thuja pare 43 on reduced coots $\operatorname{let} N=(V, A, l, u, b, c)$ a potential on V is a function

$$
\pi: V \rightarrow \mathbb{R}
$$

The reduce l coot with respect to I is defined as

$$
c_{i j}^{\pi}=c_{i j}-\pi(i)+\pi(j)
$$

Support x is a frasibh flown N (that is $l_{i j} \leq x_{i j} \leq u_{i j} \forall \forall_{j} \in A$

$$
\left.b_{x}(i)=b(i) \quad \forall i \in V\right)
$$

Then we can relate the coot of x wot c and the coot ot $x \operatorname{cort} c^{\pi}$ as follows:

$$
\begin{aligned}
& c^{\pi} x=\sum_{i j \in A} c_{i j}^{\pi} x_{i j} \\
&=\sum_{i j \in A}\left(c_{i j}-\pi(c) t \pi(j)\right) x_{i j} \\
&=\sum_{i j \in A} c_{i j} x_{i j}-\sum_{i j \in A}(\pi(i)-\pi(1)) x_{i j} \\
& \pi(i) \pi(j) \\
& \bar{j}_{i}^{0} x_{i j} \frac{0}{j}=c x-\sum_{i \in V} \pi(i)\left(\sum_{i j \in A} x_{i j}-\sum_{j \in \in A} x_{j i}\right) \\
&=c x-\sum_{i \in V} \pi(i) b_{x}^{(i)} \\
&=c x-\sum_{i \in V} \pi(i) \cdot b(i) \\
&=c x-\pi b
\end{aligned}
$$

We showed

$$
c^{\pi} x=c x-\pi b
$$

constant for face π
This sivas the following very important property

Propoty 2.4
π^{x} is optimal (has minimum coot) wort c x is optimal wort c^{π}

Proputz 2.5
(a) For every cych W and every potential $\mathbb{I}: V \rightarrow \mathbb{R}$

$$
c^{\pi}(w)=c(w)
$$

(b) For every (k, l)-path P and every potential T:V-R

$$
c^{\pi}(P)=c(P)-\pi(k)+\pi(l)
$$

Corollan if $\pi: V \rightarrow R$ then
(a) $D=(V, A)$ has a nesstive cych wort $C: A \rightarrow \mathbb{R}$
if and only if ithesa mesative cych wrt the reduced wost function C^{T}
(b) P is a ohortast (k, l)-path wrt c if andonly if $P_{\text {is }}$ a ohortht (k, l l-path wort c^{π}

Examph of a potential function

- Suppose $D=(V, A)$ his ne restive munch wort $C: A \rightarrow \mathbb{R}$
- Then we can find shortest par the from a vertex s to all other vertices [by the Bellmann-Ford alsonthm]
Let $d(i)=$ lensthotashortest $\left(s_{i} i\right)-$ path
Then $d(j) \leq d(i)+c_{i j}$

so $\begin{aligned} c_{i j}-(-d(i))+(-d(0)) & \geq 0 \\ c^{\pi} \text { where } \pi(i) & =-d(i)\end{aligned}$

Note if D hers nesctrocesch wont C.

The we can fine one is fire $O(n m)$

$$
13=d\left(c_{0} \underset{x^{0}}{ } d(y)=3 x 20\right.
$$

BF relax all arcs) $\quad W(-1$ (imus (inamyorde)

Note that if P is a shorkot (s, i)-path cost C then wo have $d(j)=d(i)+c_{i j}$ for every arc ijon P

Hence, if we let $\pi(u)=-d(c)$ then we have $c_{i j}^{\pi}=0$ for all ares that are on shortest path from

Theorem 9.1 Ahujs
x^{*} is optimal (has mincost) in
$N=(V, A, l, u, b, c)$ if andonly
$N\left(x^{*}\right)$ has no nesative cych
P: If x is frasilh and W is a mesative eychin $N(x)$ then $x^{\prime}=x \oplus \tilde{x}_{\text {, wher }} \tilde{x}$ is a cyçflow alons W ha, $C X^{(}<C X$ oo x is notoptimal
Conversely if x^{x} is fasibh and $N\left(x^{x}\right)$ has no negahve uych then every other fasibh flow Z conbe obtainel as $z=x^{*}(t) \hat{x}$ when \hat{x} is a circulationdh $N\left(X^{B}\right)$ and $C \hat{x} \geq 0$ becaun $\hat{x} i$) the arc som of (atmost m) cych flows in $N\left(x^{x}\right)$ and cach aych flow han non ne a a hoc cort

Thei $c z=c x^{x}+c \hat{x} \geq c x^{x}$
so $x^{*} i$ s optimal

Theorem 2.3 in Ahuja Reduced cost optimality Conotrions
A fearibl flow X^{*} is optimal for $N=(V, A, C, u, b, c)$ if and only if \exists a potential $\pi: V \rightarrow \mathbb{R}$ such that $c_{i j}^{\pi_{i}} \geq 0 \quad \forall i j \in N\left(x^{*}\right)$
$P: \operatorname{suppon}(\Delta)$ holds and cet W de any cych in $N\left(x^{*}\right)$. Then by poputy 2.5 $c(W)=c^{\pi}(W)$ and $c^{\pi}(w) \geq 0$ os (Δ) so $N\left(x^{*}\right)$ has no resative ych $\Rightarrow x^{*}$ optimal by Thm 9.1
Converxly asoome that x^{x} sooptimal and henu $N\left(x^{x}\right)$ ha, no resative wich by Thmil 1 Fixavertax seV and Let $d(v)$ denoh the lensth ot a o horkst (svi-path $N\left(X^{*}\right)$ wrt cootfut C Take $\pi(v)=-d(v)$. Then, as wesaw eartiu

$$
\left.c_{i j}^{\pi_{i j}}=c_{i j}+d(())-d()\right) \geq 0 \quad \forall i j \in N\left(s^{x}\right)
$$ implyins that (\triangle) hold, for this π.

Complimestary slackness
Theorem 9.4
A faribl flow x^{*} in $N=\left(V_{1}, A, l, u, b, c\right)$ is optimal if and only if then exists a potential $I I$ such that the followins nolds for every are $i j \in A:(\operatorname{lin} N)$
(a) $c_{i j}^{\pi}>0 \Rightarrow x_{i j}^{*}=0$
(b) $0<x_{i j}^{*}<u_{i j} \Rightarrow c_{i j}^{\pi}=0$
(c) $c_{i j}^{\pi}<0 \Rightarrow x_{i j}^{*}=u_{i j}$
$\|$ soppon x^{*}, π ashity (Δ)
Then (a), (b), (c) musthold
\Uparrow soppon (G)-(c) hold then x^{*}, TI muot anhisty (Δ) so x^{*} is optimal

