Augmenting along shortest alesmentins paths

$$
N=(V o p s, t\}, A, l \equiv 0, u)
$$

Layered network:

Given $\left.N=\left(V_{0}\right)_{r} t, A_{l} l \equiv 0, U\right)$ and an (s, t) -flow x in N
define

$$
\begin{aligned}
\delta_{x}(s, t) & =\text { length of a shortest }(s, t)-\text { path in } N(x) \\
& =\infty \text { if no ouch path })
\end{aligned}
$$

$\alpha N(x)=$ layend sebnetworts of $N(x)$
Which is defined from flue distance clans) from in $N(x)$.
obsurvation:
\& $N(x)$ contains all the shortst (s, t l-path) in $N(X)$.

Lemna 3.G.2
let x be an (s, t)-flow in N and P a shortst (sitl-path in $N(x)$ and $x^{\prime}=x \oplus \delta(P)$.
Then

$$
\delta_{x^{\prime}}(s, t) \geq \delta_{x}(s, t)
$$

$$
d=\underset{x \equiv 0}{d}\left(s_{1}, t\right)
$$

Cousider phans

phano	d	augmant as lons as poosibh
phaxil	$d+i_{1}$	$-11-$
	$d+i_{2}$	-11

phang $d^{\prime}+i_{q} \leq n-1-11$ \qquad

$$
i_{1}<i_{2}<i_{5} \ldots<i_{q} \leqslant n-d-1
$$

Max no of ausmentation. (finding an ($s, t 1$ - gath in current resilual networ w dua phan is $O(m)$ (atmout $2 m$)
Conclusion The whole algonthm rons in fime $O\left(n m^{2}\right)$

Conclusion The whole algonthm rons in fime $O\left(n^{2}\right)$
at moot n-2 phans in each phan we mahe O(m) augmuntations to find each (s, t)-path we need $O(n+m)$

$$
\begin{gathered}
O\left(n m^{2}\right) \\
(\text { Edmond)-karp alsonthm })
\end{gathered}
$$

oburvation: we don't neel to oucle the layend vetworks!

Remark on the Elmonl-kerp algonthm:

We may need $\Omega(n m)$ augmentations so the worst can wains time is $\Omega\left(n m^{2}\right)$
new definition
a blocking flow in an network

$$
\begin{aligned}
& \text { a }=\text { louisit), } A, l \equiv 0, u) \text { is an }(s, t) \text {-flow } \\
& x \text { sit that every }(s, t)-p a t h i n \\
& \text { ins in if or }
\end{aligned}
$$ $N(x)$ uns at hast one arc ic for

which $x_{i j}>0$ (and heny $x_{j i}=0$)

only (0,6)-path is spic

$\delta N(x)$ is a sobuet worts of $N(x)$
X^{\prime} is a dloching flow in $\delta N(x)$ if then is no (s, t)-path of lensth $h=\operatorname{dist}$ from s to t in $\alpha N(x)\left(x^{\prime}\right)$

Elmonds-harpalsonthm find, a bluckins flow in $\mathcal{L} N(x)$ in time $O\left(m^{2}\right)$

Dinic's alsonthm:
iora fund ausmentus paths is $2 N(x)$ via a mogrfiel.

Depth First sarch

1．start with $X \equiv 0 ; v \in S$
2．Searching utep

$$
\begin{aligned}
& \text { nowret } \\
& 0 \text { or } \\
& \delta \xrightarrow{\circ} \rightarrow 0_{i}^{\prime-r} \\
& \text { so た.otery }
\end{aligned}
$$

$\begin{aligned} & \\ & \text { contimen oty } 2 \text { fromw }\end{aligned}$
un（us）$w=t$
－if $u=t$ gotoitr $3 \pi(w)$
3．using parent pointors＇find the anymentios path P and $\delta(P)$ and then opdate capactios oulons P delctins on are if it becomes full．got 2 with $v \in S$
4．delehall are）（haident to v set $\sigma<\pi(\sigma)$ and soto str 2

5．Reforn the blockins flow
（if wa are in Jten 2 with

$$
5 \theta_{-}^{\prime}=->\rightarrow 90 \hbar 5
$$

Thealsonthm does fine a bluchins flow ifinith tim:
we only deleta are if if cannot be part of cenew cuugnmasus pathin $d N(x)$
Thm Dinic's alsonthm findsa bloching flow in time $O(\mathrm{~nm})$
p: wconly deleh are, that carnot be pert of new a us munting path of bensthk

- no (sit)-path at fermination.
- For O(n) sturs we ecther find a new neugmuntios paths or we delete a vertax after angmestius along wew path at eant one are is dilitid
phan $\mid d=\delta_{x \equiv 0}(0, t) \xrightarrow{ } \quad \tilde{x}_{0} b l o b \ln \sin \alpha N(x)=$

$$
x_{1} \leftarrow x \oplus \widetilde{x}_{0}
$$

plasin 2 calculah $\delta N\left(x_{1}\right)$
\tilde{x}_{1} blochins flowin $\mathcal{L} N\left(x_{1}\right)$

$$
x_{L} \in x_{1} \uplus \widetilde{x}_{1}
$$

plan 3 calculent $2 N\left(x_{2}\right)$

$$
\begin{aligned}
& \widetilde{x}_{2} \text { blocting floouin } 2 N C x_{2} \\
& x_{3} \leftarrow x_{2}\left(\oplus \tilde{x}_{L}\right.
\end{aligned}
$$

phan of cálculah $\alpha N\left(X_{q-1}\right)$
max flow

$$
\widetilde{x}_{q-1} \text { oloctins flou,n } 2 N\left(x_{q-1}\right)
$$

$$
\longrightarrow x_{q} \in x_{q-1} \oplus \widetilde{x}_{q-1}
$$

