
Given G - CV , E ) and
zip - m

a
, .hr - - -an n -

- IVI

Question : can we
orient 6

to a digraph
D with djcifai?

er
,ft
•

SAEZµ
step I orient G arbitrarily

G -7 D
'

→
for example a o o o o a o O



Uh D
'
as a reference orientation

Suppon
D isagood orientation

( d-pad -
- ai )

i÷÷÷÷
flow x which points out

differences :

Koji f
' if we need to

rerun ij

o
otherwise



we want discos -

- ai

¥x⇒ in D
'

i •¥-0
4¥ .

Xt O X -

-O

j DH)

¥
→

*

dja.fi) - dish
- it ? ii

we want

aio-djcxjil-dj.ci ) -Exiitzxij

④

bxcikf.pe#ij?exhii=ai-dislilbCi
)



Two nets X. YEV are

internet if XNY ,
KY

,
4¥01

and a pair of
intern chins ab

X
,
Y are crossing it also

XuY¥V
⑧

A family f of oubnh.TV
is

interacting (crossing ) if X ,
YE F

implies Xny ,
XUYEF whenever

X and Y are intersecting lemons )



Submodular flows and Orientations

Let F be a family of subsets of S and let b be a real valued
function defined on F . The function b is fully submodular on F
if the inequality

b(X ) + b(Y ) � b(X \ Y ) + b(X [ Y ) (1)

holds for every choice of members X ,Y of F . If (1) is only
required to hold for intersecting (crossing) members of F , then b
is intersecting (crossing) submodular on F .

A real valued set function b on S is modular if equality holds in
(1) for every choice of X ,Y ✓ S .



Let D = (V ,A) be a directed multigraph let F be a family of
subsets of V such that ;,V 2 F and let b be fully submodular on
F . A function x : A ! R is a submodular flow with respect to
F , b if it satisfies

x�(U)� x+(U)  b(U) for all U 2 F . (2)

If we take F = 2S and b ⌘ 0 we are back at standard circulations
(flows).
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Theorem 17 (Edmonds and Giles, 1977)

Let D = (V ,A) be a directed multigraph. Let F be a crossing
family of subsets of V such that ;,V 2 F , let b be crossing
submodular on F with b(;) = b(V ) = 0, and let f  g be
modular functions on A such that f : A ! Z [ {�1} and
g : A ! Z [ {1}. The linear system

{f  x  g and x�(U)�x+(U)  b(U) for all U 2 F} (3)

is totally dual integral. That is if f , g , b are all integer valued, then
the linear program min {cT x : x satisfies (3)} has an integer
optimum solution (provided it has a solution). Furthermore, if c is
integer valued, then the dual linear program has an integer valued
optimum solution (provided it has a solution).



Theorem 18 (Frank 1982, Fujishige 1989)

One can verify in polynomial time whether a given submodular
flow problem has a feasible solution. If f , g , b are all integer valued
and there exists a feasible submodular flow, then there exist a
feasible integer valued submodular flow. Furthermore, if there is
also a cost function on the arcs, then one can find a minimum cost
feasible submodular flow in polynomial time.



k-arc-strong orientations as a submodular flow problem

Let G = (V ,E ) be an undirected graph. Let D be an arbitrary
orientation of G . Clearly G has a k-arc-strong orientation if and
only if it is possible to reorient some arcs of D so as to get a
k-arc-strong directed multigraph.

Suppose we interpret the function x : A ! {0, 1} as follows:

x(a) = 1 means that we reorient a in D and

x(a) = 0 means that we leave the orientation of a as it is in D.
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Then G has a k-arc-strong orientation if and only if we can choose
x so that the following holds:

d�
D (U) + x+(U)� x�(U) � k 8 ; 6= U ⇢ V . (4)

This is equivalent to

x�(U)� x+(U)  (d�
D (U)� k) = b(U) 8 ; 6= U ⇢ V (5)

b(;) = b(V ) = 0. (6)
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Observe that the function b is crossing submodular on F = 2V (it
is not fully submodular in general, since we have taken
b(;) = b(V ) = 0).

Thus we have shown that G has a k-arc-strong orientation if and
only if there exists a feasible integer valued submodular flow in D
with respect to the functions f ⌘ 0, g ⌘ 1 and b.



Recall Nash-Williams orientattion theorem

Theorem 19 (Nash-Williams, 1960)

A multigraph G has a k-arc-strong orientation if and only if G is
2k-edge-connected.

Proof: (Frank 1984, Jackson 1988) Suppose that G is
2k-edge-connected, that is dG (X ) � 2k for all proper non-empty
subsets of V (by Menger’s theorem). We claim that x ⌘ 1

2 is a
feasible submodular flow. This follows from the following
calculation:

d�
D (U) + x+(U)� x�(U) = d�
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Hence it follows from the integrality statement of Theorem 18 and
the equivalence between (4) and (5) that there is a feasible integer
valued submodular flow x in D with respect to f , g and b. As
described above this implies that G has a k-arc-strong orientation
where the values of x prescribe which arcs to reverse in order to
obtain such an orientation from D.

Theorem 20 (Jackson 1988)

Every 2k-arc-strong digraph contains a spanning k-arc-strong
oriented graph.
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Reversing arcs to increase connectivity

Notice that by formulating the problem above as a minimum cost
submodular flow problem, we can also solve the weighted version
where the two possible orientations of an edge may have di↵erent
costs and the goal is to find the cheapest k-arc-strong orientation
of the graph. This clearly includes the problem where we wish to
find the minimum number of arcs to reverse in order to obtain a
k-arc-strong directed multigraph, hence we have

Theorem 21 (Frank 1982)

Given a directed multigraph D, one can find in polynomial time the
minimum number of arcs whose reversal in D results in a
k-arc-strong directed multigraph.

This includes the case when D has no such reversal which can be
detected by checking whether the submodular flow problem above
has a feasible solution.


