

Alwija 9.8 The primal-dual alsorthm
for min cost flows
Recall from Alwija 9.7 and BJ63.10.2
let N'= (V', A', l'=0, u', c', s') have
$$c_{ij} \ge 0$$
 typed
and soppon $\exists a feasily flow in N.$
Then we can find a min cost flow X
as follows:
1) convert N' to N = (V'ols, B, A'oA, l'=0, u, c)
bro i=0 is a
xij $\in 0$ typed
xij

Note that each and if on the shortst path F
satisfies that
$$C_{ij}^{T} = 0$$
 want new TT:
Befor we update TT we have
 $J(j) = J(i) + C_{ij}^{T}$ $\forall j \in P$
 $J_{cij}^{T} + J(i) - J(j) = 0$ (e)
 $J_{cij}^{T} + J(i) - (J(i)) = 0$ (e)
 $J_{cij}^{T} + J(i) - (J(i)) + (J(i)) = 0$
So with new $TT \in T-d$ we have
 $C_{ij}^{T-d} = C_{ij} - (TT(i) - J(i)) + (TT(i)) - J(i))$
 $= C_{ij} - TT(i) + TT(j) + J(i) - J(j)$
 $= C_{ij}^{T} + J(i) - J(j) = 0$ by (e)
Hence we have $C_{ij}^{T} = 0$ for all and
 in N(x) after updation x
 J_{x} is optimal by Theorem 9.3

New Definition

· Grum X, TI let Notibe the subnetwork of N(X) consisting of all vertices and then arcs if for which $C_{ij}^{T} = 0$ · Every (S,E)-path in No(x) is a shortst path · If X is any (set 1-flow in Noxthun XOX is optimal with value XI+XI Nuv idea! Instead of just sending flow along one (SEL-path in Notice find a maximum (Eit)-flow X is NoxIand addit to X By the rumark above X'= X D X is of fimel and IX' |> 1X| If X' is a maxilow (has value K) we are done So assome this is not the can

What can we say above the distance from stoton N(XOX)? Recall that N(XOX) = N(X)(X) (BJG exercin 3.14) so as x is max flow in No⊆N(x) Ehuris no (s,t)-path in No(XOX) implying that every (s,t)-path in N(XOX) un at least one are with city >0 where This the current potential · Carlate new distances from S dn N(XEX) and denoh thin by d o let TET-d Then Cij >> Vij E N(XEX) and the new No (XEX) Will contain all ares on showhat (set 1-peths a maxiflow in No(XBX) This shows that the algorithm will retorn an optimal (mincost) flow in NI

$$\frac{Complexity}{P}$$
• $T(S) = 0$ in the cohole algorithm
• $T(S) = 0$ implies
in the convent N_0 (as $d(t) > 0$ implies
 $T(S) = 0$: $Cemax[Cij1] cijEA$)
The algorithm stops when there is no $(S,t) - peth in N(X)$
 $look at the last itembor before X became wax
 $Dy X \in X \oplus X$ and let P be shown itempath
 $U = N(X)$:
• $\int_{0}^{1} \int_{0}^{2} \int_{0}^{1} \int_$$