Al gon thms for finding min cost flows
Thm 3.10 BOG = 9.1 in Ahujs
A faosbhflow x in. $N=(V, A \not \subset, u, b, c)$
is oftimal (mincost) if and only
if $N(x)$ has no ne sahvicych.
This leads to
Cyde cancellins alsonthm

1. Find a feasibh flow x in N (stopifnosuch)
2. While $N(X)$ has a nesativocycle w let δ bccapacits of W

$$
x \in x \oplus \delta(w)
$$

3. Retorn X

Theorem 3.10.2
If l, u, c and b are all integevalued Then the cych eancelines alponthms finds an optimal flow x in time
$O\left(n m^{2} C U\right)$ when

$$
\begin{aligned}
& C=\max _{i j \in A}\left|c_{i j}\right| \\
& U=\max _{i j \in A} u_{i j}
\end{aligned}
$$

- max posible cost of a flow in N is $m C U$
- min pooish cost of a flow in N is $-m C U$

$$
\begin{aligned}
& O(m C U) \text { itaration }\binom{\text { findins } a}{\text { ach in } N(x)}
\end{aligned}
$$

time to cluck for negative asch anl fund oun it it exist, $O(\mathrm{~nm})$ by Bellmann-Ford.

Total complexity

$$
\begin{aligned}
& O(n m) \cdot O(m C u) \\
& =O\left(n m^{2} C u\right)
\end{aligned}
$$

Theorem 3.10. 3 Integrality theorem for min coot flows If l, u, δ, c carcall integu valued then \exists an integer valued optimal flow X

The mean cost of a cych W

$$
\text { is } \frac{c(\omega)}{|A(\omega)|}
$$

$$
\prod_{4 \rightarrow-3}^{3} \sum_{-10}-\frac{6}{4}=-\frac{3}{2}
$$

Theorem if the cych cancelling al sonthm always allsmmt, maximally along a cycle of minimum mean cost then if ronsintim $O\left(n^{2} m^{3} \log n\right)$ even if go me arc) have irrational data $(l$, ar $C)$

Theorem 3.10.5 (Buildup theorem)
let x beanoptimal flow with respect to $b=b_{x} \quad$ (and $e \leq x \leq u$)
If P is a shortest (p, q)-pat hin $N(x)$ and $\alpha \leq \delta(P)$
Then the flow $x^{\prime}=x \oplus \alpha P$
is optimal wort the balcure function's

$$
\text { with } b^{\prime}\left(v L= \begin{cases}b(u) & \text { if } v \neq \rho, q \\ b(v)+\alpha & \text { if } v=p \\ b(v)-\alpha & \text { if } v=q\end{cases}\right.
$$

Proof: It suffices to show that $N\left(x^{\prime}\right)$ has no negative eyck

Suppon W negative cychin $N\left(x^{\prime}\right)$
Recall that each ore in $N(x)$) is ecther culso in $N(x)$ or it i) op posit to anarc $i \rightarrow j$ in $N(x)$ and then P contains the arc $i \rightarrow i$ Consider the multidisraphlt defined by $H=(V, \tilde{A})$ when $\widetilde{A}:$
W
P

Hthapl is euhrion

Ithapl is eulision

Hence $1 t$ dewmpor) into a (p,q)-pathpl and some arc. Disjoint usch

$$
\begin{aligned}
& \text { and some arc } W_{1}, w_{2}, \ldots W_{k}(\text { dy Bjgex3.8) } \\
& \text { \&ach } W_{i} \text { is acychin } N(x)
\end{aligned}
$$

cost of oppositzarcs cancul out

$$
\begin{aligned}
\left(c_{i j}\right. & \left.=-c_{j i}\right) \text { so as } c(W)<0 \\
c(P) & >c(P)+c(W) \\
& =c\left(P^{\prime}\right)+\sum_{i=1}^{k} c\left(W_{i}\right) \\
& \geq c\left(P^{\prime}\right)
\end{aligned}
$$

a) each $c\left(w_{i}\right) \geq 0$ bs ophimality of x

Thes $c(p)>c\left(P^{1}\right) \quad\left\{\begin{array}{l}q>P \text { was a } \\ \text { shortat }\end{array}\right.$

$$
(p, q) \text {-poth }
$$

BJG exercin 3.49 and Abuja pay 40:

