
A digraph D = (V ,A) is strong if and only if it contains a directed

path from x to y for every choice of vertices x , y 2 V .

A digraph D = (V ,A) is k-arc-strong if D � X is strong for every

subset X of at most k � 1 arcs.

Proposition 1

Let D = (V ,A) be a directed multigraph and let X ,Y be subsets
of V . Then the following holds:

d+
(X ) + d+

(Y ) = d+
(X [ Y ) + d+

(X \ Y ) + d(X ,Y )

d�
(X ) + d�

(Y ) = d�
(X [ Y ) + d�

(X \ Y ) + d(X ,Y ).(1)
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The Splitting o↵ Operation

In Frank’s proof of Menger’s theorem, we saw how one could apply

the idea of replacing two arcs incident to some vertex by one and

thereby apply induction. In this talk we shall see yet another

indication that this type of operation can be very useful. We

consider a directed multigraph D with a special vertex s. We

always assume that

d+
D (s) = d�

D (s). (2)

To emphasize that s is a special vertex we specify D as

D = (V + s,A) or D = (V + s,E [ F ) where F is the set of arcs

with one end-vertex in s. Furthermore we will assume that the

local arc-strong connectivity between every pair x , y of vertices in

V is at least k .

By Menger’s theorem this is equivalent to

d+
(U), d�

(U) � k for all ; 6= U ⇢ V . (3)



Whenever a digraph D = (V + s,A) satisfies (3) for some k we say that

D is k-arc-strong in V .

We consider the operation of replacing a pair (us, sv) of arcs incident
with s by one new arc uv . The operation of performing this replacement

is called splitting o↵ or just splitting the pair (us, sv) and the resulting

directed multigraph is denoted by Duv . The splitting of a pair (us, sv) is
admissible if (3) holds in Duv . If this is the case we will also say that the

pair (us, sv) is an admissible pair (or an admissible splitting).

A set ; 6= X ⇢ V is k-in-critical (k-out-critical) if d�
(X ) = k

(d+
(X ) = k). When we do not want to specify whether X is k-in-critical

or k-out-critical, we say that X is k-critical.

The following useful lemma is due to Frank:

Lemma 2 (Frank, 1992)

If X and Y are intersecting k-critical sets then one of the following holds:

(i) X [ Y is k-critical,

(ii) Y � X is k-critical and d(X \ Y ,V + s � (X [ Y )) = 0.

11
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Mader’s directed splitting theorem

Theorem 3 (Mader, 1982)

Suppose that D = (V + s,E [ F ) satisfies (3) and that
d+

(s) = d�
(s). Then for every arc sv there is an arc us such that

the pair (us, sv) is an admissible splitting.

Proof: The proof we give is due to Frank

First note that a pair (us, sv) can be split o↵ preserving (3) if and

only if there is no k-critical set which contains both u and v .
Hence if there is no k-critical set containing v , then we are done.

→

s



If X and Y are intersecting k-critical sets containing v , then only

alternative (i) can hold in Lemma 2, because the existence of the

arc sv implies that d(V + s � (X [ Y ),X \ Y ) � 1.

Hence the union T of all k-critical sets containing v is also

k-critical. If we can find an in-neighbour u of s in V � T , then we

are done, since by the choice of T , there is no k-critical set which
contains u and v . So suppose that all in-neighbours of s are in T .

If T is k-out-critical then

d�
(V � T ) = d+

(T )� d+
(T , s) + d+

(s,V � T )

 k � (d�
(s)� d+

(s) + 1)

= k � 1,

since s has no in-neighbour in V � T and sv is an arc from s to T
(we also used d�

(s) = d+
(s)). This contradicts (3) so we cannot

have that T is k-out-critical.
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Corollary 4

Suppose that D = (V + s,E + F ) satisfies (3) and that
d+

(s) = d�
(s). Then there exists a pairing

((u1s, sv1), . . . , (ur s, svr )), r = d�
(s), of the arcs entering s with

the arcs leaving s such that replacing all arcs incident with s by
the arcs u1v1, . . . , urvr and then deleting s, we obtain a
k-arc-strong directed multigraph D 0.

Frank and Jackson showed that for eulerian directed multigraphs

one can get a stronger result. Namely, it is possible to split o↵ all

arcs incident with the special vertex s in such a way that all local

arc-strong connectivities within V are preserved.

Theorem 5 (Frank, 1989, Jackson, 1988)

Let D = (V + s,A) be an eulerian directed multigraph. Then for
every arc us 2 A there exists an arc sv 2 A such that
�Duv (x , y) = �D(x , y) for all x , y 2 V .
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increasing the arc-connectivity optimally in polynomial time

We will consider the following problem.

