Aluja section 10.2 Capacity scaling Note that we modify the culgonthm to avoid adounpion 9.4 in Abuja!

- Refinement (improval version) of the shortest (mi ncost) ausmantins path method.
- Reduces the number of iterations from $O(n B)$ to $O(m \log U)$ when

$$
B=\max \}|b(v)| \mid v \in V\} \text { and }
$$

$$
U=\max \left\{u_{i j} \mid c_{j} j \in A\right\}
$$

- Recall that we assume that all are costs $C_{i j}$ are non negative in $N=(V, A, C \equiv 0, l, b, C)$
- Denote dy $S(n, m, C)$ the time to solve a shortest path problem in a disiagh on n vertices, m arcs and $C=$ max $\left\{C_{i j} \mid y^{\prime} \in A\right\}$

$$
u_{x}=\left\{v \mid \delta_{x}(v)<\delta(v)\right\}
$$

$$
\left.Z_{x}=\right\}_{0}\left\{b_{x}(0)>\delta_{0}(0)\right\}
$$

$$
N=(V, A, e \equiv 0, u, b, c)
$$

suppon x^{\prime} is feasith in N and x is not $(y e t \mid$ fash then $x^{\prime}=x \oplus \tilde{x}$ when $\tilde{x} \in N(x)$ and $b_{x}=b_{x}+b_{\tilde{x}}$

$$
\begin{aligned}
& B=\max \{|\delta e v| \| v E V\rangle \\
& C=\max \langle | C_{i j} \| i j \in A \mid
\end{aligned}
$$

$O(n B S(n, m, n C))$

- Recall that when we work with reduced coots, as in Abuja, then then may be as large as $n C$ So the time to solve one shortest path calculation in the residual network
is $O(S(n, m, n C))$.

$$
\begin{aligned}
& \underset{d=0}{C} e \xrightarrow{C}+\underset{d=2 C}{C} 0 \cdot \xrightarrow{C} \rightarrow 0 \cdot \xrightarrow{C} 0 \\
& \pi<\pi-d \\
& c_{i j} \pi=c_{i j}-\pi_{i}+\pi_{j}
\end{aligned}
$$

Scaling idea (similar to cap. satins for max flow):

$$
U=\max \left\{u_{i j} \mid i j \in A\right\}
$$

Let $\Delta_{0}=2^{k} \quad k=\left\lfloor\log _{2} u\right\rfloor$
Consider phan $q=0,1,2, \ldots k$
where $\Delta_{q}=\frac{\Delta_{0}}{2^{q}} \quad q=0,1, \cdots k$
and we only un arc) of residual cap at least Δ_{q} in phanq
Note that in this alsonthm, when we augment along a path P inphang wo cerement by exactly Δ_{q} units even if $\delta(P)>\Delta_{q}$

- Ir phan q we consider the sobnetioork $N\left(x, \Delta_{q}\right)$ of $N(x)$ which consists of tho ares which have resillaal capacity atcrart Δ_{q}
- Note that $\Delta_{k}=1$ so $N\left(x, \Delta_{k}\right)=N(x)$
- Recall from BJG section 3.10.2 that

$$
\begin{aligned}
& \text { Recall from } \\
& U_{x}=\left\{v \mid b_{x}(v)<b(v)\right\} \text { and } Z_{x}=\left\{v \left(b_{x}(v)>b(v) \mid\right.\right. \\
& \| x=\sigma \Leftrightarrow Z_{x}=\phi \Leftrightarrow \text { is fear) }
\end{aligned}
$$ and that $U_{x}=\phi \Leftrightarrow Z_{x}=\phi \Leftrightarrow x$ is fearibh

.Let $E=\sum_{v \in U_{X}}\left(L(v)-b_{X}(v)\right) \quad \begin{aligned} & E \text { is the total } \\ & \text { excess) }\end{aligned}$
If $E=0$ belle current x is optimal and feasibly

