Abuja 9.8 The primal-dual alsonthm for min coot flows
Recall from thuja 9.7 and BJ63.10.2 let $N^{\prime}=\left(V^{\prime}, A^{\prime}, l^{\prime} \equiv 0, l^{\prime}, c^{\prime},,^{\prime}\right)$ have $c_{i j} \geq 0 \quad \forall_{2}, \mathrm{eA}$ and sopplon Ea famish flow in N.
Then we can find a mincort flow x a) follow:

1) convert N^{\prime} to $N=\left(V^{\prime} v_{s}, t_{1}, A_{0}^{\prime} A_{1},(\equiv 0, u, c)\right.$
$b>0 \quad b=0 \quad b<0$

2)

$$
\begin{aligned}
& x_{i j} \leqslant 0 \quad \forall i j \\
& \pi<0
\end{aligned}
$$

3) While $|x|<\sum_{b(v) \geq 0} d(v)=K$

- Find shortest (s, t)-path P in $N(x)$ wort cost c^{π}
- Let \tilde{x} be path flow of value $\delta(P)$ along P in $N(x)$

$$
\text { . } x \in x \oplus \tilde{x}
$$

When the algonthm terminates it does so with a mincost flow.
In thuja this is shown by avoociatis a potential $\pi: V \rightarrow \mathbb{R}$

- initially $\pi \equiv 0$ and $x \equiv 0$
- whin $|x|<h$ do
- let d:V$\rightarrow \mathbb{R}$ di shotast patholist fum $\sin N(x)$
- $\pi \in \pi-d$
- $\quad x \in x \oplus \tilde{X}$ u) a dove (aus mentalons shoo hit $\left.\begin{array}{c}\text { pathich } N(x)\end{array}\right)$

Note thateach are $i j$ on the shorbst path P sathofies that $C_{i j}^{\pi}=0$ cort new π : Betor wi updah π wo have

$$
\begin{aligned}
& \text { ctor wi updan } \\
& d(j)=d(i)+c_{i j}^{\pi} \quad \forall J_{j} \in P \\
& j^{\pi} c_{i j}^{\pi}+d(i)-d(j)=0 \\
& \hat{y}_{i j}-\pi(c)+\pi(j)-(-d(i))+(-d(j))=0
\end{aligned}
$$

so with new $\Pi \in \pi-d$ we have

$$
\begin{aligned}
c_{i j}^{\pi-d} & =c_{i j}-(\pi(c)-d(i)+(\pi(j)-d(j)) \\
& =c_{i j}-\pi(i)+\pi(j)+d(i)-d(j) \\
& =c_{i j} \pi+d(l)-d(j)=0 \text { by }(x)
\end{aligned}
$$

Hence we have $c_{i j}^{\bar{\pi}} \geq 0$ forallarcs in $N(x)$ afto upicatins x dly x isoptimal dy Theorm 9.3

Nenodefinition

- Give x, π let $N_{0}(x)$ be the sobnentwork of $N(x)$ consisting of all vertius and tron arc) if for which $c_{i j}^{\pi}=0$
- Every (s, t)-path in $N_{0}(x)$ io a pho host path
- If \bar{X} is any (s,ti-flow in Noxtthen
$X \oplus \bar{X}$ is optional with value $|x|+|\bar{x}|$
New ides:
instead of just rending flow along one ($S_{1} \in(-)_{-}$path in $N_{0}(x)$ we find a maximum (sit)-flow \bar{x} is $N_{0}(x)$ and edit to x By the remark above $x^{\prime}=x \oplus \bar{x}$ is optional and $\left|x^{\prime}\right|>|x|$
If x^{\prime} ir a max flow (has value K) we are done so assume thesis not the can

What can we as above the distant from s to $t d n \quad N(x(\square) \bar{x})$?
Recall that $N(x \oplus \bar{x})=N(x)(\bar{x})$ (BJ6 exercin 3.19) so as \bar{x} ins max flow in $N_{0} \subseteq N(x)$ thesis no (s,t)-path in $N_{0}(x \oplus \bar{x})$ implying that every (s,t)-path in $N(x \oplus \bar{x})$ uss at least one arc with $c_{i j}^{\pi}>0$ colure $\bar{\pi}$ is the current potential

- Calculate new distance from S on $N(x \oplus \bar{X})$ and denote then by d
- let $\pi \in \pi-d$

Then $c_{i j}^{\pi} \geq 0 \quad \forall i j \in N(x \in \bar{x})$ and the new $N_{0}(x \oplus \bar{x})$ will contannall are) on shorh,t (s,t)-paths implying that wa can repeat the stepabove by funding a maxflow in $N_{0}(x \in \mathcal{X})$
This shows that the culsonthm will re torn an optimal (mincort) flow in N^{\prime}

Complexity

- $\Pi(\xi)=0$ in the cotrole al gon thim
- $\pi(t)$ decreases for cach new maxflow calc in the corrent $N_{0}($ as $d(t)>0$ implies $\pi(t)-d(t)<\pi(t)$

Claim $\pi(E \mid \geq-n C$: $C=\max \rangle\left|c_{i j}\right|\left|i_{i j \in A}\right|$
The algonthon otops when then is no (s, t) - path in $N(x)$ look at the laot itemtionbetor X decame max by $x \in x \oplus \bar{x}$ and let P beashoust (siti-path in $N(x)$:

s

$$
0=C_{\delta 1}^{\pi}=c_{s 1}-\pi(s)+\pi(1)=c_{s 1}+\pi(1)
$$

$\stackrel{4}{4}$

$$
-c_{s 1}=\pi(1) \text { so } \pi(1) \geq-C
$$

sumilary for eect i on $P O=c_{i-1 i}^{\pi}=c_{i-1 i}-\Pi(i-1)+\pi(i)$

$$
\Rightarrow \pi(i)=\pi(i-1)-C_{i-1 i} \geq \pi(i-1)-C
$$

incluction $\rightarrow \pi(t) \geq-(n-1) C$

Let $B=\max | | b(v)| | v \in V\}$

At moot $\min \{n C, n B\}$ ifersitions (funding a max flow in N_{0} andading it) Ualgonthm rows is time

$$
O(\min \langle n C, n B) * M F) \text { when }
$$

$M E_{i s}$ best complexity for max flow.