Arc-connectivity augmentation

Input: A directed multigraph D = (V ,A) and a natural number

k
Question: Find a minimum cardinality set of new arcs F such

that the resulting directed multigraph D 0
= (V ,A [ F ) is k-arc-

strong. Remark: such a D 0
is called an optimal augmentation

of D.

We will present a solution to this problem due to Frank Frank

solved the problem by supplying a min-max formula for the

minimum number of new arcs as well as a polynomial algorithm to

find such a minimum set of new arcs.

First let us make the simple observation that such a set F indeed

exists, since we may just add k parallel arcs in both directions

between a fixed vertex v 2 V and all other vertices in V (it is easy

to see that the resulting directed multigraph will be k-arc-strong).

b
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Definition 6

Let D = (V ,A) be a directed multigraph. Then �k(D) is the

smallest integer � such that

X

Xi2F
(k � d�

(Xi ))  � and

X

Xi2F
(k � d+

(Xi ))  �,

for every subpartition F = {X1, . . . ,Xt} of V .

We call �k(D) the subpartition lower bound for arc-strong

connectivity. By Menger’s theorem, D is k-arc-strong if and only

if �k(D)  0. Indeed, if D is k-arc-strong, then
d+

(X ), d�
(X ) � k holds for all proper subsets of V and hence we

see that �k(D)  0. Conversely, if D is not k-arc-strong, then let

X be a set with d�
(X ) < k . Take F = {X}, then we see that

�k(D) � k � d�
(X ) > 0.

I
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Lemma 7 (Frank, 1982)

Let D = (V ,A) be a directed multigraph and let k be a positive
integer such that �k(D) > 0. Then D can be extended to a new
directed multigraph D 0

= (V + s,A [ F ), where F consists of
�k(D) arcs whose head is s and �k(D) arcs of whose tail is s such
that (3) holds in D 0.

Proof: We will show that, starting from D, it is possible to add

�k(D) arcs from V to s so that the resulting graph satisfies

d+
(X ) � k for all ; 6= X ⇢ V . (4)

Then it will follow analogously (by considering the converse of D)

that it is also possible to add �k(D) new arcs from s to V so that

the resulting graph satisfies

d�
(X ) � k for all ; 6= X ⇢ V . (5)



First add k parallel arcs from v to s for every v 2 V . This will

certainly make the resulting directed multigraph satisfy (4).

Now delete as many new arcs as possible until removing any

further arc would result in a digraph where (4) no longer holds

(that is, every remaining new arc vs leaves a k-out-critical
set).

Let D̃ denote the current directed multigraph after this

deletion phase and let S be the set of vertices v which have

an arc to s in D̃.

Let F = {X1, . . . ,Xr} be a family of k-out-critical sets such
that every v 2 S is contained in some member Xi of F and

assume that F has as few members as possible with respect

to this property.

Clearly this choice implies that either F is a subpartition of V ,

or there is a pair of intersecting sets Xi ,Xj in F .
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Case 1: F is a subpartition of V.

Then we have

kr =

rX

i=1

d+
D̃
(Xi )

=

rX

i=1

(d+
D (Xi ) + d+

D̃
(Xi , s))

=

rX

i=1

d+
D (Xi ) + d�

D̃
(s),

implying that d�
D̃
(s) =

Pr
i=1(k � d+

D (Xi ))  �k(D), by the

definition of �k(D).

000 - - -0
Xc XL Xr



Case 2: Some pair Xi,Xj 2 F is intersecting.

If V � Xi [ Xj 6= ;, then the submodularity of d+
D̃

and (3) imply

that Xi [ Xj is also k-out-critical and hence we could replace the

two sets Xi ,Xj by the set Xi [ Xj in F , contradicting the choice of

F .

Hence we must have Xi [ Xj = V and F = {X1,X2}, where
without loss of generality i = 1, j = 2.

Let X = V � X1 = X2 � X1 and Y = V � X2 = X1 � X2. Then

d�
D (X ) = d+

D (X1) and d�
D (Y ) = d+

D (X2) and hence we get

�k(D) � (k � d�
D (X )) + (k � d�

D (Y ))

= k � d+
D (X1) + k � d+

D (X2)

� k � d+
D̃
(X1) + k � d+

D̃
(X2) + d�

D̃
(s)

= d�
D̃
(s),

since X1,X2 are k-out-critical in D̃. Thus d�
D̃
(s)  �k(D) as

claimed.
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Theorem 8 (Frank, 1992)

Let D = (V ,A) be a digraph and k a natural number such that
�k(D) > 0. The minimum number of new arcs that must be added
to D in order to give a k-arc-strong digraph D 0

= (V ,A [ F )
equals �k(D).

