- Standard costfunchion in min cost flow problem $c_{i j}$ is a constant so cost of rending $X_{i j}$ unit, along a $^{\prime} j$ i) $C_{i j} X_{i j}$
- A function f is Convex if $\forall a<b$ in the domain of f the values of f in the intoral $[9, b]$ Lie below the straight lime foo $(a, f(s))$ to $(b, f f())$

Aherja chapter 14 convex cost flows

discrete pieawinhmar O(\#breale points) space
 cost function specified in functional form s.s X_{i}^{4} O(1) span
min convex coot flow:

$$
\begin{array}{ll}
\min \sum c_{i j}\left(x_{i j}\right) & \\
\text { sot } \quad b_{x}(i)=\delta(i) & \forall i \in V \tag{*}\\
0 \leq x_{i j} \leq u_{i j} & \forall v_{i j} \in A \\
x_{i j} \in \mathbb{Z} & \forall i j \in A
\end{array}
$$

consider only integer flows!
assumptions on $N=(V, A, l, u, b, C C))$
(1) $D=(V, A)$ is a digraph
(2) $b \in \mathbb{Z}^{n}$ (integudalances)
(3) $l_{i j}=0 \quad \forall i j$
(4) $\neq i j i$-path of ∞ capacity $\forall i, j \in V$
(5) $\quad C_{i j}(0)=0 \quad \forall i_{j} \in A$

Section 14.2 on application \Rightarrow self study 14.3 Transformation to a normal min cost flow problem when $\mathrm{Cij}_{i j}$ "s convex and piecewin linear forallare)

Drewdach of solution: The new retcoosh may be much large than N as \#arcs coll depend on \# bratipuints of the cost functions.

Assumption: each $c_{i j}$ has exactly p dreatipoints (consists of p linear segments)

So $C_{i j}$ is constant in each of the resent

$$
\left[d_{i j} c_{i j} d_{i j}^{1}\right]_{1}\left[d_{i j}^{1} d_{i j}^{2}\right] \ldots\left[d_{j,}^{p-1}, d_{i j}^{p}\right]
$$

when $d_{i j}=0$ and $d_{i j}^{p}=u_{i j}$
Note that p is fritz as $u_{i j}$ is finite
look at $x_{i j}$ and spit in p parts which repent the part of $x_{i j}$ Jelonsins to each of the presments:

fill op frombeloco: in example, if $x_{i j}=6$ then segments 1 and 2 ar filled and the flow in segments is 1

Given $x_{i j}$ we defím sesmentflows $y_{i j}^{k}$ for $k \in[p]$:
(■ $\quad y_{i j}^{k}=\left\{\begin{array}{l}0 \quad \text { if } x_{i j} \leq d_{i j}^{k-1} \\ x_{i j}-d_{i j}^{k-1} \quad \text { if } x_{i j} \in\left[d_{i j}^{k-1}, d_{i j}^{k}\right] \\ d_{i j}^{k}-d_{i j}^{k-1} \\ \text { if } x_{i j} \geq d_{i j}^{k}\end{array}\right.$
Then $x_{i j}=\sum_{k=1}^{p} y_{i j}^{k}$ and $c_{i j}\left(x_{i j}\right)=\sum_{k=1}^{p} c_{i j}^{k} y_{i j}^{k}$
This transforms the model (*) into ($(*)$:

$$
\begin{aligned}
& \min \sum_{i j \in A} \sum_{k=1}^{p} c_{i j}^{k} y_{i j}^{k} \\
& \sum_{i j} \sum_{k=1}^{p} y_{i j}^{k}-\sum_{j i} \sum_{k=1}^{p} y_{j \dot{i}}^{k}=b(i)(* k) \\
& 0 \leq y_{i j}^{k} \leq d_{i j}^{k}-d_{i j}^{k-1} \quad \forall i j
\end{aligned}
$$

$$
\begin{aligned}
& \min \sum_{i j \in A} \sum_{k=1}^{p} c_{i j}^{k} y_{i j}^{k} \\
& \sum_{i j} \sum_{k=1}^{p} y_{i j}^{k}-\sum_{j i} \sum_{k=c}^{p} y_{j i}^{k}=b(i)(* k) \\
& 0 \leq y_{i j}^{k} \leq d_{i j}^{k}-d_{i j}^{k-1} \quad \forall i_{j}^{\prime}
\end{aligned}
$$

