

Maximum flow public
Given a network
$$N = (V_{u}s_{i}t) A, t \equiv 0, u)$$

Find an $(s_{i}t) - flow \times s_{i}t b_{x}(s)$
is maximum
 $(s_{i}t) - cut : s = s$

$$\frac{\text{Lemma 3.5.1}}{\text{cmnd for eveny (S.El-flow in N)}}$$

$$\frac{\text{Lemma 3.5.1}}{\text{cmnd for eveny (S.El-at (S.S))}}$$

$$\frac{\text{Lemma 3.5.1}}{\text{Lemma 3.5.1}}$$

$$b_{x}(s) = b_{x}(s) + \sum_{i \in S-s} b_{x}(i)$$

$$= \sum_{i \in S} b_{x}(i)$$

$$= \sum_{i \in S} \left(\sum_{i \in S} x_{i}; -\sum_{j \in A} y_{j}; \right)$$

$$= x \left(s_{i}, \overline{s} \right) - x \left(\overline{s}_{i}, \overline{s} \right)$$

$$\sum_{q \neq s} x_{q} + \sum_{q \neq s} x_{q} +$$

Note $i \left\{ b_{x}(s) = u(S, \overline{S}) \right\}$ Ehen Xis a maximum flow and (S,S) i sa minimum (s, ε) -cut i.e. $u(s, \overline{s})$:s Minimum overall (s,t)-auts

Suppose
$$X$$
 is an (s,t) -flow
in $N = (V_0)(s,t), A, l \equiv 0, w)$
and P is an (s,t) -path in $N(x)$
s.t. $m_1 n_{ij} | ij is an arcot P] = k$
then let $f(P)$ be the
path flow that sunds k
unit along P in $N(x)$
then $X' = X \oplus f(P)$ is an
 (s,t) -flow of value $b_X(s) th > b_X(s)$

 $N(\mathbf{X})$ (P) has value 2 $b_{\chi'}(s) = b_{\chi}(s) + 2$ $(x' = x \oplus f(P))$ $\delta(P) = \min \{r_{ij} \mid ij \in A(P)\}$

Thm (MaxFlow - Min Cut) let N=(Vois,t), A, l=0, le) be an (s,t)-retwork and let X be a feasible flow then (a) X is a maximum flow (L) \$ (s, El-path in N(x)) (c)] am (s, El-aut (s, š) s. ℓ $u(S,\overline{S}) = \ell_{\chi}(s)$ $\frac{1}{(c)} = (a)$

(a) = (b)

 $\neg(b) = 7(a)$ Suppor then is an (s, El-path P in N(x) and let F(P) be a path flow of value S(P) $thm X' = X \oplus f(P) is also$ an (s,t) flow and $\xi_{\chi^{l}}(s) = \xi_{\chi}(s) + \mathcal{J}(P)$ Kis not maxi

(b) =)(c)

Suppon (6) holds that is t cannot be reached from S in N(x) S={U|=(s,s)-path in N(x)

only 5-75 arcsin N(X)

IN N blue arcs are in N(x)

$$b_{x}(s) = x(s,\overline{s}) - x(\overline{s},s)$$
$$= u(s,\overline{s}) - o$$
$$= u(s,\overline{s})$$
so (c) holds

method Ford Fulkerson |. ΧΞΟ 2 while Z(s,tl-path in N(x) let P be such apath $X \leftarrow X \oplus f(P)$ 4 path flow of value $\mathcal{S}(\mathcal{P})$ If all capacities are integr then the mithed for minetes with a maximum flow

 $Zu(s, \sigma) \subset co$ V - S Integrality theorem $i \in N = (V_0 \cup S_1 \in I, A, l \equiv 0, u)$ satisfie, that hije Ko Vije A then thur exists an integervalued maximum (s,f)-flow.