

Alwija paye 43 on reduced costs
let
$$N = (V, A, l, u, b, c)$$

a potential on V is a function
 $T: V \rightarrow R$
The reduced cost with respect to T
is defined as
 $C_{ij}^{T} = C_{ij} - T(i) + T(j)$
Suppon X is a feasible flow in N
(that is $l_{ij} \leq X_{ij} \leq u_{ij} \forall ij \in R$
 $b_{X}(i) = b(i) \forall i \in V$)

Then we can velate the cost
of x wrt c and the cost of
x wrt c^{TT} as follows:

$$cT = 2c_{ij}^{T} \times c_{j}^{i}$$

 $= 2(c_{ij} - T(c_{i} + T(c_{i})) \times c_{j}^{i})$
 $c_{j} \in A$
 $T(s) = 2c_{ij}^{T} \times c_{j}^{i} = 2(c_{ij} - T(c_{i} + T(c_{i})) \times c_{j}^{i})$

$$\frac{\pi(i)}{v} \frac{\pi(j)}{v}$$

$$= \sum_{ij \neq ij} C_{ij} \times C_{ij} \times C_{ij} + \sum_{ij \in A} C_{ij} \times C_{ij} + \sum_{ij \in A} C_{ij} \times C_{ij} + \sum_{i \neq ij \in A} C_{ij} \times C_{ij} \times C_{ij} + \sum_{i \neq ij \in A} C_{ij} \times C$$

We showed

Propoly 2.5 For every cycle W and every potential II: V->IR (α) $C^{T}(W) = C(W)$ For every (k, l)-path P and every potential II : V-R $\left(\begin{array}{c} \zeta \end{array} \right)$ $C^{\mathsf{T}}(\mathsf{P}) = C(\mathsf{P}) - \Pi(\mathsf{k}) + \Pi(\mathsf{e})$ $\frac{1}{2} \frac{1}{2} \frac{1$ T - CSI - NGI CSI - CSI - xTUI

Example of a potential function

Suppose
$$D = (V, A)$$
 has no resulting
with $C: A \to R$
Then we can find obsertist path from
a vertex s to all other vertices
Toy the Bellmann - Ford algorithm J
Let $d(i) = \text{length of a shortest (s,i)-path}$
Then $d(j) \leq d(i) + C_i j$ is integrable
so $C_{ij} - (-d(i)) + (-d(i)) \geq 0$
 C^T where $T(i) = -d(i)$

Note that if P is a shortst
(
$$s_c$$
i)-path corf c then we have
 $d(j) = d(i) + C_{ij}$ for every arc ij on P
Hence, if we let $\pi(i) = -d(i)$ then
we have $C_{ij}^{\pi} = 0$ for all arcs that
are on shortst paths from s

Theorem 9.3 in Alwije Reduced cost optimality Conditions
A feasible flow X* is optimal for N= (V,A, (u,b,c))
if and only if I a potential II: V-21R
such that
$$c^{T}_{ij} \ge 0$$
 fije N(X*) (A)
P: Suppon (A) holds and let W be
any cycle is N(X*). Then by Propuly 2.5
 $c(W) = c^{T}(W)$ and $c^{T}(W) \ge 0$ by (A)
so N(X*) has no resolve cycle = 2 X* optimal
by Thun 9.1
Conversely assome that X* is optimal and
here N(X*) has no resolve cycle = 2 X* optimal
by Thun 9.1
Conversely assome that X* is optimal and
here N(X*) has no resolve cycle = 3 X* optimal
by Thun 9.1
Conversely assome that X* is optimal and
here N(X*) has no resolve cycle = 3 X* optimal
by Thun 9.1
Conversely assome that X* is optimal and
here N(X*) has no resolve cycle = 3 X* optimal
by Thun 9.1
Conversely assome that X* is optimal and
here N(X*) has no resolve cycle = 3 X* optimal
by Thun 9.1
Conversely assome that X* is optimal and
here N(X*) has no resolve cycle = 3 X* optimal
by Thun 9.1
Conversely assome that X* is optimal and
here N(X*) has no resolve cycle = 3 X* optimal
by Thun 9.1
Conversely assome that X* is optimal and
here N(X*) has no resolve cycle = 3 X* optimal
by Thun 9.1
Conversely assome that X* is optimal and
here N(X*) has no resolve cycle = 3 X* optimal
by Thun 9.1
Conversely assome that X* is optimal and
here N(X*) has no resolve cycle = 3 X* optimal
Conversely assome that X* is optimal and
here N(X*) has no resolve cycle = 3 X* optimal
Conversely assome that X* is optimal and
here N(X*) by the length of a Dhorhost
(J, S) - pisth N(X*) write with by Thun 9.1
Conversely assome that Y* is optimal and
earlier Conversely assome that X* is optimal and
is optimal the length of a Dhorhost
(J, S) - pisth N(X*) write with by Thun 9.2
Conversely assome that Y* is optimal and
is optimal the formal optimal and
is optimal the formal optimal and
is optimal optimal and
is optimal optimal and
is optima

Complementary slackness

Theorem 9.7 A frashly flow xt in N=(V,A, l, u, b, c) is optimed if and only if there exists a potential II such that the following holds for every are ij EA: Lin N) $\left[\alpha \right] C_{ij}^{T} > 0 = 7 \quad X_{ij}^{*} = 0$ $(b) \quad 0 < \chi_{ij}^{\chi} < u_{ij} = 0 \quad c_{ij}^{\overline{\mu}} = 0$ $(C) \quad C_{ij}^{\mathsf{T}} < \circ \Rightarrow \qquad X_{ij}^{\mathsf{T}} = u_{ij}$ V Soppon X*, IT sahity (A) Then GI,GI, (c) must hold I soppon (a)-(c) hold then X*, The must satisfy (2) so x* is optimal