Maximurn flow pwolem
Given a network $N=(V, i s, t), A, l \equiv 0, u)$
Find an (s, t l-flow x s,t $b_{x}(s)$
is maxinum
$(s, t)-c u t$:

Lemma 3.5.1 For evers (s.t 1 -flow in N and for eveng (s, t), at (S, \bar{S})

$$
b_{x}(s)=x(s, \bar{s})-x(\bar{s}, s)
$$

$$
b_{x}(s)=b_{x}(s)+\sum_{i \in S-s} b_{x}(i)
$$

$$
=\sum_{i \in S} b_{x}(c)
$$

$$
=\sum_{i \in S}\left(\sum_{i j \in A} x_{i j}-\sum_{j \in A} x_{i j}\right)
$$

$$
=x(s, \bar{s})-x(\bar{s}, s)
$$

$$
\begin{aligned}
b_{x}(s) & =x(s, \bar{s})-x(\bar{s}, s) \\
& \leq u(s, \bar{s})-0=u(s, \bar{s})
\end{aligned}
$$

Note
if $b_{x}(s)=u(s, \bar{s})$
then x is a maximum flow and (S, \bar{S}) is a minimum (s,t)-cat i.e, $u(s, \bar{s})$ is minimum overall (s, t)-arts

Suppon X is an (s,t)-flow in $N=(V$ uss,t), $A, l \equiv 0, w)$ and $P_{\text {is }} a_{n}(s, t)$-path in $N(x)$
s.t $\min \left\{r_{i j}(i j i s \operatorname{an} \operatorname{arcot} P)=k\right.$
then let $f(P)$ be the path flow that rends h units alons P in $N(x)$
then $x^{\prime}=x \oplus f(P)$ is an (s, t)-flow of value $b_{x}(s)+h>b_{x}(s)$

$f(p)$ has value 2
il

$$
\begin{array}{r}
b_{x^{\prime}}(s)=\delta_{x}(s)+2 \\
\left(x^{\prime}=x \oplus f(P)\right) \\
\delta(P)=\min \left\{r_{i j} l i j \in A(P)\right\}
\end{array}
$$

directel path in $N(x)$

$$
\delta=2
$$

$$
\mathrm{s} \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \circ t
$$

cormsponds to

$\frac{\text { Tho (MaxFlow - MinCer) }}{\text { Let } N=(V 03 s, t), A, l \equiv 0, \text { e }) \text { be }}$ an (s, t)-network and let x be a feasible flow then
(a) x is a maximum flow © 5
(b) 雨 (s, t)-path in $N(x)$
iv
(c) 1 an $(s, t \mid$-art (s, \bar{s})

$$
\text { sit } u(s, \bar{S})=\delta_{x}(s)
$$

$$
p:(c) \Rightarrow(a)
$$

$$
\frac{(a) \Rightarrow(b)}{\neg(b) \Rightarrow \neg(a)}
$$

Jupon then is an $(s,()$-path P in $N(x)$ and let $f(P)$
be a path flow of value $\delta(P)$
then $X^{\prime}=x \oplus f(P)$ is also an (s, t)-flow and

$$
\delta_{x^{\prime}}(s)=b_{x}(s)+\delta(p)
$$

b

$$
x \text { is not maxi }
$$

$$
(b) \Rightarrow(c)
$$

Suppon (b) holds that is t cannot be reach ad from s $i \backsim N(x)$ $S=\{v \mid \exists(S, s)$ - path in $N(x)$

only $\bar{S} \rightarrow S$ arcsin $N(X)$

$$
\begin{aligned}
b_{x}(s) & =x(s, \bar{s})-x(\bar{s}, s) \\
& =u(s, \bar{s})-0 \\
& =u(s, \bar{s})
\end{aligned}
$$

so (c) holds

Ford Folkerson method

$$
\text { 1. } x \equiv 0
$$

2 while $\exists(s, t)$-path in $N(x)$ Let P be such apath

$$
x \in x \oplus f(P)
$$

\uparrow
path flow of value $\delta(P)$
If all capacities are integer then the method terminates with a maximum flow

integrality theorem
if $N=\left(V_{0} s_{s} t, A, l \equiv 0, u\right)$
satisfies that $u_{i j} \in \mathbb{Z}_{0} \quad \forall i j \in A$ then there exists an integer valued maximum ($s, t)$-flow.