- We start with $X \equiv 0$ and $\pi \equiv 0$ as there is no nesahue coot are in N, the same $h_{0}\left(d\right.$, for $N(x)=N$ wat C^{π}
- WC maintain a potential II and modify the count flow X such that ω_{c} obtain $C_{i j} \mathbb{\pi} \geq 0$ for every arc in $N\left(x, \Delta_{q}\right) \quad q=0,1, \cdots, k$
- Note that if $C_{i j}^{\pi}<0$ when we enter phon o then
(*) $\quad \Delta_{q} \leq r_{i j}<2 \Delta q=\Delta_{q-1}$
as x, π was an op hiemal pair for $N\left(x, 2 \Delta_{q}\right)$
when plan of -1 finished.
- when wo enter plan q for >0 we make jon that sum are of $N(x, \Delta q)$ has $C_{i j}^{\pi} \geq 0$ by daturations thou arc) $i j$ for which we have $c_{i j} \prod_{0}<0$ and $r_{i j} \geq \Delta_{q}$ That is, we change x s.t is is no longe an arc of $N(x)$.
- By (x) saturating coll arcs if with $C_{i j}^{\pi}<0$ w. ll change E by at most $2 m \Delta q$
- Assume we have chancel x sit $C_{i j}^{\pi} \geq 0$ focal $i_{j} \in N(x, \Delta q)$ and define

$$
S\left(\Delta_{q}\right) \text { and } T\left(\Delta_{q}\right) \text { a) follow }
$$

$$
\begin{aligned}
& S\left(\Delta_{q}\right)=\left\{v\left(b_{x}(v)+\Delta_{q} \leqslant b(v)\right\}\right. \\
& T\left(\Delta_{q}\right)=\left\{v\left(b_{x}(v)-\Delta_{q} \geq b(v)\right)\right.
\end{aligned}
$$

Alsonthm idea:

- startwith $x \equiv 0, \pi \equiv$ anl $\Delta_{0}=2^{k}$ In phan q coc first satumte sounares s,t the new \times satisfic $C_{i j}^{\pi} \geq 0$ for all arcs $i j / 4 N\left(x, \Delta \Delta_{q}\right)$
Now augment alons $\left(S\left(\Delta_{q}\right), T\left(\Delta_{q}\right)\right)$ - (ath) as lons as juch a path exists whin updations x, π and $S\left(\Delta_{q}\right), T\left(\Delta_{q}\right)$,
- When no mon $\left(S\left(\Delta_{q}\right), T\left(\Delta_{q}\right) T\right.$-naths go to phan $q+1$ if $q<k$ or stop if $q=k$.
begin
- Inctialiar $x=0, \pi \equiv 0 \quad \Delta=2^{k}$, when $k=$ Log u U
while $\Delta \geq 1$ do
$\forall i j$ in $N(x)$ do
if $r_{i j} \geq \Delta$ and $c_{i j}^{\pi}<0$ them
update x by sending $r_{i j}$ units orlons ii in $N(x)$
Let $s(\Delta)=\left\{v \mid b_{x}(v)+\Delta \leq b(v)\right\}$ and $T(\Delta)=\left\{v \mid b_{x}(v)-\Delta \geq b(v)\right\}$
While then exists an $(S(\Delta), T(\Delta))$ - path in $N(x, \Delta)$ do
- select $s \in S(\Delta)$ and $t \in T(\Delta)$ sit. $N(x, \Delta)$ has an (s, t) - p shh
- calculate shortest path distance) d(.) from S in $N(x, \Delta)$ with respect to the reduced costs $c_{i j}^{\pi}$ and $l \in \in P$ be a ohorhst (s,t)-path
- update $\pi \in \pi$-d
- Augment by Δ onctitang P
-update $x, S(\Delta), \Pi(\Delta)$ and $N(x, \Delta)$
end

$$
\Delta \leftarrow \Delta / 2
$$

end
end
Theorem sogion $N=(V, A,(\equiv 0, l e, b, C) h a l$ a fasibh
flow. Then the scaling alsonthm wall find an optimal (muncost) frasibl flow in N in tim

