Out-trees and out-branchings

An out-tree in a digraph $D=(V, A)$ is a connected subdigraph T_{s}^{+}of D in which every vertex of $V\left(T_{s}^{+}\right)$, except one vertex s (called the root) has exactly one arc entering. This is equivalent to saying that s can reach every other vertex of $V\left(T_{s}^{+}\right)$by a directed path using only arcs of T_{s}^{+}.

An out-branching in a digraph $D=(V, A)$ is a spanning out-tree, that is, every vertex of V is in the tree. We use the notation B_{s}^{+} for an out-branching rooted at the vertex s.

The following classical result due to Edmonds and the algorithmic proof due to Lovász, which we will give implies that one can check the existence of k arc-disjoint out-branchings in polynomial time.

Theorem 10 (Edmonds' branching theorem)

[Edmonds, 1973] A directed multigraph $D=(V, A)$ with a special vertex z has k arc-disjoint spanning out-branchings rooted at z if and only if

$$
\begin{equation*}
d^{-}(X) \geq k \quad \text { for all } X \subseteq V-z \tag{4}
\end{equation*}
$$

By Menger's theorem, (4) is equivalent to the existence of k arc-disjoint-paths from z to every other vertex of D.

$$
\dot{Z}
$$

Checking whethw $(\square) d^{-}(X) \geq k \quad \forall X \subseteq V-2:$ check ins for $\geq 6(2, t)$-path in D :

- $D \rightarrow N_{D}=\left(V^{\prime} 0,2, t\right), A_{1}(\equiv 0, u=1) \quad V^{\prime}=V \backslash\langle 2, t\}$
- Run Dinic's aljonthm until we have a max flow or comment (z, t)-flow x has value k. $O\left(n^{2 / 3} m\right)$
- If $|x|<k$ then let (x, \bar{X}) se a $(2, t)$-ant of capacity $r<k$ the $d^{-}(\bar{x})=r<k$, showing that (G) does not hall.
- In $\operatorname{time}(n-1) \cdot O\left(n^{2 / 3} m\right)=O\left(n^{5 / 3} m\right)$ we can check whether ($口$ I holds.

Proof: (Lovász) The necessity is clear, so we concentrate on sufficiency. The idea is to grow an out-tree F from z in such a way that the following condition is satisfied:

$$
\begin{equation*}
d_{D-A(F)}^{-}(U) \geq k-1 \text { for all } U \subseteq V-z \tag{5}
\end{equation*}
$$

If we can keep on growing F until it becomes spanning while always preserving (5), then the theorem follows by induction on k. To show that we can do this, it suffices to prove that we can add one more arc at a time to F until it is spanning.

Let us call a set $X \subseteq V-z$ problematic if $d_{D-A(F)}^{-}(X)=k-1$. It follows from the submodularity of $d_{D-A(F)}^{-}$(recall Corollary 8) that, if X, Y are problematic and $X \cap Y \neq \emptyset$, then so are $X \cap Y, X \cup Y$ as we have

$$
\begin{aligned}
(k-1)+(k-1) & =d_{D-A(F)}^{-}(X)+d_{D-A(F)}^{-}(Y) \\
& \geq d_{D-A(F)}^{-}(X \cup Y)+d_{D-A(F)}^{-}(X \cap Y) \\
& \geq(k-1)+(k-1)
\end{aligned}
$$

Here the last in-equality follows from the fact that we have grown F so that (5) holds.
Observe also that, if X is problematic, then $X \cap V(F) \neq \emptyset$, because X has in-degree at least k in D.

If all problematic sets are contained in $V(F)$, then let $T=V$. Otherwise let T be a minimal (with respect to inclusion) problematic set which is not contained in $V(F)$.

Figure: The situation when a problematic set exists

We claim that there exists an arc $u v$ in D such that $u \in V(F) \cap T$ and $v \in T-V(F)$. Indeed if this was not the case then every arc that enters $T-V(F)$ also enters T and we would have

$$
\begin{equation*}
d_{D}^{-}(T-V(F))=d_{D-A(F)}^{-}(T-V(F)) \leq d_{D-A(F)}^{-}(T) \leq k-1, \tag{6}
\end{equation*}
$$

contradicting the assumption of the theorem. Hence there is an arc uv from $V(F) \cap T$ to $T-V(F)$.
Suppose the arc $u v$ enters a problematic set Z. Then we have

$$
\begin{aligned}
(k-1)+(k-1) & =d_{D-A(F)}^{-}(Z)+d_{D-A(F)}^{-}(T) \\
& \geq d_{D-A(F)}^{-}(Z \cup T)+d_{D-A(F)}^{-}(Z \cap T) \\
& \geq(k-1)+(k-1)
\end{aligned}
$$

Thus $Z \cap T$ is problematic and size it is smaller that T (it does not contain u), we obtain a contradiction to the minimality of T.

$$
d_{D-A C E)}(2)=k-1
$$

$$
\begin{aligned}
(k-1)+(h-1) & =d_{D-A(F)}(T)+d_{D-A(F)}(z) \\
& \geq d_{D-A(F)}(T \cap z)+d_{D-A(F)}^{-}(T \sim z) \\
& \geq(h-1)+(h-1)
\end{aligned}
$$

(V)

$$
\begin{aligned}
& d_{D-A(F)}(T \cap Z)=k-1 \\
& \rightarrow E \text { choice of } T
\end{aligned}
$$

Hence we can add the arc $u \rightarrow \cup$ to F and proceed. So the clair follows D. by induction.

