Athuja 8.3 Flows in bipartite networks

$$
G=\left(N, \cup N_{2}, A\right) \quad n_{i}=\left|N_{i}\right|
$$

assume $n_{1} \leqslant n_{2}$ and that $s \in N_{2}$ and $t \in N^{2}$, if om or then does not hold

'sew vertex
new vertex $u_{\text {te }}=\infty$

$$
u_{s s^{\prime}}=\infty
$$

Goal: show that freflow push alsonthm performs (much) bette than $O\left(n^{2} m\right)$ when G is bipcititc and $n_{1} \ll n_{2}$

Modifications of generic pfpalgonthen.

- Inctialis $d(s)$ to $d(s)=2 n,+1$ instead of $d(s) \in n$
(Ahujacerss d for heisht function)
justification: No path in $N(x)$ has mon than $2 n$, arcs:

Henna $N(x)$ cannot contain an (s, t) - path when we net $d(s 1=2 n, t 1$

Initialise $d(y)$ to

- $d(i) \in \min \left\{2 n_{i} t 1, \operatorname{dist}_{N}(i, t)\right\}$

Lemma 8.3 Dungs the whole calsonthon wa have $d(i) \leq 4 n, t 1 \quad \forall i \in N_{0} N_{2}$
p : This holds after initialization and If wa lift i then then is an (i, s) - path in convent $N(x)$ so $d(i) \leq 2 n_{1}+d(s)=4 n+1$

Lemma 8.4
(a) Each di) changes $O\left(n_{1}\right)$ times so total \#of lift) is $O\left(n_{1}\left(n_{1}+n_{2}\right)\right)$ which is $O\left(n_{1} n_{2}\right)$ since $u_{2}>n_{1}$ (b) The number of saturates pule) is $O(n, m)$
saturatins push

$O\left(n_{1}^{2} m\right)$ alsonthm:

- Only allow verticasin N to be active by pushuns along paths of length 2

So we can push from i to j if $\exists k \in N_{2}$ sit $d(i)=d(k)+1=d(j+2)$ and in, $u_{j} \in N(x)$
Now a loft operation may involucre 2 lifts one in N_{2} and one in N_{1}

If $d_{x}(i)<0$ then
If $\exists i k \in A(N(x))$ with $d(i)=d(k)+1$ then if $\exists k j \in A(N(x))$ with $d(k)=d(g|t|$
then pook $i \rightarrow k \rightarrow j$ Elx liftk

Eln wft i
obruvation ok to lift k if noare k_{j} as a bove
Recion: Ecther k is not und late or k is und to push flow through it and then it must be lithd befon we can do this

Lemma 8.5 The alsonthm posform $O\left(n_{1}^{2} m\right)$
unjaturitins puober
pi same ar for semic oulson thm

$$
\Phi=\sum_{i \text { achue }} d(i)
$$

$$
\begin{gathered}
\operatorname{def} \\
i \neq s \operatorname{active} \Leftrightarrow b_{x}(i)<0 \\
\text { and } i \in N_{1}
\end{gathered}
$$

a) $d(i) \leq 4 u$, $\forall i \in N$ and ouly vertices N, areactive

$$
\Rightarrow \square_{0} \leq 4 u_{0}^{2}
$$

๖) Eftect on Φ
(1) lift $i \in N$, totalchange in I dunus alsonthon $O\left(n_{1}^{2}\right)$
(2) litt $k \in N_{2}$ nochanse
(3) satoming push $i-3 k, h-j)$ (one or bothares saturatid) total $O\left(n_{1}\right) \cdot O(n, m)=O\left(n_{1}^{2} m\right)$
(4) Each unatuontus pis) $h(i \rightarrow, h, k \rightarrow)^{1}$ decran) Φ by at least 2 as $d(j)=\bar{d}(i)-2$
U $\geq a_{2}(w a y)$ गo $O\left(n_{1}^{2} m\right)$ vustumatis jushes and hence al gouthoni) $O\left(n_{i}^{2} m\right)$

Application 8.2 in Abuja
Network reliability tooting
Goal: tot eachedge $i j$ of $G=(N, E)$ $\alpha_{i j}$ times for given $\left\{\alpha_{i j} \mid i j \in E\right\}$
Resource limitation: Each day we com foot at most β_{j} edges incident to vertex j

$$
\beta_{j}=3
$$

Taok: Find a schcduk for doing all the to, ts in a minimum \#ot days Remark: a test of is can be associated to ester iorj

Given $G=(N, E)$ form network

$$
\begin{aligned}
& \left.N=\left(N_{1} \cup N_{2} 03 s_{1} t\right\}, A, l \equiv 0, u\right) \text { when } \\
& N_{1}=N, N_{2}=\{i j \mid i j \in E\}
\end{aligned}
$$

Find (via binary search) the minimum integs λ such that all ares into are filled by an (s, t).flow (which is then a maximum flow)

$$
\lambda=1,2,4,8 \cdots 2^{k}, 2^{k+1}
$$

Now find best λ via Siam march in $\left[2^{k}, h^{k+1}\right]$