$$
O(m \operatorname{los} U s(n, m, n c))
$$

Theorem soppon $N=\left(V, A,\left(\equiv 0, v, b_{c}, c\right)\right.$ has a f(ca)ibh flow. Then the scaling alyson then wall find an optimal (mnncost) fasibh flow in N in time

$$
O(m \log U s(n, m, n c))
$$

P P Recall that if N has a fearobh flow X^{\prime} then we can find flow \tilde{x} in $N(X, 1)=N(x)$ sit $x^{\prime}=x \oplus \tilde{x}$
when X is the flow when we ens phan k and have saturated arcs of $N(X, 1)$ with $c_{i j}^{\pi}<0$
Hence, since $N(x, 1)=N(x)$ the alsontion wall terminatiouth a fasish flow x^{*}
The flow x^{*} is optimal becaun

$$
\begin{aligned}
& C_{i j}^{\pi} \geq 0 \quad \forall \operatorname{arcsi} i j \text { in } N\left(x^{*}\right) \\
& \text { When } \Pi \text { is the final potential }
\end{aligned}
$$

Hence we jest need to prove the complexity bound $O(m \log U S(n, m, n C))$

Then ar $k+1=O(\log U)$ phases and each shortest (s, t)-path can be found in time $O(S(n, m, n C))$ so it is enough to prove that then an $O(n+m)$ ausmuntintions in each plan.
Recall that $\left.\left.u_{x}=\left\{v \mid b_{x}(v)<b(v)\right\}, Z_{x}=\right\} v \mid b_{x}(v)>b_{(v)}\right\}$
consider a flow decomportion of a fash flow x^{\prime} inN onto at most $n+m$ paths $P_{1}, P_{2} \ldots P_{r} r \leq n+m$ and romecychs.
each of then have capsuity at most $U \leq 2 \Delta$ 。
This implies that $E \leq 2(n+m) \Delta_{0}$ when $E=\sum_{v \in U_{x}}\left(b\left(v i-b_{x}(v)\right)\right.$ is the to tool exes)

- This implies that in phan o we have at most $2(n+m)$ augmentations a) each decreans E by exactly Dounit
- Recall that we leave a plan of when then is no path from $S\left({\underline{a_{q}}}\right)$ to $T\left(\Delta_{q}\right)$
- Let us bound E when we enter phangtl: let x bc oo current flow, let x^{\prime} fca feasible flow in N and $l e t \vec{X} \in N(X)$ satisfy that $X^{\prime}=x \oplus \widetilde{x}$
- By flow decomposition, \tilde{X} decompons into at mort $u \in m p a t h$ and $c y c h$ and each path has flow value less than Δ_{q} a) then is no $\left(S\left(\Delta_{q}\right), T\left(\Delta_{q}\right)\right)$-path
- As path in the flow decomposition starts in u_{x} and andsin Z_{x} this implies that $\quad E \leq(n+m) \Delta_{q}$
Thus) when wo entuphan $q+1$ we have $\Delta q_{q+1}=\frac{\Delta q}{2}$ So $E \leq 2(n+m) \Delta_{q+1} h_{01} d$,

We start phon ate by saturation are, with $r_{i j} \geq \Delta_{q+1}$ and $c_{i j}^{\pi}<0$
Recall that such ares have $2 \Delta_{q+1}>r_{i j} \geq \Delta_{q+1}$
Since evrryarc of $N\left(x, \Delta_{q}\right)$ ha,

$$
c_{i j}^{\pi} \geq 0,
$$

Thus saturation all such ares changes
E begat moot $2 \Delta \Delta_{t l} \cdot m$
So when the while loop starts we have

$$
\begin{aligned}
E & \leq 2(n+m) \Delta_{q+1}+2 m \Delta_{q+1} \\
& \leq 4(n+m) \Delta_{q+1}
\end{aligned}
$$

This implacs that there are at most $4(n+m)$ augmustutions in glass qto
This argioment holds for all phases 1,2... k, showing that eachphan has $O(n+m)$ auegmatations so the poos is counphti