Claim:(*x) is a min cost flow problem i the network N^{\prime} when we replace

Deft y is a contiguous solution
 to (*) if $y_{i j}^{q}>0$

$$
V_{y_{i j}}^{r}=d_{i j}^{r}-d_{i j}^{r-1} \text { for } a l l r<q
$$

Show equivalenudetween (K) and (*x)
soppon x solves (*)
Deft $y_{i j}^{\prime}, \ldots, y_{i j}^{p}$ from $x_{i j}$ a) in (D) that is, fill op the intervals $\left[d_{i j}^{0}, d_{i j}^{\prime}\right] \cdots\left[d_{i,}^{p-1} d d_{\varepsilon}^{p}\right]$ on that order.
Then y is a contiguous solution and

$$
c_{i j}\left(x_{i j}\right)=\sum_{k=1}^{f} c_{i j}^{k} y_{i j}^{k}
$$

so the cost ot x and y are the ane
Sopping y is a contiguous solution to (**)
Detirn $x_{i j}$ on $x_{i j}=\sum_{k=1}^{p} y_{i j}^{k}$ then
x is a volution to ($*$ | and it) cost i is the sames the cost of y.

Note that then may de non Contiguous solutions to (*x) but they are not optimal:
Suppon $y_{i j}^{l}=m>0$ but $y_{i j}^{k}<d_{i j}^{k}-d_{i j}^{k-1}$ some $k<e$.
Then werget a cluaper solution to $(x *)$ dy setting $y_{i j}^{k} \in y_{i j}^{k}+Q$ and

$$
y_{i j}^{l} \in y_{i j}^{l}-Q
$$

when $Q=\min \left\{M,\left(d_{i j}^{l} d_{i j}^{l-1}\right)-y_{i j}^{k}\right\}$
why? becaun $c_{i j}^{k}<c_{i j}^{l}$ by convexity ot $C_{i j}$)

Conclusion All optimal solutions to (*) are contiguous.

- Alsonthmic challenge with redeection:
need p copies of each onisiuslare
- Not a prodem if $C_{i j}\left(x_{i j}\right)$ is spuiticl a) a piecewin lin ear fouction, since then we reel (eppto) p dratipounto f e each $\operatorname{arc} i j$.
- If mslead $c_{i j}\left(x_{i j}\right)$ is infonctional foom

$$
\left(e . g \quad c_{i j}\left(x_{i j}\right)=x_{i j}^{2}\right)
$$

and we reprement $c_{i j}\left(x_{i j}\right)$ bosapicuwin linear approximation woth $u_{i j}$ lines then we may med much mon jpan in model(8x)

14.4 prudopolynomis al gonthms

Modification of Cych Cancelling and Buildup method for standard mun cost flow.

New approach:
Do not make all p copies of an arc $i j$ but introduce only the relevant copies.
The residual network han (potentially) many arcs in both directions between iandj
Example band on figon 14.2:

Effect of incramis) $x_{i j} \rightarrow x_{i j}+1$:

$$
\begin{aligned}
& \text { rat of ingrain) } \\
& y_{i j}^{4} \in 1 \text { as } C_{i j}^{4}<c_{i j}^{5}
\end{aligned}
$$

Effect of decrains $x_{i j} \rightarrow x_{i j}-1:$

$$
\begin{aligned}
& y_{i j}^{3} \leqslant 0 \quad \text { as } \quad c_{i j}^{3}>c_{i j}^{2}>c_{i j}^{1} \\
& \text { so }-c_{i j}^{3}<-c_{i j}^{2}<-c_{i j}^{1}
\end{aligned}
$$

Conclusion: Enow, h to keep $i j^{3}$ and $i j^{y}$ in the vesilmalnetwork
This holds in general: wa just meed to stor two arc) in $N(x)$ per are $i j$ s

