Submodularity of the degree functions of digraphs

The following simple observation plays a central role in many proofs of connectivity results.

Proposition 7

Let $D=(V, A)$ be a directed multigraph and let X, Y be subsets of V. Then the following holds:

$$
\begin{aligned}
& d^{+}(X)+d^{+}(Y)=d^{+}(X \cup Y)+d^{+}(X \cap Y)+d(X, Y) \\
& d^{-}(X)+d^{-}(Y)=d^{-}(X \cup Y)+d^{-}(X \cap Y)+d(X, Y) .(1)
\end{aligned}
$$

Proof: Each of these equalities can easily be proved by considering the contribution of the different kinds of arcs that are counted on at least one side of the equality.

Figure: The various types of arcs that contribute to the out-degrees of the sets $X, Y, X \cap Y$ and $X \cup Y$.

A set function f on a groundset S is submodular if $f(X)+f(Y) \geq f(X \cup Y)+f(X \cap Y)$ for all $X, Y \subseteq S$. The next corollary which follows directly from Proposition 7 is very useful, as we shall see many times in this course.

Corollary 8

For an arbitrary directed multigraph D, d_{D}^{+}, d_{D}^{-}are submodular functions on $V(D)$.

Proof of Menger's theorem via submodularity

The proof we give is due to Frank. We want to prove the following.

Theorem 9 (Menger 1927)

Let $D=(V, A)$ be a directed multigraph and s, t distinct vertices of V. Then the maximum number of arc-disjoint (s, t)-paths in D is equal to the minimum out-degree $d^{+}(X)$ of a set X which contains s but not t.
Proof: An (s, t)-cut is a set of arcs of the form (X, \bar{X}) where $s \in X, t \in \bar{X}$
Let k be the minimum size of an (s, t)-cut, that is, the minumum out-degree $d^{+}(X)$ of a set X with $s \in X, t \in \bar{X}$. Then So we have

$$
\begin{equation*}
d^{+}(X) \geq k \forall X \subset V-t \text { with } s \in X \tag{2}
\end{equation*}
$$

Clearly the maximum number of arc-disjoint (s, t)-paths is at most k.

S

max $\#$ arc-disjoint (s, t)

$$
\begin{aligned}
& =\left\{\mid x^{*}\left(\mid x^{*} \text { isan }(, t)-\text { flow }\right\}\right. \\
& =\min u(s, \bar{S}) \quad s \in S, \epsilon \in \bar{S} \\
& =\min \left\{d^{t}(s) \mid s \in S, E \in \bar{S}\right\}
\end{aligned}
$$

The proof of the other direction is by induction on the number of arcs in D.

- The base case is when D has precisely k arcs. Then these all go from s to t and thus D has k arc-disjoint (s, t)-paths. Hence we s can proceed to the induction step.
- Call a vertex set U tight if $s \in U, t \notin U$ and $d^{+}(U)=k$. If some arc $x y$ does not leave any tight set, then we can remove it without creating an (s, t)-cut of size $(k-1)$ and the result follows by induction. Hence we can assume that every arc in D leaves a tight set.

- Claim: If X and Y are tight sets, then so are $X \cap Y$ and $X \cup Y$. To see this we use the submodularity of d^{+}. First note that each of $X \cap Y$ and $X \cup Y$ contains s and none of them contains t. Hence, by (2), they both have degree at least k in D. Now using (1) we conclude
$k+k=d^{+}(X)+d^{+}(Y) \geq d^{+}(X \cup Y)+d^{+}(X \cap Y) \geq k+k$,
by the remark above. It follows that each of $X \cup Y$ and $X \cap Y$ is tight and the claim is proved.
- If every archiving is of the from st, then we are done, so we
may assume that D has an arc sou where $u \neq t$. - ϵ
- Let T be the union of all tight sets that do not contain u. Then $T \neq \emptyset$, since the arc su leaves a tight set.
- By the claim, T is also tight.
- Now consider the set $T \cup\{u\}$.
- If there is no arc from u to $V-T$, then $d^{+}(T \cup\{u\}) \leq k-1$, contradicting (2) since $T \cup\{u\}$ contains s but not t. Hence there must be some $v \in V-T-u$ such that $u v \in A(D)$.

- Now let D^{\prime} be the digraph we obtain from D by replacing the two arcs $s u, u v$ by the arc $s v$.
- Suppose D^{\prime} contains an (s, t)-cut of size less than k. That means that some set X containing s but not t has out-degree at most $k-1$ in D^{\prime}.
- Since $d_{D}^{+}(X) \geq k$ it is easy to see that we must have $s, v \in X$ and $u \notin X$. Hence $d_{D}^{+}(X)=k$ and now we get a contradiction to the definition of T (since we know that $v \notin T$).
- Thus every (s, t)-cut in D^{\prime} has size at least k.
- Since D^{\prime} has fewer arcs than D it follows by induction that D^{\prime} contains k arc-disjoint (s, t)-paths.
- At most one of these can use the new arc sv (in which case we can replace this arc by the two we deleted).
- Thus it follows that D also has k arc-disjoint (s, t)-paths.

$$
k \text {-arc-disjoint }\left(\delta, t l-p a t h s i n D^{\prime}\right.
$$

if no P_{i} uns $s \longrightarrow u$ then call P_{0}^{\prime} s are faths in $D \rightarrow$ done So asoome $S \cdot \longrightarrow v$ is in P_{l} wlos
 in D

