



$$N = (V_1 A_1 C \equiv 0_1 u_1 b_1 C_1)$$
  
Suppon X' is feasily in N and X is not (yet | feasily  
then X'= X @ X when  $X \in N(X)$   
and  $b_{X'} = b_X + b_X$   

$$B = max \frac{1}{2} |b_{X'}| |veV|$$

$$C = max \frac{1}{2} |c_{11}| |c_{12}|$$

$$C_{S} O(S(n_{1}m_{1}nC)).$$



$$T \leftarrow T - d$$

$$C_{ij}^{T} = C_{ij} - T_{i} + T_{i}$$

Scaling idea (similar to cap. scaling for Maxflow): U = max {uij [ije A} let A.= 2 k= Llos2 UJ Conside phans q =0,1,2, ... k Where  $\Delta q = \frac{\Delta_o}{2^q}$   $q = o_c i_2 \cdots k$ and we only un arc) of residual cap at least Ag in phang Note that in this alsorthm, when we arguint alons a path P inphang coc œuesment by exactly Dy units even if 5(P)> Dy

• In phan q we conside the solution  

$$N(x, Aq)$$
 of  $N(x)$  which consists  
of them are soluted have residual  
capacily attend  $Aq$   
• Note that  $A_{R} = 1$  so  $N(x, A_{R}) = N(x)$   
• Recall from BJG section 3.10.2 that  
 $U_{x} = \{v \mid b_{x}(v) < b(v)\}$  and  $Z_{x} = \{v \mid b_{x}(v) > b(v)\}$   
and that  $U_{x} = \varphi < 2 \times = \varphi < 2 \times is feasily$   
 $Let E = \sum_{v \in U_{x}} (L_{v}) - b_{x}(v)) \xrightarrow{E} is the total
v \in U_{x}}$   
If  $E = 0$  the correct  $\times$  is optimal and feasily  
we start with  $X \equiv 0$  and  $T \equiv 0$   
as there is no reschue cost are in N, the same  
holds for  $N(x) = N$  wet  $C^{T}$   
We maintain a potential  $T$  and modify  
the wreat flow  $\times$  such that we obtain  
 $C_{ij}^{T} \ge 0$  for every are in  $N(x, A_{q})$   $q = 0, ..., k$ 

- Note that if  $C_{ij}^{T} < 0$  when we enter phan 9 then (B)  $\Delta_q \leq \Gamma_{ij} < 2\Delta_q = \Delta_{q-1}$ as  $X_{i}TT$  was an optimal pair for  $N(X_{i}2\Delta_q)$ when phan q-1 fimished.
- When we entre phan & for >0 We make son that some ore of N(X, Aq) has Cij zo by saturating thon arc) ij for which we have Cij<0 and Fij Z Aq That is, we change × s.t ij is no longer an arc of N(x). e By (x) Saturating all ares ij with cij <0 Will change Ebyat most 2mAg Assome we have changed X set  $C_{ij}^{T} \ge 0$ for all  $c_{j} \in N(X, \Delta_{q})$  and define S(Ag) and T(Ag) a) follows

$$S(Aq) = \int \sigma \left[ b_{x}(\sigma) + Aq \leq b(\sigma) \right]$$

$$T(Aq) = \int \sigma \left[ b_{x}(\sigma) - Aq \geq b(\sigma) \right]$$

$$Algorithm idea:$$

$$Start with x \equiv 0, \ T \equiv 0 \ and \ A_{0} = 2^{k}$$

$$In phan q we first saturate someone
site the new x satisfies  $C_{ij}^{T} \geq 0$   
for all arcs if in  $N(x, Aq)$   
Now augment alons  $(S(Aq), T(Aq)) - paths
as bons as such a path exists while updates
x, T and  $S(Aq), T(Aq)$ ,  
when no mon  $(S(Aq), T(Aq)) - paths$$$$

