0, \varphi\right)$

$$
u_{i j} \in\{\{, 2,3,4\}
$$

Claim Dince is ohll O(n $n_{m}^{2 / 3}$ ):
Lemma 3.7.2: Eachare in a fin., 4 ausme path befor we deleh it so $O(\mathrm{~m})$ to find blochins flow

Cemma 3.7.3 Now $\left|x^{*}\right| \leq 4\left|V_{c}\right|\left|V_{i+1}\right|$

$$
\text { so } \min \left\{\left|v_{i}\right|,\left|W_{i+1}\right|\right\} \leq \frac{1}{2} \sqrt{\left|x^{*}\right|}
$$

$\Rightarrow$ same boond on dist $(s, t)$ in O-notation Remainins pro of is sum a) BJ6 pan 123

AH8. 10 Modifiel preflow-gushals for simple unit cagants netwouts:

- No pookllaft performel on vit

$$
h(v) \geq \sqrt{n}
$$

a). Since $N(x)$ is aloo a unit cap networt, thencar no non saturations polks.

- So at most $O(\sqrt{n})$ poshes alons a siven arc pq Also each vertors is liftid $O(\sqrt{n})$
Hence fotal coort unhl $h(G) \geq \sqrt{n}$ hold, for everg 5 which has $b_{x}(v)<0$ is $O(\sqrt{n} \cdot m)+O(\sqrt{n} \cdot n)=O(\sqrt{n} m)$

6) $\frac{\text { Claim: if } x \text { is flow at termination }}{}$ of aboue prouss then at most $\sqrt{n}$ mon onits of flow can reach $t$

$$
p: \text { Let } Z=4 v\left(d_{x}(v)<0, v \neq t\right\}
$$



Each $v \in Z$ han distanu afleast $\sqrt{a}$ to $t$ in $N(x)$ sinu $h$ is a lesal heisht function.

All flow from $Z$ to $t$ in $N(x)$ must follow veriox-disjoint paths (a) $N(x)$ is unit capacity netwouk) simple Let $P_{1}, P_{L} \ldots$ Pr de such path then $r \leq \frac{n}{\sqrt{n}}=\sqrt{n}$
So we canned at most $\sqrt{a}$ mon units from $z$ to $t$.
c) Let $x$ se prothow when moditicl pf stops. As $N$ is a unit cap $N e$ torts coecan decoupion $x$ into unit path flows along $P_{1,} P_{L}$. $P_{k_{2}} P_{k+i}$. $\operatorname{Pr}$ and sound $\mathrm{Cyc}(\mathrm{C})$, when $P_{1 i}$.. $P_{6}$ are ( $5, \mathrm{t}$ - -path we can fuel this decomposition in linear time O(ntm) since when we extract a path or cych, all its ares become empty

(sit)-
Let $x^{\prime}$ be the flow formed by the union of the path flow, colons $P_{1}, P_{2}, \ldots P_{4}$

- Then the maximumflou value in $N\left(x^{\prime}\right)$ is at moot $\sqrt{n}$ by $b$ )
- So we com find a knar flow in $N\left(x^{\prime}\right)$ in time $O(\sqrt{n} m)$
- adding y to $x^{\prime}$ gives a maximum flow in $N$.

Abuja 8.18 sumidiparh
a june $n_{1} \leq n_{2}$ show that


We can modify generic pf so that it $w n o m$ time $O\left(n_{1}^{2} m\right)$ time on revidiparth netcostry.

- Consider the alsouthm from section 8.3 when all pushes come in pairs $\rightarrow-N_{-}$
now we also allow $\cdots-S_{0}^{E N}-1$
analyser stall works as an onsatumting push now decreax) $\mathscr{\mathscr { E }}=\overline{\sum h}(i)$ by at least I cache
instal of at least 2 as in 8.5
Hence the analysis from 8.3 still worth coil we set that the alsonthm Nus in time $O\left(n_{1}^{2} m\right)$ as) before.

Abuja 8.21
Goal: find a maximum flow in the undirected network given hen, using the alsouthom of ruction 8.\%.