We can always modify a network $N=(V, A, \ell \equiv 0, u, b, c)$ with $c_{i j}<0$ for some arc $\in A$ to a network

$$
N^{\prime}=\left(V, A^{\prime}, l \equiv 0, u^{\prime}, b_{c}^{\prime}{ }_{c} c\right)
$$

So that given an optimal flow X^{\prime} in N^{\prime} we can obtain an op timal flow x in N

Revert are with $c_{i j}<0$:

Condequenu we may as some that $c_{i j \geq 0} \quad \forall i j \in A$
Then $x \equiv 0$ is optimal ($\begin{gathered}\text { min cost } \\ \text { amonsall flow }\end{gathered}$ Since $N(x)=N$ has no with $b_{x}(v)=0 \forall v$ negahve csch
For a given op timal flow x and

$$
\begin{aligned}
& N=\left(V, A, l \equiv 0, u, b_{1} c\right) \text { set } \\
& U_{x}=\left\{v \mid b_{x}(v)<b(v)\right\} \\
& Z_{x}=\left\{v \mid b_{x}(v)>b(v)\right\}
\end{aligned}
$$

note $U_{x}=\phi \Leftrightarrow Z_{x}=\phi$
and then X is feasible and optimal flow in N

For a given optimal x :

Buillop algonthm:

1. $x_{i j} \leftarrow 0 \quad \forall i j \in A ; F_{\text {ind }} U_{x}, Z_{x}$
2. If $u_{x}=\varnothing$ goto 8 .
3. If $\nexists\left(u_{x}, z_{x}\right)$ - ρ ch in $N(x)$ soto 9 .
4. choxpe$U_{x}, q \in Z_{x}$ s.t $N(x)$ has a (ρ, q) -path
5. Finda shorhit (p,q) - p sth P in $N(x)$
6. $\varepsilon \in \min \left\{\delta(P), b(p)-b_{x}(P), b_{x}(q)-b(q)\right\}$
7. $x \in x \oplus \varepsilon P$; Find new $U_{x_{1}} 2_{x}$
8. Return x
9. Retorn' 'no fagob4 jolutio!

Theorem 3.10.6
let $N=(V, A, l \equiv 0, u, b, c)$ havc integu dita and $c_{i j} \geq 0 \quad \forall i j \in A$ Then the boillop algonthm constucts an mininum wot flow in N or determines that no fearible flow existsin N
The ronmins timis $O\left(n^{2} m M\right)$ when $M=\max _{v \in V}|f(v)|$

- No vertox has its balanu incnusad more than M times.
- To Find newo shortast path tabes $O(n m)$
- At moot n.m augmentutionstefo

$$
\Rightarrow O\left(n^{2} m M\right)^{\prime}
$$

Why does then exist a

$$
\left(u_{x}, 2 x\right) \text { - path in } N(x) \text { if }
$$

N has a fairish flow?
sopping y is fearish in $N=(V, A,,(E 0, u, b, c)$

$$
\begin{aligned}
\delta_{y}(v) & =\delta(v l \forall v \\
y & =x \oplus x^{\prime \prime} \quad x^{a} \text { flow in } N(x)
\end{aligned}
$$

$$
\begin{aligned}
& b(v)=b_{y}(v)=b_{x}(v)+b_{x^{\prime \prime}}(v) \\
& \text { For } p \in U_{x}: \quad b_{x^{a}}(p)>0 \\
& q \in Z_{x}: b_{x^{\prime \prime}}(q)<0
\end{aligned}
$$

$$
\begin{aligned}
& b(v)=b_{y}(v)=b_{x}(v)+b_{x^{\prime \prime}}(v) \\
& \text { For } \quad p \in U_{x}: b_{x^{4}}(p)>0 \\
& q \in Z_{x}: \delta_{x^{\prime \prime}}(q)<0 \\
& \quad v \notin U_{x^{0}} Z_{x}: \delta_{x^{4}}(v)=0
\end{aligned}
$$

Decompon $x^{\prime \prime}$ into path tech flow all path start in U_{x} and ind s
in Z_{x}

In particular $\exists a\left(U U_{x} 2_{x}\right)$-path!! in NC x