egin.  
Initialize 
$$X=0, T=0$$
  $\Delta = 2^{k}$ , where  $k = \text{Llog}(kl)$   
while  $\Delta \geq 1$  de  
Yij in N(x) de  
if  $\Gamma_{ij} \geq \Delta$  and  $C_{ij}^{T} co fhin
update x by sending  $\Gamma_{ij}$  unto above  $c_{j}^{-1}$ ,  $N(x)$   
let  $S(\Delta) - fullow (x) + \Delta \leq b(x)$  and  $T(\Delta) = f(x) b_{k}(x) - \Delta \geq b(v)$ ?  
While then exists an  $(S(\Delta), T(\Delta)) - path in N(x, \Delta)$  do  
 $\cdot$  select see  $S(\Delta)$  and  $t \in T(\Delta)$  s.t.  $N(x, \Delta)$  has an  $(S_{i}z) \cdot path$   
 $\cdot$  calculate shotest path distances  $d(\cdot)$  from s in  $N(x, \Delta)$   
with respect to the reduced costs  $C_{ij}^{-1}$  and  $(et P)$   
be a short by  $\Delta$  or  $ib$  along P  
 $\cdot$  update  $T \in T - d$   
 $\cdot$  August by  $\Delta$  or  $ib$  along P  
 $\cdot$  update  $x, S(\Delta), T(\Delta)$  and  $N(x, \Delta)$   
end  
Alean  
Hearen Soppon  $N = (V_{i}ft_{i}(\Xi O_{i}U_{i}b_{i}c))$  has a facult  
flow. Then the scaling alson then well find an  
 $op final (univest) facility flow in N in time
 $O(m \log U S(n; m, nc))$$$ 

Theorem Soppen 
$$N = (V_i A_i (\Xi O_i U_i b_i C_i) b_i) q$$
 feasily  
flow. Then the scaling alsouthin will find an  
optimal (muncost) feasily flow in N in time  
 $O(m \log U S(n_i m_i nC))$   
P: Recall that if N has a feasily flow X'  
then we can find a flow X in N(X,1)=N(X)  
s.t X'= X  $\oplus X$   
when X is the flow when we entr  
phan h and have saturated area of  
N(X,1) with  $C_{ij} < O$   
Hence, since N(X,1) = N(X) the alsoution  
will terminite with a feasily flow X\*  
The flow X\* is ophimal becaus  
 $C_{ij}^T \ge O$  Haves  $c_{ij}'$  in N(X\*)  
When T is the final potential  
Hence we just need to prove the complexity  
bound  $O(m \log U S(n_i m_i nC))$ 

Then are 
$$k \neq l = O(\log U) p^{leases}$$
 and  
each she test  $(s, \epsilon)$ -peth cambe found in  
time  $O(S(n_1, n_1 C))$  so it is enousl  
to prove that then an  $O(n ten)$  augustitus  
in each phan.  
Recall that  $U_X = \{v \mid b_X (v) < b(v)\}, Z_X = \{v \mid b_X (v) > kv\}\}$   
Consider a flow decomposition of a feasily flow  $X^{(i)}$  with  
anto at most nem paths  $P_{11}P_{2} \cdots P_{11} r \le n ten$   
and some cycles.  
Each of then have capacity at most  $U \le 2A_0$   
This implies that  $E \le 2(n ten) A_0$  when  
 $E = \sum (b(v_1 - b_X(v_2))$  is the total excess  
rely.

We start phan get by saturations area with rij = Agel and Cij < 0 Recall that such arcs have 2 Agt > Fij = Agt ( Since every arc of N(x, Aq) has Cil 20, Thus saturing all such arcs changes E by at most 2 Agti.m So when the while loop starts we have  $E \leq 2(ntm) \Delta q_{fl} + 2m \Delta q_{fl}$  $\leq \mathcal{Y}(nfm) \mathbb{A}_{q+1}$ This implies that there are at most 4(n+m) auguntu hous in plan gt This argument holds for all phan, 1,2...k, showing that each phan ha) O(Nfm) auguntation, so the proof is complete