$d^{8}(v)=d\left(s^{*}, v\right)$ indicatanhd ins here $\quad d^{*}(t)=38$
so we know that the max flow value is 38
and we get such a flow by
letting $x_{i j}=d^{x}(j)-d^{*}(i)$ when (-his (i) prosigue:

$G$ isa planas $(s, t)$ directal network
(sand $t$ are on the ooter face)
uij shown



Chain then is a isl $^{\text {- }}$ cornspontame between $(s, t)$-cents in $D$ and $\left(s^{x}, t^{x}\right)$ - path $^{*}$ in $D^{*}$

$a_{1,}, q_{2} \cdots a_{p}$ are the $S$-, $\bar{S} a r c)$ ordered after. position in embed dins

Evans $\left(s^{*}, t^{(R)}\right.$-pa tu $p^{*} S(v a)$ a cut, namely the are) ind intunctid by the arcs in in and

$$
\operatorname{cost}(P)^{\prime}=u(S, \bar{S})
$$

Ahuja 8.23
Claim: Min \# of arcsin a dirchll ss,t-path in D = max \# arc-dijjoint (s,t)-cut in D
$P$ : consile the dual $D^{*}$ of $D$ and notz that eorm ( $s, t$ )-path in $D$ def(ne) an $\left(s^{x}, t^{s}\right)$-aut ind $x^{x}$

$$
s \leftrightarrow x \rightarrow \frac{x}{t}, \frac{x}{x}>\frac{x}{1}>\cdot t
$$

$$
\cdot S^{K}
$$

Hence

$$
\begin{aligned}
& \text { length of a shorhst (s,t)-pathin D } \\
& =\text { min } H^{t} \operatorname{arcs} \text { in an }\left(S^{*}, \epsilon^{*}\right) \text {-cut in } D^{*} \text {. by mangu's } \\
& =\text { max井arc-disjoint ( } \delta^{*}, t^{*} \text { )-patho in } D^{*} \text { thoomm } \\
& =\max \# \operatorname{arc} \text {-disjuint }(s, t) \text {-ants in } D
\end{aligned}
$$

Abuja 8.13
Given integer $\alpha_{1}, \ldots \alpha_{n}, \beta_{1}, \ldots, \beta_{n}$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i}=\sum_{j=1}^{n} \beta_{j} \tag{类}
\end{equation*}
$$

Question: Docs then exist a digraph Don $n$ vertus $v_{\|} v_{L}, \ldots, v_{n}$ with $d_{D}^{+}\left(v_{i}\right)=\alpha_{i}$ and $d_{D}^{-}\left(v_{i}\right)=\beta_{i} \forall i \in[n]$
Solution: Note that $D$ exists of and only if the compute digraph $\stackrel{\rightharpoonup}{K}_{n}(i j \in A \quad \forall i \neq j) h_{a s}$ D as a joudisraph.
We jaw how to check this in BJG The 3.11 .5

$\mathbb{N}$ has an $(\delta, t)$ - flow of value $\sum_{i=1}^{n} \alpha_{i}=\sum_{j=1}^{n} \beta j$ $\mathfrak{y}$ $D$ exists
thuja $9.13 \approx B J 6$ pase $130-131$
$b_{i j}=$ \# passengers who wish to so form $i$ to $j$
$f_{i j}=$ ticket prier for travel is to $j$
$P=$ capacity of plane
Goal: maximize income from acciotid customs

green $\operatorname{arcs} \Leftrightarrow$ passenges taken red $\operatorname{arcs}(\longrightarrow$ pasmges not talion bhueares model the capacity of the plane


Claim: $-1 . \min \{c x \mid x$ fearbliflow in $N\}$ $=\max$ income we can ostain
$\leq$ : each feasisl flow $X$ corkes onds to legal passengs aisisnment and $X_{i j j j i}$ is the no onber of passenges from ito $j$ that is fation.
So $c x=\sum_{1 \leq i<j \leq n} x_{i j} f_{i j}=\begin{aligned} & \text { earming } \\ & \text { from settins }\end{aligned}$

$$
t_{i j}=X_{(i j) i}
$$


$\geq$ Let $t_{i j}$ denote \#of passensus from $i$ to j that we accept. Then we obtain a feasible flow $x$ by resting

$$
x_{i j) i}=t_{i j}, x_{(i j) j}=b_{i j}-t_{i j}, x_{q 9+1}=\sum_{\substack{a \leq q \\ \delta \geq 9+1}} t_{a b}
$$

and

$$
-c x=\sum_{1 \leq i c j \leq n} t_{i j} f_{i j}=\underset{\substack{\text { incomme } \\ \text { fromajisnmut } \\ t_{i j} \\ 1 \leq i<j \leq n}}{ }
$$

Abuja 9.14 Tanker schulating with startup coots.
Same data as in application 6.6

| shipment | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| profit | 10 | 10 | 3 | 4 |

Problem Assume it cost 5 units to una ship and w. do not have to handle allohiponents.
Goal: maximize profit minus costs for ships.