Conotruction of $N(x) \quad \forall i j \in A$:
, if $x_{i j}<u_{i j}$ then $i j$ is anare in $N(x)$
worth cost $C_{i j}\left(X_{i j} t 1\right)-C_{i j}\left(x_{i j}\right)$

- if $0<x_{i j}$ then $j i$ is is $N(x)$ woith $\operatorname{cost} C_{i j}\left(x_{i j}-1\right)-C_{i j}\left(x_{i j}\right)$

Costot ij in $N(x)$
i) 3
cost ot ji in $N(x)$
is -3

costot ij in $N(x)$
is 3
cortot ${ }^{\circ} i$ is $N(x)$
is -1
$r_{i j}=$ distanu from $x_{i j}$ to next sratpoint $r_{j i}=\operatorname{dostan}$ from provious bualipount to $x_{i j}$

Cych cancelling for convex cost flow
same as normal, except for construction and manntuanse of $N(x)$:

Given fecirlh flow x

- Construct $N(X)$
- While $\exists w \in N(x) ; c(w)<0$ - Let $\delta(W)$ be capacity of W (defined da low)

$$
\square \quad x \in x \oplus \delta(w) w
$$

- construct $N(x)$
$\delta(\omega)$ is now the minimum residual capacity of an arc $i i^{q}$ on W
so we only incran/decrenn flow in id to the next brakpoint

Note that, by the equivalence of nodes (el and ($8 x$)
and the definition of $N(x)$
x is optimal if and only if
$N(x)$ has no negative cycle.
Pojsith improvement
Afto ausmentivs by $\delta(\omega)$ units along W the flow on one or mon ares ij of w has reachech drakpoint so it is poss that $C(W)$ remains negative in the newer resilued network.
In that can we can augment alons ω with $\delta(w)$ unit) for the new value $\delta(\omega)$.

Builclup alsonthm:
Again very similar except for det. of $N(x)$.
(sult stady!)
14.5 Obtainins a polynomish alsonthm.

- Band on the capacity scaling alsonthm in Section 10.2.
- The alsonthm does not Unecarize $c_{j}\left(x_{j}\right)$ in one stof but in a losanthnuic \#ot itemations in which the approximationbccomes mon and mor acurat

$$
C_{i j}\left(x_{i j}\right)=x_{i j}^{4}
$$

$$
u_{i j}=12 \in\left[2^{3}, 2^{4}-1\right] \Rightarrow\left\lfloor\log _{2} u_{i j}\right]=3 \Delta=2^{3}=8
$$

- Step on segment of length 8 and slope $\frac{8^{4}}{8}=8^{3}$
- Ster 2 segment above divided into 2 segments of length 4 with slope $\frac{4^{4}}{4}=4^{3}$ and $\frac{8^{4}-4^{4}}{4}$ vespectivivy
- In step 4 all resmants have length I

In the Δ-scahinsphin we maintain the Δ-resichal network $N(x, \Delta)$

- If $x_{i j} t \Delta \leq u_{i j}$ then $i j \in N(x, \Delta)$ and has cost $\frac{c_{i j}\left(x_{i j}+\Delta\right)-c_{i j}\left(x_{i j}\right)}{\Delta}$
- if $x_{i j} \geq \Delta$ then $j i \in N\left(x_{1} \Delta\right)$ and haricot $\frac{c_{i j}\left(x_{i j}-\Delta\right)-c_{i j}\left(x_{i j}\right)}{\Delta}$

Let $U=\max _{i j} u_{i j}$
initially $\Delta=2^{\left\lfloor\log _{2} u\right\rfloor} x \equiv 0$ and $\pi \equiv 0$
x, π show that x is optioned a) $C_{i j}(0)=0 \quad \forall \partial_{j}$ by abounption

Than Δ : 1. Construct $N(x, \Delta)$
2. $\forall i j \in A:$ if $i j$ or $j i$ is in $N(x, \Delta)$ and has negative reduced cost we incran ordecrenn the flow by sur units,
3.