How to find a good arc $u-3 v$ fo add?

1) Let F dethecurnut out-tree and let $V^{\prime}=V(F)$
2) For a given arc $u \rightarrow v$ with $u \in V^{\prime}$ and $V \in V \backslash V^{\prime}$ checks whet her then are $(k-1)$-are-disjont $\left(z_{1}, v\right)$-path
one max flow call with source z and sink V
3) wi know that if

$$
d^{-}(U) \geq k \quad \forall U \leq V-2 \text { then }
$$

then is at last one ouch $\operatorname{arc} u->0$ which com beaded to F
Total time $(n-1)$ arc) added to F starts, from $F=\phi$ $O(m)$ arcs out ot V(F) to clack in each iteration in time $O\left(n^{2 / 3} m\right)$

$$
\text { so } O\left(n \cdot m \cdot n^{2 / 3} m\right)=O\left(n^{5 / 3} m^{2}\right)
$$

Implications of Edmonds' Branching Theorem

Corollary 11 (Even 1979)

Let $D=(V, A)$ be a k-arc-strong directed multigraph and let x, y be arbitrary distinct vertices of V. Then for every $0 \leq r \leq k$ there exist paths $P_{1}, P_{2}, \ldots, P_{k}$ in D which are arc-disjoint and such that the first r paths are (x, y)-paths and the last $k-r$ paths are (y, x)-paths.

Figure: Proof of Corollary 11

Weakly-k-linked digraphs

A directed multigraph $D=(V, A)$ is weakly-k-linked if it has a collection of arc-disjoint paths P_{1}, \ldots, P_{k} such that P_{i} is an $\left(x_{i}, y_{i}\right)$-path for every choice of (not necessarily distinct vertices $x_{1}, x_{2}, \ldots, x_{k}, y_{1}, \ldots, y_{k} \in V$.
Note that if D is weakly- k-linked then it is k-arc-strong since we can take $x_{1}=\ldots=x_{k}=x$ and $y_{1}=\ldots=y_{k}=y$ for arbitrarily chosen x, y, showing that $\lambda_{D}(x, y) \geq k$ and hence, by Menger's theorem, D is k-arc-strong.
Shiloach observed that Edmonds'branching theorem implies that the other direction also holds:

Theorem 12 (Shiloach 1979)

A directed multigraph D is weakly k-linked if and only if $\lambda(D) \geq k$.

Dts satisfies the concition in Edmonds theorm as D is k-are-strous
II $\exists k$ are-disjoint bramblans

$$
B_{s, 1,}^{+} B_{s, 2}^{+} \ldots \cdot B_{s, k}^{+}
$$

Figure: Proof of Theorem 12

Edge-disjoint spanning trees

Recall Robbins'theorem

Theorem 13 (Robbins, 1939)

A graph G has a strongly connected orientattion if and only if G is connected and has no cut-edge (that is, $\lambda(G) \geq 2$.

Nash-Williams generalized this to the following.

Theorem 14 (Nash-Williams, 1960)

A graph G has a k-arc-strong orientation if and only if $\lambda(G) \geq 2 k$.

Theorem 15 (Nash-Williams 1961, Tutte 1961)

Every graph G with $\lambda(G) \geq 2 k$ has k edge-disjoint spanning trees.

Proof: :

- Let $G=(V, E)$ satisfy that $\lambda(G) \geq 2 k$.
- By Nash-Williams' theorem, G has an orientation $D=(V, A)$ with $\lambda(D) \geq k$
- Let z be an arbitrary vertex of D.
- As $d^{-}(X) \geq k$ for every proper subset X of V we also have $d^{-}(X) \geq k$ for every $X \subset V-z$.
- By Edmonds' branching theorem D has k arc-disjoint out-branchings $B_{z, 1}^{+}, \ldots, B_{z, k}^{+}$.
- Back in G each of these correspond to a spanning tree.

EQ monds brandums theorm \downarrow Menger's theorm (arc-version)

D has k arc-diojount (s,t)-paths)
D^{\prime} has k arc-disjoint oot-branchnss rootedats \Uparrow Edmonds branching theorm

$$
\begin{array}{ll}
d_{D^{\prime}}^{-}(u) \geq k & \forall u \leq V-s \\
d_{D}^{-}(u) \geq k & \forall u \leq V-s \quad s, t \quad t \in U
\end{array}
$$

