Submodularity of the degree functions of digraphs

The following simple observation plays a central role in many
proofs of connectivity results.

Proposition 7

Let D = (V,A) be a directed multigraph and let X, Y be subsets
of V. Then the following holds:

dT(X)+dH(Y) = d"(XUY)+dT(XNY)+d(X,Y)
d(X)+d (Y) = d(XUY)+d (XNnY)+d(X,Y).(1)
Proof: Each of these equalities can easily be proved by considering

the contribution of the different kinds of arcs that are counted on
at least one side of the equality.



Figure: The various types of arcs that contribute to the out-degrees of
the sets X, Y, XNY and XUY.



A set function f on a groundset S is submodular if
f(X)+f(Y)>F(XUY)+Ff(XNY)forall X, Y CS. The next
corollary which follows directly from Proposition 7 is very useful, as
we shall see many times in this course.

Corollary 8

For an arbitrary directed multigraph D, dg, dp are submodular
functions on V(D).



Proof of Menger's theorem via submodularity

The proof we give is due to Frank. We want to prove the following.

Theorem 9 (Menger 1927)

Let D = (V,A) be a directed multigraph and s, t distinct vertices
of V. Then the maximum number of arc-disjoint (s, t)-paths in D
is equal to the minimum out-degree d*(X) of a set X which
contains s but not t.

Proof: An (s, t)-cut is a set of arcs of the form (X, X) where
seX, teX
Let k be the minimum size of an (s, t)-cut, that is, the minumum

out-degree d*(X) of a set X with s € X, t € X. Then So we have
dH(X)> k ¥ X CV—twithseX (2)

Clearly the maximum number of arc-disjoint (s, t)-paths is at most
k.
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The proof of the other direction is by induction on the number of
arcs in D.

@ The base case is when D has precisely k arcs. Then these all go ,@,
from s to t and thus D has k arc-disjoint (s, t)-paths. Hence we >
can proceed to the induction step.

X
@ Call a vertex set U tight if s € U,t ¢ U and d*(U) = k. If some G%
arc xy does not leave any tight set, then we can remove it without

creating an (s, t)-cut of size (k — 1) and the result follows by d)
induction. Hence we can assume that every arc in D leaves a tight "

set. =y AR

@ Claim: If X and Y are tight sets, then so are XN Y and XU Y.
To see this we use the submodularity of d*. First note that each of
XNY and XU Y contains s and none of them contains t. Hence,
by (2), they both have degree at least k in D. Now using (1) we
conclude

k+k=d"(X)+d"(Y)>dT(XUY)+d"(XNY)>k+k, (3)

by the remark above. It follows that each of XU Y and XN Y is
tight and the claim is proved.



leauius3
If every are’in D is of the from st, then we are done, so we ¢+

may assume that D has an arc su where u # t. < 7. €
Let T be the union of all tight sets that do not contain w.

Then T # (), since the arc su leaves a tight set.

By the claim, T is also tight.

Now consider the set T U {u}.

If there is no arc from uto V — T, then d*(TU{u}) < k—1,
contradicting (2) since T U {u} contains s but not t. Hence
there must be some v € V — T — u such that uv € A(D).




Now let D" be the digraph we obtain from D by replacing the
two arcs su, uv by the arc sv.

Suppose D’ contains an (s, t)-cut of size less than k. That
means that some set X containing s but not t has out-degree
at most k —1in D'

Since d/(X) > k it is easy to see that we must have s,v € X
and u € X. Hence d}(X) = k and now we get a contradiction
to the definition of T (since we know that v ¢ T).

Thus every (s, t)-cut in D’ has size at least k.

Since D’ has fewer arcs than D it follows by induction that
D’ contains k arc-disjoint (s, t)-paths.

At most one of these can use the new arc sv (in which case
we can replace this arc by the two we deleted).

Thus it follows that D also has k arc-disjoint (s, t)-paths.
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