$$
\begin{aligned}
& S(\Delta) \leftarrow\left\{i \mid \delta(i)-b_{x}(i) \geq \Delta\right\} \\
& \left.\left.T(\Delta) \leftarrow\} i \mid b_{x}(i)-b_{i}\right) \geq \Delta\right\}
\end{aligned}
$$

4. Find shortest path distances d() from some $k \in S(\Delta)$ and let P de a shorhst (k, l)-path for some $l \in T(\Delta)$
5. $\pi \in \pi-d$
6. Augment x by rubin, \triangle unibalong P
7. updah $S(\Delta 1, T(\Delta)$ and if both ar nonempty
8. If $\Delta>1$ set $\Delta \in \frac{\Delta}{2}$ and soto l

Non that in the 1-scahus phon the disaretization is complital. We now prove that the final x is optimal.

Invariant $C_{i j}^{\pi} \geq 0$ for evangarc $i j \in N(x, \Delta)$

Invariant $C_{i j}^{\pi} \geq 0$ for evangarc $i j \in N(x, \Delta)$
Note that it is nosh to show it the invariant holds initially and when the 2Δ-pan finishes Them step 2 (chasing $x_{i j}$ by $t /-\Delta$ if $c_{i j}^{\pi}<0$ or C $\mathrm{Ti}_{i}<0$ for arcs in visional net work) coll costadish invariant and steps 4,5 maintains the invariant
Invariant at the desinnins of $\Delta=2^{\left[\log _{2} \text { es }\right.}$ plan:

- $C_{i j}\left(X_{i j}\right)$ is Unearized into at most one segment (0 segments of $u_{i j}<\Delta$)
- Let $\alpha=c_{i j}^{1}$ (slope of first section a) discretization)
of went $x_{i j} \in 0$ then $i j \in N(x, \Delta)$ with costa and $j i$ is not in $N(x, s)$
o if cont $x_{i j} \in \Delta$ then $j i \in N(x, \Delta)$ with ort- α and io is not is $N(x, y)$
- Thu alsonthm asoisus $x_{i j}$ value our Δ sit the vesultius arc in $N(x)$ has coot ≥ 0
- We have $\pi \equiv 0$ initially so all ares of $N(x, \Delta)$ have vechuced coot ≥ 0 when the first plan start).

So the muanianthulls.
Geneal D-phin: assuming invariant holds when the 2Δ-pheon fishes.
pojoble problem: in the 2A-phen $C_{i j}\left(X_{i j}\right)$ is linearized into regmesti) of length 2Δ and n the Δ-phen into resmentiof length $\triangle \Rightarrow \operatorname{arc} c o s t s c h c m n$ so we wist haves) arcs with negative cost in $N(x, B)$:

j) and (j, i) might satisfy four alternatives: (1) $c_{i j}^{\pi} \geq 0$ and $c_{i j}^{\pi} \geq 0$, (2) $c_{i j}^{\pi}<0$ and

Recall: in Δ-phon the reduced cost of i) is

$$
c_{1 j}^{\pi}=\left(C_{i j}\left(x_{i j}+\Delta\right)-C_{i_{j}^{\prime}}\left(x_{i j}\right)\right) / \Delta-\pi(i)+\pi(j)
$$

ij cost $=$ slope of $A B$
jo cost $=$-slope of $A C$
$\ln N(x, \Delta)$:
in $\cos t=\operatorname{slopcot} A D$
jo cont $=-\operatorname{slog}$ of $A E$
So cost $i j>$ and $\operatorname{cost} j i>$

Then an 4 possible combinations of the sisus of $c_{i j}^{\pi}$ and $c_{j i}^{\pi}$ in $N(x, \Delta)$ when $i j, j i \in N(x)$
(11
(2)
(3)
(4)

$$
c_{i j}^{\pi} \geq 0, c_{j i}^{\pi} \geq 0, c_{i j}^{\pi}<0, c_{j c}^{\pi} \geq 0, C_{i j}^{\pi} \geq 0, c_{j i}^{\pi<0}, c_{i j<0}^{\pi}, c_{j c}^{\pi} c^{c}
$$

