

Given
$$D = (V, A, C)$$
 C: $A \to R$ and rev
Find out-branchins B_{r}^{+} s.t $C(B_{r}^{+}) \in C(B_{r}^{+})$
for shi out-branchinss B_{r}^{+} from r
lemma 9.2.1 Given $D = (V_{1}A_{1}C)$ let $Y_{v} = min \{C(uv) | uven \}$
lyo is minimom cost of an arc enterns or) $2 \to y^{-2}$
let $C'(uv) = C(uv) - y_{v}$
Then B_{r}^{+} optimal with respect to $C \subseteq B_{r}^{+}$ is optimel with
 $v = c^{-1}(B_{r}^{+}) + \sum_{v \neq r} c_{v}$ stant D
Given (D, C, r) let $F^{*} = \{one min cost arc enterns of for each or $\pm v$
Then $d_{p*}(v) = 1$ $\forall v \in V - r$ and
 $C'(uv) = o$ for every are $uv \in F^{*}$
So if F^{*} is an out-branching them it is optimel
Slyce $C'(a) \ge \forall a \in A$$

Soppon F* contains a cycle
it must be directed as
$$d_{F^{*}}(\sigma) = (\forall \sigma \neq r)$$

lemma 9.2.3
There exists an optimum (min cost) branchess
rooted at r which contains all bot one arc
of every cyclicn F*
P: let B_{r}^{*} be a min cost branching from r such that
(C) $(AlB_{r}^{*}) \cap F^{*}$ is maximized among all oub-brandowsform r
let $C \leq F^{*}$ be a up of and let $A(C) - A(B_{r}^{*}) = J_{u_{1}v_{1},u_{2}v_{2}, \dots u_{r}v_{r}}$
 $u_{i} \qquad u_{i} \qquad$

if k= (then Note: v, u Which is not a contradiction and Br watains all arcs of cexapt U,U Contracting a cychin (D, c): -> / T AL C

lemma 9.2.9 let C Seagerin F* and let Wr be optimum out branching from r in D/c wrt c Then we can obtain an of fimm. out-brenching Brin Dwitc' (and c) by replacing VC by Commosom the K A ~ tho -ey p K. Vc tz tau Wť Br $C^{l}(W^{t}) = C^{l}(B^{t})$

Provt By lemma 9.2.3 there exist an optimum out-branching B' in D which contains all arcs of C exciptom if we contract C into 5C, B; bicomin an out-branching Bt in D/C c'(pq)=0 for every arc pq of C so $c'(\hat{B}_r^+) = c'(\hat{B}_r^+) \ge c'(w_r^+) = c'(B_r^+)$ =) Br crophimum curtc' =) Br is optimom cont c

Not (without proof) cost of the final out-branching = som of all g values during the algorithm.