BJ 6 Iud edition paps 342.345
Minimum coot Sranchinso

Given $D=(V, A, C) \quad C: A \rightarrow \mathbb{R}$ and $r \in V$
Find oot-branchins B_{r}^{t} sit $C\left(B_{r}^{t}\right) \leq C\left(\hat{B}_{r}^{+}\right)$
forsll oot-branclunss \hat{B}_{r}^{t} from r
Lemma 9.2.1 Given $D=(V, A, c)$ Let $y_{v}=m / n\{c(u v) \mid u v \in A\}$ (y_{v} is minimum coot ot an arc entering v) Let $c^{\prime}(u v)=c(u v)-y_{v}$

Then B_{s}^{+}optimal with respect to $c \Leftrightarrow B_{\Gamma}^{+}$optimal wort c^{\prime}
P:

$$
C\left(B_{r}^{t}\right)=C^{\prime}\left(B_{r}^{t}\right)+\underbrace{y_{r}}_{v \not r r} y_{r} \text { constant }
$$

Given (D, c, r) let $F^{*}=\left\{\begin{array}{c}\text { one min curt arcentenuso } \\ \text { for each } v \neq 0\end{array}\right\}$
Then $d_{F^{*}}^{-}(v)=1 \quad \forall v \in V-r$ and
$c^{\prime}(u v)=0$ for eves are $u v \in F^{*}$
So if F^{*} is an oot-franching then it is optimal since $c^{\prime}(a) \geq \forall a \in A$

Soppon F^{*} contains a cych it must be directed as $d_{F^{*}}^{-}(v)=1 \quad \forall v \neq r$

Gemma 9.2.3
There exists an optimum (mi ncost) branches motel at r which contain) all bot one ar c of even g cydicq F^{*}
P: Let B_{r}^{t} be a min cost branching from r such that
(D) $\left(A\left(B_{r}^{t}\right) \cap F^{*} \mid\right.$ is maximizal among all out-brandingsfumer

Let $C \leq F^{*}$ dea $u_{1} c^{h}$ and $l_{e} t \quad A(C)-A\left(B_{r}^{t}\right)=\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots u_{6} v_{4}\right\}$ Soppon $k \geq 2$
 all red pieces are part of Br_{r}^{t} For each $i \in[k]$ let $a_{i}=w_{i} v_{i}$ be the arc entenns U_{i} in B_{r} t

$$
H_{i}=B_{r}^{t}+u_{i} v_{i}-\omega_{i} v_{i} \quad v_{i} n_{0} t a n o u t-\delta r a n c \operatorname{cons} \text { dy (D) }
$$

So H_{i} contains

Let $x y$ de the last are of P_{i} which i) not on C

Then $y=v_{i-1} \cos \left(\left[v_{i-1}, u_{i}\right] \in B_{r}^{t}\right.$

Conclusion B_{r}^{+}contain) a $\left(v_{i}, v_{i-1}\right)+p_{1}$ th This) holds for each $i \in[k]$ So B_{1}^{+}costa (n) a aych $\rightarrow \leftarrow$
not: if $k=1$ then

Which is nota contadiction and B_{r}^{+}contains allarcs of C exart u, us
Contracting aych in (D, C) :

D
D / C
lemma 9.2.9 let C beagydin F^{*} and let W_{r}^{t} de optimum outubranchens from r in D / C wot c^{\prime}
Then wa can obtain an optimum out-branchms B_{r}^{t} in D wit $C^{\prime}($ and $C)$ by replacing V_{C} by C munusom arc

$w_{r}{ }^{t}$

$$
c^{\prime}\left(\omega_{r}^{t}\right)=C^{\prime}\left(B_{r}^{t}\right)
$$

Proot By lemona 9.2.3 there exist an optimum oot-branchons \hat{B}_{r}^{+}in D which contains allarcs of C excuptom
If we contract C into ${ }^{5} C, \hat{B}_{r}^{+}$bocomes an out-branchms \tilde{B}_{r}^{+}in D / C

$C^{\prime}(p q)=0$ forevem are pq of C so

$$
c^{\prime}\left(\tilde{B}_{r}^{t}\right)=C^{\prime}\left(\tilde{B}_{r}^{t}\right) \geq C^{\prime}\left(w_{r}^{+}\right)=C^{\prime}\left(B_{r}^{t}\right)
$$

$\Rightarrow B_{r}^{t}$ isoptimum cortc'
$\Rightarrow B_{r}^{t}$ is optimom $\cot t c$

Theovern 9.5 we can find a min cost bremoling B_{r}^{t} in (D, C, r) in pol time.

P: on input ($D_{i} c_{i} r$):

1. Check whether r can reach all other vertices and stop it No
2 For $v \in V-r: y_{V} \in \min \{c(u v) \mid u v \in A\}$
3 For $v \in V-r$: fix oncare a_{v} entenus
v with $C\left(a_{v}\right)=y_{v}$
2. Let $F^{x}=\left\langle a_{v}\right| v \in V-s \mid$
3. If F^{*} ioabrandius $(n$. coach $)$ return F^{*} Floc hut $C \leq F^{*}$ beach
a. $D \in D / C$
b. $c^{\prime} \in c-y \quad\left(c^{\prime}(a v) \in c(a v)-y_{v} \quad \forall u v \in A\right)$
c. Solve recursively on ($D / C, C^{\prime}, r$)
d. Blow op again and vetoren the resulting 8 ranching

in $D / c^{1}, c^{2}$

Noh (withoot proot)
cort of the final oot-branchins
= somot all y valus duvins the aljonthm.