$\operatorname{Can}(1)$: nothing needed for the are $i^{\prime} j$
$\operatorname{can}(2): c_{i j}^{\pi}<0$ and $c_{j i}^{\pi} \geq 0$
We want to increan $x_{i j}$ by Δ

$$
\begin{aligned}
& \text { We want to increan } x_{i j} \text { by } \Delta \\
& {\left[C_{i j}\left(x_{i j}+2 \Delta\right)-C_{i j}\left(x_{i j}\right)\right] / 2 \Delta-\pi(i)+\pi() \geq 0(2 \Delta-p h a n)} \\
& { }^{\pi} C_{i j}\left(x_{i j}+2 \Delta\right)-C_{i j}\left(x_{i j}\right)-2 \Delta \pi(c)+2 \Delta \pi(j) \geq 0 \\
& C_{i j}\left(x_{i j}+2 \Delta\right)-C_{i j}\left(x_{i j}+\Delta\right)-\Delta \pi(c 1+\Delta \pi(j) \\
& =\left[C_{i j}\left(x_{i j}+2 \Delta\right)-C_{i j}\left(x_{i j}\right)-2 \Delta \pi(c 1+2 \Delta \pi(j)]\right. \\
& -\left[C_{j j}\left(x_{i j}+\Delta\right)-C_{i j}\left(x_{i j}\right)-\Delta \pi(c)+\Delta \pi(0)\right]
\end{aligned}
$$

≥ 0 as $\left[_{\alpha}^{k} y_{\alpha} \geq 0\right.$ and $\left[_{b^{4}}\right]<0$ since $C_{0 j}^{\pi}<0$

$x_{i j-2 \Delta} \quad x_{i j}-\Delta \quad x_{i j} \quad x_{i j} t \Delta \quad x_{i j}+2 \Delta$ after ingrains $x_{i j}$ fo $x_{i j} t s$ the arc iii is $N(x)$ which is ok since

$$
\begin{aligned}
c_{j i}^{\pi} & =\left[c_{i j}\left(x_{i j}\right)-C_{i j}\left(x_{i j} t \Delta\right)\right] / \Delta-\pi(0)+\pi(i) \\
& =-\left[\left(c_{i j}\left(x_{i j}+\Delta\right)-c_{i j}\left(x_{i j}\right)\right) / \Delta-\pi(u)+\pi(\dot{j})\right] \\
& =-c_{i j}^{\pi}>0 \text { as } c_{i j}^{\pi}<0
\end{aligned}
$$

$\operatorname{con} 3 c_{i j}^{\pi} \geq 0, c_{j}^{\pi}<0$
very similar calculations:
we decrean $x_{i j}$ dy Δ to obtain
that both ij and jo have
non negate reduced cost
(j i may disappear it we set $x_{i}=0$.)
$\operatorname{can}^{c} c_{i j}^{\pi}<0, c_{j i}^{\pi}<0$
impoorble column $C_{i j}\left(x_{i j}\right)$ is conner s exercin 14.17

Complexity (similar analysis as for see 10.2)

- When 2A-phen terminates we have
$E=\sum\left(b(c)-b x^{(j)}\right) \leq 2 n \Delta$
as $\delta(\Delta)=\phi$
or $T(\Delta)=\phi$ $b(i)>b_{x}(i)$
- modifyins $x_{i,}$? , atthedesinnins of the phan champes E dy at most $2 \mathrm{~m} \Delta$ So $E \leq 2(n+m) \Delta$ when we start aummenting by exactly \triangle-umib along II shortast patho
${ }^{4}$ O(m) ausmentation) in $\Delta-p h e n$
- O(logu) phems
- When the $2^{\text {Log } u J}$ phan begins, ve have $\sum 6 i j \leq m U \leq 2 m 2^{\left\lfloor\log _{2} U S\right.}=2 m \Delta$
\Rightarrow Comphxity is $O\left(m \log _{2} 0 \cdot\right.$ Dijhistm $)$

