
idea: Eny to mol as muchas poosble outot s :

fill then

$$
x_{s_{j}} \leftarrow u_{s j}^{\prime}
$$

A preflow in $N=(V 0\{s, t\}, A, l \equiv 0, u)$

$$
\begin{aligned}
& \therefore \text { af low } x \cdot t: \\
& \quad b_{x}(v)<0 \quad \forall v \in V-s
\end{aligned}
$$

(so s is the only vertex with foortive balance)
Note that every greflow decompons into path and eyck flows clonus $P_{1,1} P_{1}, \ldots P_{\alpha} C_{1, \ldots}, C_{\beta}$ when each P_{i} starts in S and ends in a vertus with $b_{x}(v)<0$ lina if x is a pretlow and $\delta_{x}(v)<0$ then $N(x)$ contains a $\left(v_{1}\right.$ s) path

$$
\sim_{s}<_{v}^{b_{x}(v)<0} \text { in } N(x)
$$

h is a height function wort x if

$$
\begin{align*}
& h(s)=n, \quad h(t)=0 \\
& h(p) \leqslant h(q)+1 \quad \forall p q \in N(x)
\end{align*}
$$

Example of a height function:
distance to $t ; \quad h(v)=\operatorname{dirt}_{N \in 1}(v, t)$

$$
\operatorname{dist}(p, t) \leq \operatorname{dis} t(q, t)+1 \quad \forall p q \in N(x)
$$

porth(pq) preconlition $\delta_{x}(p)<0 \quad p \neq t$ and $h(p)=h(g)+1$
updat
$x_{p q} \in x_{p q}+g$ when

$$
\begin{equation*}
g=\min \left\{-b_{x}(p), r_{p z}\right\} \tag{ㄷ}
\end{equation*}
$$

two poosh outcoms of a push (pst)

- P becomes balanul (posibhunsertand
- curc pq\&N(X)atos (口) (pabecame saturatul dy the proh)

Lift（v）preconl $b_{x}(v)<0$

\ldots ．．．辛こと $\ldots h(r \mid-1$
no are down
（s）$h(0) \in \min \} h(2)+1 \mid p^{2} \in N(x)$

Note if $\delta_{x}(v)<0$
then v has an out mishdous in $N(x)$
（so（s）i）wall detinat）
reason $\delta_{x}(v)<0 \Rightarrow(0, s)$－path in $N(x)$

Generic preflow-push aljonthm:
preprocesoins
(a) $\forall p \in V \quad h(p)<\operatorname{dis}_{N}(p, t)$
(b) $h(s) \leftarrow n$
(c) $x_{s q}<u_{s q} \forall s q \in A$
(d) $x_{i j} \in 0$ for allothr

Main loop
while $\exists v \in V-(v, t) \operatorname{sit} \delta_{x}(v)<0$ If $N(x)$ contains an arc v q with $h(v i=h(g) t$ I thin pwhioq) eln left(v)
(a) h remain) a heisht function duris the alsonthm:

- ok initially as $h(v)=\operatorname{dist}_{N}(v, t)$
- hevisonly changel when we leftere isapplied and this presurves the proparty
- Push(v-2) may craththeare

$$
h(2)=h(v)-1
$$

(b) X vemains a pueflow prearved by push operation
(D) If the alsonthon ferminat, then x is a maximum flow

- at termination $b_{x}(v)=0 \quad \forall v \in V$-i sit \mid so x is an (s, t)-flow
- then $n_{0}\left(s_{1}, t\right)$-path in $N(x)$

$$
n=h(\xi) \stackrel{s}{9} \times 1
$$

such a path would have narc) is MFMC the \rightarrow x is a max flow.

Claim the algonthm does ferminate and it uns at mout $O\left(v^{2} m\right)$ opentions.
(A) at moot $O\left(n^{2}\right)$ Lifts in the alsonthm
lift (v) increuns $h(v)$ by at leart I and $h(v) \leq 2 n-1$ muot otill holl since $N(x)$ has a $(v$, s)-path

Iv lufted at most $2 n$ timu
(B) $O(\mathrm{~nm})$ saturating puoke): boond \# tinns push (ps) is exemitel for a sivem are pq:

 $h(g l$ most incocan boy athait 2 befor we can reluce $X_{p q}$
next time we puoh from p to q h (p) hao inorand by a thast 2 . at $h(e) \leq 2 n-1$ in the whol algonthm wh have at most a pashes frompto of
$(C) O\left(n^{2} m\right)$ onsaturatins pushes:
$\operatorname{detin} \Phi=\sum_{b_{x}(v)<0} h(v)$ so $\underline{\Phi} \geq 0$
incticlly $\Phi_{0} \leq 2 n^{2}$
contribentions to Φ during the alsonthm:

- Lifts contribute $O\left(n^{3}\right)$ 斿 (A)
- Satanatios pashos contribute $O\left(n^{2} m\right)$ by (B)
(O(nm) satumhn, puohes) agch contribution, $O(n)$)
- Each unsatumatios push decrans Ibs at least one!

Conclurion
$\Phi_{0} \leq 2 n^{2}$ and the fotal incoean in Φ dering the alsonthm is $O\left(n^{2} m\right)$ So \# unsutuontsy pushas: $O\left(u^{2} m\right)$
So 1) the algonthm ferminate,
2) $u s(n) O\left(n^{2} n\right)$ operation
preflow pushalsonthm un, $O\left(n^{2} m\right)$ operation, active vertices $\left(\delta_{x}(\sigma)<0\right)$

G ven v with $f_{x}(v)<0$

$$
\begin{array}{ll}
v & \text { find } q \text { sit } h(v)=h(q)+1 \\
-\cdots & \text { and } v q \in N(x)
\end{array}
$$

lift: $\quad h(u) \in \operatorname{mm}\{h(z 1+1 \quad \mid v z \in N(x)\}$
keep adjacency hot reprematation of $N(x)$

Abuja 7.7 FiFo preflow push ats
Rule: once v with $\delta_{x}(v)<0$ is chon we keeppuohins from out either $b_{x}(v)$ becomes 0 or we lift v.
(node examination step)

Partition examination operation info plans
phan 1: do node examination for all v that sot flow flows in the initialization

phon i : do nom examination on all nooks in the hot vel after pan i-1
Any nod' is processed at most once pos pan

Claim then an at moot $2 n^{2}$ tn plano in the alsonthm
$\cot \bar{\Phi}=\max \left\{h(v) \mid \delta_{x}(v)<0\right\}$
condor the totalchann of Φ
during a plan:

$$
\begin{aligned}
& \Phi_{i}-\Phi_{i-1} \\
& \mathbb{R}_{\text {end of }} \text { end ot }^{\text {han }} \\
& \text { han }^{\text {han }}
\end{aligned}
$$

Can 1 we pertarmil ≥ 1 lift in phan i.
Then Φ could increan but no mon than $2 n^{2}$ over the whole alsonthm
Can2 no lifts inphan i (each rertor from ghan i got balanad dunh, the phan) \& will decrean by at leastom (Every vortex in the liot when phaniend, have heisht $<\Phi$
Conclasion $\leq 2 n^{2}$ th phans
P inctially pot $h(c)=n$. if no $(s, t 1$-path $N(x)$

This implies that total nomber of unastunations pusha, is $O\left(n^{3}\right)$:
Each vertoxis examinel at moot once fer phan and at mort one unoatuontion proveh from v in a phan Solinu \# phanrioo $\left(n^{2}\right)$ we do $O\left(n^{3}\right)$ unjutumisid puohas.