Proof: To see that we must use at least �k(D) arcs, it su�ces to

observe that if X and Y are disjoint sets then no new arc can

increase the out-degree (in-degree) of both sets. Hence a

subpartition F realizing the value of �k in Definition 6 is a

certificate that we must use at least �k(D) new arcs.



To prove the other direction we use Mader’s splitting theorem

and Lemma 7.

According to this lemma we can extend D to a new digraph D̃
by adding a new vertex s and �k(D) arcs from V to s and

from s to V .

Note that we may not need �k(D) arcs in both directions, but

we will need it in one of the directions by our remark in the

beginning of the proof. In the case where fewer arcs are

needed, say from V to s we add arbitrary arcs from V to s so

that the resulting number becomes �k(D).

Now it follows from Corollary 4 that all arcs incident with s
can be split o↵ without violating (3).

This means that, if we remove s, then the resulting graph D 0

is k-arc-strong.

,
such that dig LX) ,djlxlzk V-8# XCV
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Observations on the proof

In the proof of Lemma 7, we never used exactly how we

obtained the minimal set of arcs from V to s so that (4) held.

The proof is valid for every such set of arcs that is minimal

with respect to deletion of arcs.

This means in particular that we can use a greedy approach to

find such a set of arcs starting from the configuration with k
parallel arcs from every vertex v 2 V to s.

This gives rise to the following algorithm, by Frank, for

augmenting the arc-strong connectivity optimally to k for any

digraph D which is not already k-arc-strong:



Frank’s arc-strong connectivity augmentation algorithm

Input: A directed multigraph D = (V ,A) and a natural number k
such that �k(D) > 0.

Output: A k-arc-strong optimal augmentation D⇤
of D.

1. Let v1, v2 . . . , vn be a fixed ordering of V and let s be

a new vertex.

2. Add k parallel arcs from vi to s and from s to vi for
each i = 1, 2, . . . , n.

3. Starting from i := 1, remove as many arcs from vi to
s as possible without violating (4); If i < n then let

i := i + 1 and repeat this step;

Let �� denote the number of remaining arcs from V
to s in the resulting digraph.

4. Starting from i := 1, remove as many arcs from s to

vi as possible without violating (5); If i < n then

i := i + 1 and repeat this step;

Let �+ denote the number of remaining arcs from s
to V in the resulting digraph.



5. Let � = max{��, �+}. If �� < �+, then add

�+ � �� arcs from v1 to s; If �+ < ��, then add

�� � �+ arcs from s to v1.

6. Let D 0
denote the current digraph. In D 0

we have

d�
D0(s) = d+

D0(s) and (3) holds. Split o↵ all arcs

incident with s in D 0
by applying Theorem 3 � times.

Let D⇤
denote the resulting directed multigraph.

7. Return D⇤
.

Using flows this algorithm can be implemented as a polynomial

algorithm for augmenting the arc-strong connectivity of a given

digraph. See Exercises 7.28 and 7.30.



Minimum cost augmentations

If we assign costs on the possible new arcs and ask for a minimum cost

(rather than just minimum cardinality) set of new arcs to add to D in

order to obtain a k-arc-strong digraph D 0
, then we have the minimum

cost arc-strong connectivity augmentation problem.

Theorem 9

The minimum cost arc-strong connectivity augmentation
problem is NP-hard.

Proof: We show that the NP-complete problem of deciding whether a

directed graph has a hamiltonian cycle can be reduced to the weighted

arc-strong connectivity augmentation problem in polynomial time.

Let D = (V ,A) be a digraph on n vertices V = {1, 2, . . . , n}. Define
weights c(ij) on the arcs of the complete digraph

$
Kn with vertex set V as

follows:

c(ij) =

⇢
1 if ij 2 A
2 if ij 62 A.

(6)



Let D0 = (V , ;) (that is, the digraph on V with no arcs).

Since every vertex of a strong digraph is the tail of at least

one arc, we need at least n arcs to make D0 strong.

Now it is easy to see that D0 can be made strongly connected

using arcs with total weight at most n if and only if D has a

Hamilton cycle.

Thus we have reduced the Hamilton cycle problem to the

weighted arc-strong connectivity augmentation problem.

Clearly our reduction can be carried out in polynomial time.