(i) $\underset{i}{\rightarrow}(2)$
our whip can handle $i$ and then $)$

(5)

cell arcs have capacity 1
Claim (s,ti-flow of min cost give) a solution
P: We know (fromearliw) that a solution with $k$ ships corresponds fo a flow of value $k$ in $N$ and the cost of such a flow is exactly the profit for that solution

Problem: How dowse find an (s, el-flow of minimum cost efficiently (value not prespecificel)

Solution: un Buildup method $x<0 \quad$ (zero flow)
while $\exists(s, t)$-path $P$ with $C(P)<0$ in $N(x)$ do augment $X$ along $P$
Let $x$ be flow after termination of the loop Then

- $\forall(\delta, t)-p \operatorname{coth} P$ ir $N(x): c(P) \geq 0$
- $\forall$ Much $w i n N(X) \quad C(W) \geq 0$
claim $c x \leq c x^{\prime} \quad \forall(s, t)$-flow $x^{\prime}$ $P$ : if $\left|x^{\prime}\right| \leq|x|$ then $c x \leq c X^{\prime}$ as $X$ was obtainal from min coot flow $X^{\prime \prime}$ with $\left|x^{\prime \prime}\right|=\left|x^{\prime \prime}\right|$ by ausmentinsalong zero or mon path) of negative cost
assume $|x|<\left|x^{\prime}\right|$. Then then exist $\tilde{x} \in N(x)$
such that $x^{\prime}=x \oplus \tilde{x}$ and

$$
\begin{aligned}
c x^{\prime} & =c x+c \bar{x} \\
& \geq c x
\end{aligned}
$$

since $\hat{x}$ is a som of path andeych flows in $N(x)$, all of which have non-neschive cost by (D).

Ahnja 9.39
$N=(V, A, l \equiv 0, u, b, c) \quad C_{k c}$ minimum ampons all coot, $c_{p p}$ maximm ... -
Q1 is it porile that no min coot flow $k a, x_{k c}>0$ ?
Q2 (s it poosh that wrm min cort flow has $x_{p 3}>0$
Anjwe: Yes to both!


Earm min coststit -flos of value $(\sin \theta)$ one unitalons $s \rightarrow t$

$$
\text { Ahmaj } 9.40
$$

a) $N=\left(V, A,(\equiv 0, u, b, c)\right.$ all $b(U), u_{i j}$ even

Q: does the exist optional frasish flow $X$ s.t $x_{i j}$ is even $\forall i j \in A$

Yej: $N \rightarrow N^{\prime}=\left(V, A_{i} l=0, \frac{u}{2}, \frac{b}{2}, C\right)$
$X^{\prime}$ optimal farable flow in $N^{\prime}$
$x \in 2 x^{\prime}$ optimal and fearth in $N$ if $\pi$ isapotential sit $C_{i j}^{\pi} \geq 0 \quad \forall i j \in N^{\prime}\left(X^{\prime}\right) s a^{\prime}$ virs samie $\pi$ at $\quad c_{i j}^{\left(\pi_{i j} \geq 0\right.} \quad \forall i j \in N(X)$ optingl optinal
b) $\quad N=(V, A, l \equiv 0, u, b \equiv 0, c)$
$u_{i j}$ even $y \in N$ farolle circulation
same method as is a)
show that the exist a
feasible circulation $x$ with $x_{i j}$ em
for all orasij

Abuja $9.41 \quad N=(V, A, l \equiv 0,4, b, c)$
$x^{*}$ optimal solution and
II potential sit $C_{i j}^{\pi} \geq 0 \quad \forall i j \in N\left(x^{s}\right)$
Let $N^{0} \subseteq N\left(x^{x}\right)$ consist of $\operatorname{arc}$ with reduced cost $=0$
Soppon $X^{\prime}$ is another optimal fan, be flow in $N$.

- Then $x^{\prime}=x^{k} \oplus y$ when $y$ is a circulation in $N\left(x^{*}\right)$ and $C^{\pi} x^{l}=C^{\pi} x^{*}+c^{\pi} y$ so $c^{\pi} y=0$ and $y$ decomp(0n) into aych flows Since $c_{i j}^{\pi} \geq 0$ on all arcs each cych $w$ in such a decomposition ha, $c^{\bar{\pi}}(\omega)=0$

